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Abstract

In this paper we study association rules in order to understand customer

behaviour. We examine the case where many customers may choose from

a long list of products. Suppose that several taxonomies for these products

are given: the products are grouped in different ways, e.g., by colour, by

price, by brand and so on. Then a rule is called interesting if its support,

i.e., the number of customers satisfying the rule, deviates substantially from

the predictions that are generated through one or more taxonomies. Such

a prediction is found by replacing any product in a rule with its parent in

the taxonomy at hand, and then estimating the support of the original rule

through the support of the parent rules and the conditional probabilities of

the “lifted” products. This notion of interestingness is easy to handle and

adheres to the intuition.

1 Introduction

In this paper we study association rules, i.e., rules such as “if a person buys
products a and b, then he or she also buys product c”. Such a rule has a certain
support (the number of people satisfying the rule, i.e., buying a, b and c) and
confidence (the fraction of people buying the products from the “then part” out
of those buying the products from the “if part”). In most practical situations
an enormous number of these rules, usually containing two or three products, is
present. One of the major problems is to decide which of these rules are interesting.

If we only consider the support, there is no emphasis on either “if part” or
“then part”, and in fact we rather examine the underlying itemset, in our example
{a, b, c}. A k-itemset consists of k elements. Such a set is called frequent if its
support is larger than some threshold, which is given in advance. It is also possible
to introduce different support thresholds at different levels.

Now we suppose that a taxonomy for the products is given. In this setting
association rules may involve categories of products; abstraction from brands gives



generalized rules, that are often more informative, intuitive and flexible. Since in
this case the number of rules increases enormously, a notion of interestingness,
cf. [5, 8], is necessary to describe them. It might for instance be informative to
know that people who buy a history book also tend to buy a crime novel; on a
more detailed level one might find that people who buy “The Rise and Fall of
the Roman Empire” often also buy “The Hound of the Baskervilles”. The more
detailed rule is only of interest if it deviates substantially from what is expected
from the more general one.

A taxonomy is a hierarchy in the form of a tree, where the original products
are the leaves, and the root is the “product” All. We consider the case where
several taxonomies are given; note that in principle it is possible to convert these
taxonomies into a single one by introducing extra nodes, but this gives rise to
problems to be discussed later on. In this setting, an itemset is allowed to be
any set of nodes from different levels from the taxonomies. Often we will restrict
an itemset to belong to a single taxonomy. Note that the (internal) nodes of the
taxonomies are in fact sets of original products, these being singleton sets; every
parent is the union of his or her children. In order to “buy” such a node, it is
sufficient for a customer to buy one product out of the set. The root product All
is the set of all original products, and is the root of all taxonomies at hand.

Let us look at the following simple example. A book shop sells cheap, moder-
ate(ly priced) and expensive books in three genres: crime, history and dictionary.
So we might have the following two taxonomies, called price and genre, assuming
that moderately priced history books do not exist:
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Figure 1: Example — Two taxonomies in a book shop, in one graph.

For simplicity we let every leaf correspond with a single product, i.e., a single
book title. Let us assume that 50 persons buy A = {Cheap Crime, Exp History},
(the same) 50 persons buy B = {Crime, Exp History} (one of the “parents” of A
through the genre taxonomy), and 100 persons buy C = {Cheap, Exp History}
(one of the “parents” of A through the price taxonomy). Suppose furthermore
that the following conditional probabilities are known: the chance that a cheap
purchase happens to be a cheap crime novel is 50%, and the chance that a crime
purchase happens to be a cheap crime novel is also 50%. Then itemset A cannot be
understood through itemset B, which would predict 25 Exp History buyers to buy



A, but itemset C does explain A. In the price taxonomy A is not interesting, but
in the genre taxonomy it is. In this (artificial) example it might be the case that
people who buy expensive history books are biased towards cheap crime novels,
in the sense that if they buy an expensive history novel and some crime novel, the
crime novel always is cheap.

In the sequel we shall define a precise notion of interestingness, based on parents
of itemsets in the taxonomies. We shall discuss several options, and using both real
life data and artificial data we illustrate the relevance of this notion. Our goal is to
find a moderate number of association rules describing the system at hand, where
uninteresting rules that can be derived from others are discarded. Interestingness
of itemsets based on a hierarchy for the items is also discussed in [8]. Several other
measures of interestingness not involving taxonomies are mentioned in [2, 3, 6, 7]
and references in these papers.

2 Interestingness

An itemset (or rule) should be called interesting if it is in some sense “special” with
respect to what it is expected to be in the light of its parents. Let us therefore first
give some formal definitions concerning the connection between parent itemsets
and their children.

A one generation ancestor itemset of a given itemset is created by replacing
one or more of its elements by their immediate parents in the taxonomy. For the
moment we choose to stay within one taxonomy, but it is also possible to use several
taxonomies simultaneously. The only difference in that case is that elements can
have more than one parent. The support of an ancestor itemset gives rise to a
prediction of the support of the k-itemset I = {a1, a2, . . . , ak} itself: suppose that
the nodes a1, a2, . . . , aℓ (1 ≤ ℓ ≤ k) are replaced by (lifted to) their ancestors
â1, â2, . . . , âℓ (in general not necessarily their parents: an ancestor of a is a node
on the path from the root All to a, somewhere higher in the taxonomy) giving

an itemset Î. Then the support of I is estimated by the support of Î times the
confidence of the rule “â1, â2, . . . , âℓ implies a1, a2, . . . , aℓ”:

EstimatedSupport
Î
({a1, a2, . . . , aℓ, aℓ+1, . . . , ak}) =

RealSupport({â1, â2, . . . , âℓ, aℓ+1 . . . , ak})×
RealSupport({a1, a2, . . . , aℓ})

RealSupport({â1, â2, . . . , âℓ})
.

This estimate is based on the assumption that given the fact that {â1, â2, . . . , âℓ} is
purchased, buying {a1, a2, . . . , aℓ} and {aℓ+1, aℓ+2, . . . , ak} are independent events.
In fact, this is a simple application of conditional probabilities: if

P (I | â1, â2, . . . , âℓ) =

P (a1, a2, . . . , aℓ | â1, â2, . . . , âℓ)× P (aℓ+1, . . . , ak | â1, â2, . . . , âℓ) ,

then

P ( I ) = P (â1, â2, . . . , âℓ)× P (I | â1, â2, . . . , âℓ)

= P ( Î )× P (a1, a2, . . . , aℓ | â1, â2, . . . , âℓ) .



Now an itemset is called interesting if and only if the predicted supports based
on all (but one as we shall see soon) of its one generation ancestor itemsets deviate
substantially from its real support. If there is at least one parent that predicts the
child suitably well, this itemset is not interesting enough. The word “substantially”
means that the predicted supports are all larger than the real support, or are all
smaller than the real support, by at least some fixed factor. This factor is called
the interestingness threshold. If all products from an itemset are lifted, estimated
support and real support are exactly the same, so it makes sense to omit this
prediction. Therefore 1-itemsets are always interesting, in particular the itemset
{All} (which does not have ancestors): there is no way to predict their support.
In order to give a complete description of the “rule database” it is sufficient to
describe the interesting rules: the behaviour of the others can then be derived—if
one remembers which ancestor itemset provided the best prediction.

The reasons that only one generation ancestor itemsets are used instead of
arbitrary ancestors as in [5] (where the number of items in the two itemsets should
also be the same) are the following. First, it severely restricts the number of sets
that need to be examined. (Note that in a single taxonomy a k-itemset already has
2k − 2 one generation ancestor itemsets in principle.) And second, if a set cannot
be understood through any of its parents, but some grandparent does predict its
support, in our opinion it still deserves attention.

One particular problem is the following. If during the lifting one or more over-
lapping sets are created, in particular if two or more taxonomies are used, one has
to decide which clients satisfy a certain itemset. For instance, if in a book shop
the sets Crime and Cheap have a book Cheap Crime in common (see Figure 1),
it may or may not be sufficient for a customer to buy Cheap Crime in order to
satisfy Crime and Cheap at the same time. In this paper we will stick to the con-
vention that this is indeed sufficient. If we have one taxonomy only we already
encounter this problem, but in a somewhat simpler form: it is easy to generate
an ancestor such as {Cheap,Cheap}, which might be called a 2-itemset, needing
at least two products. (This occurs if two siblings are lifted to the same parent.)
However, we shall consider it to be equivalent to the 1-itemset {Cheap}, thereby
adhering to the convention that a single product may be used to satisfy several
different requirements, so for instance Cheap Crime satisfies this set. One reason
to do so is that otherwise a lot of backtracking would be necessary to perform
the checking: if a product is used to fulfill a certain requirement, in a later stage
it may be needed for some other requirement. A second reason is that otherwise
very many itemsets of the form {child , ancestor}, such as {Cheap Crime, Cheap},
would enter the already immense list of candidates. Finally, a single purchase may
reflect several properties at one time: buying Cheap Crime reveals two (or more)
clues about the customer behaviour simultaneously.

Besides this type of interestingness we might also consider so-called right hand
side interestingness. If we choose one particular item a from a k-itemset I, we
may lift this to the product All. Using the above formula, this leads to a simple
estimate for the support of I, or more precisely, of the rule “I −{a} implies {a}”.
It gives an extra independent measure for interestingness, which is also easy to
compute. More general (cf. [3]), a notion of interestingness can also be based on



parents produced by deleting items from itemsets.

3 Algorithms

The algorithms that find all interesting rules are straightforward. The well-known
Apriori algorithm from [1], or any of its refinements, provides a list of all associ-
ation rules. The algorithms can be easily adapted to generate all rules including
nodes from the taxonomy, where special care has to be taken to avoid parent-child
problems (see [8]). In fact, if one augments the list of original products with all
non-leaves from the taxonomy, the Apriori algorithm can do the job. Once the list
of all rules is known, it is easy to generate the interesting ones by just comparing
supports for the appropriate rules.

For every frequent itemset I all its one generation ancestor itemsets Î are
generated, and expected and real support are compared; we define the support
deviation of I to be the smallest interestingness ratio

RealSupport(I) / EstimatedSupport
Î
(I)

that occurs. In the example in Section 1 we would get 50/(100×0.5) = 1.0 through
parent C and 50/(50 × 0.5) = 2.0 through parent B. If this support deviation is
higher than the interestingness threshold, the itemset is called interesting. Note
that the ancestors are automatically frequent, unless—as in [5]—different sup-
port thresholds are specified at different tree levels. The frequent itemsets can be
ordered with respect to support deviation: the higher this ratio, the more intercon-
nection occurs between the products involved. In fact, the assumption concerning
the independence between lifted and non-lifted products clearly does not hold in
that case, and an interesting connection is revealed.

It is also possible to look at the average interestingness ratio over the ancestors,
but we feel that the minimum approach is more appropriate. Of course it is also a
possibility to look at the maximum, and then try to find underestimated supports;
however, in most practical applications the minimum approach gives better results.
If necessary, the confidence might be used in order to turn the list of interesting
itemsets into a list of interesting rules, and in order to further decrease the number
of interesting rules.

The run time of the algorithms may—as usual—be long when the number of
transactions is large and the threshold minimum support is low. In order to get also
information on the product level, and not only on aggregate levels, this minimum
support should be small enough. A run time of several hours was quite normal,
most of it devoted to the computation of the frequent itemsets using the Apriori
algorithm. Once the rules/itemsets are computed, it is however easy to deal with
different interestingness thresholds. This is an advantage over methods to detect
interestingness during the computation of the frequent itemsets (cf. [3], where no
taxonomies are used). In [4] the differences between algorithms with and without
the precomputation of itemsets are studied in a somewhat different context.
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Figure 2: Interestingness ratios of itemsets with at least 20% support in the arti-
ficial book shop database.

4 Experiments

In order to illustrate the relevance of the proposed selection of interesting item-
sets, we first present some results for a small artificial example of a book shop
database, with two taxonomies as in Figure 1. We created 42 customers, where
we deliberately made the itemset {Exp Words, Cheap} interesting. (By the way,
this is not that easy.) Its support deviation was 1.12, making it the sixth most
interesting itemset. The itemset {History, Cheap} turned out to be the best one,
with a support deviation of 1.36; this happens to be an itemset with nodes from
both taxonomies. In Figure 2 we plot the different interestingness ratios of all
141 frequent itemsets, sorted with respect to their support deviation; the sup-
port threshold used was 20%. An interestingness threshold of 1.07 would give 12
interesting itemsets, including one 4-itemset having 21 one-generation ancestors.

Furthermore, we performed experiments on a real database with about 45,000
transactions (“baskets”), and about 1,800 possible products, using a single tax-
onomy containing about 100 non-leaves. We also generated an artificial random
database with the same number of transactions and the same distribution of 1-
itemsets. We then took a support threshold of 0.2%, and only considered those
itemsets that contained a rule with at least 75% confidence (in order to keep the
number of itemsets reasonable). In Figure 3 and Figure 4 we plot the different
interestingness ratios of all frequent 3-itemsets, about 7,500 for the real database



and about 11,500 for the artificial database. For every itemset (in fact rule) we plot
the interestingness ratios for its at most 23 − 2 = 6 parents (remember we agreed
to omit the situation where all products were lifted). For the real database the
number of rules with a support deviation larger than the interestingness threshold
1.3 is 194, including some unexpected ones, but for the artificial database it is only
50. Also note the more compact nature of the data cloud for the artificial database.
These observations suggest that interesting itemsets are indeed interesting.
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Figure 3: Interestingness ratios of 3-itemsets with at least 0.2% support and 75%
confidence in a real database.
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Figure 4: Interestingness ratios of 3-itemsets with at least 0.2% support and 75%
confidence in an artificial database.

5 Conclusions and Further Research

We may conclude that interesting rules can be found with a reasonable amount of
work. They give a good overview of diverging customer behaviour.

We would like to examine the connection with more traditional statistical meth-
ods. We are also interested in time series, where the set of interesting rules/itemsets
might be time dependent. It is easy to imagine that interesting behaviour changes
throughout the year, and it should be possible to describe this effect in some nat-
ural way. It would also be nice to examine the interpretation where every item
requires a unique product, so in order to satisfy {Cheap, Crime}, {Cheap Crime,
Cheap} or even {Cheap, Cheap}, (at least) two purchases would be necessary. As
mentioned before, this would have a negative influence on the run time. Finally,
the introduction of different thresholds for different levels deserves further study.
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