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ABSTRACT
In web access analysis of a large-scale website the be-
haviour of visitors accessing the website is examined. An
example instance of a pattern is if a visitor accesses the
same parts of the website every seven days; we will call
such types of patterns balanced patterns.

We define balanced patterns using standard deviation
and average. We propose a new approach for pruning such
patterns. In comparison with related work the required al-
gorithm and definitions will be relatively simple. Further-
more, the new pruning threshold is intuitive from an ana-
lysts perspective.
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1 Introduction

Mining frequent patterns is an important area of data min-
ing, where we discover substructures that occur often in
(semi-)structured data. In this work we will further investi-
gate one of the simplest (and most researched) structures:
itemsets. Our datasets can be seen as asequence of transac-
tionsarriving in order, where each transaction is an itemset.
However the algorithm and definitions that we introduce
are easily extended to sequential pattern mining, tree and
graph mining. We consider web access data: a transaction
is then a set of accessed webpages during a small session.
The analysis of online visitor behavior is becoming an in-
creasingly more popular area of research, as shown for ex-
ample by the development of theUrchin Traffic Monitorby
Google (see [1]).

In our analysis of web access data we are interested
in the behaviour of visitors of the website. We will look for
repeated occurrence of patterns (subsets) in the sequence
of transactions (itemsets) such that the lengths of the gaps
between the occurrences are similar. To this end, this paper
makes the following contributions:
— We will define balanced patterns and show how to
use them: these balanced patterns will enable the analyst
to better filter uninteresting patterns (Section 2).
— Furthermore we willpropose an algorithmfor mining
balanced patterns (Section 3).
— Finally we will empirically show thatthe algorithm

can find interesting patternsefficiently in real world data,
e.g., web access data (Section 4).

One of the main differences with sequential pattern
mining is that our dataset consists of just one sequence of
transactions.

In Section 2.1 we will recall some definitions [2] on
the subject of mining regular occurring patterns. In Sec-
tion 2.2 we will define our current approach where we in-
troduce balanced patterns.

This research is related to work done on the
(re)definition of support, using time with patterns and the
incorporation of distance measured by the number of trans-
actions between pattern occurrences. The notion of support
was first introduced by Agrawal et al. in [3] in 1993. Since
then many new and faster algorithms where proposed. We
make use of ECLAT, the algorithm developed by Zaki et
al. in [4]. Steinbach et al. in [5] generalized the notion of
support providing a framework for different definitions of
support in the future. Our work is also related to work de-
scribed in [6] where association rules are mined that only
occur within a certain time interval. In other work time se-
ries data is mined for periodic patterns [7]. Here the dataset
consists of sequences representing, e.g., one day where
each item represents a value changing as the day goes by.
Time series data is a related issue but different since our
method aims to discover itemsets occurring with a transac-
tion wise regular interval. Furthermore there is some minor
relation with mining data streams as described in [8, 9, 10],
in the sense that they use time to say something about the
importance of a pattern.

Finally this work is related to some of our earlier
work. Results from [11] indicated that the biological prob-
lem could profit from incorporating consecutiveness into
frequent itemset mining, which was elaborated in [12]. In
the case of regular occurring patterns we also make use of
the transactions and the distance between them.

2 Regular Occurrence

In this section we will first repeat the definition of sta-
ble patterns to better understand the problems and the dif-
ference with the definition of balanced patterns. Roughly
speaking, patterns that occur at regular intervals (e.g., at
equidistant time stamps) will be called stable or balanced.
In the case ofstable patterns, in order to judge this prop-



erty, we will determine how often events occur “in the mid-
dle” between two other events [2]. In the case ofbalanced
patternswe prune patterns that do not have at least one fre-
quent intermediate distance (between all occurrences) and
we filter those patterns that have a too high deviation for all
distances between successive occurrences. Furthermore we
filter patterns that do not reach a certain minimal average
distance for all successive occurrences.

2.1 Stable Patterns

In this paper a dataset consists of transactions that take
zero time. Each transaction is an itemset, i.e., a subset of
{1, 2, 3, . . . ,max} for some fixed integermax . The trans-
actions can have time stamps; if so, we assume that the
transactions take place at different moments. We choose
some notion ofdistancebetween transactions; examples
include: (1) the distance is the time between the two trans-
actions and (2) the distance is the number of transactions
(in the original dataset) strictly in between the two trans-
actions. In the case of (2) transactions should arrive at a
constant rate for not having skewed results. In this paper we
will use (2) in all our examples, since the transactions in the
datasets are uninterrupted arriving at a constant rate. This
enables the algorithm to decide the time between two pat-
tern occurrences without the need to compare timestamps.
We will defineTrans(p) as the series of transactions that
contain pattern (i.e., itemset)p; thesupportof a patternp
is the number of elements in this ordered series.

We now definew-stable patternsas itemsets that
occur frequent (support≥ minsup) in the dataset and
that havestability value≥ minstable, where the values
minsup andminstable are user-defined thresholds. Aw-
good triple(L, M, R) consists of three transactionsL, M
andR, occurring in this order, such that|distance(L, M)−
distance(M, R)| ≤ 2 · w; herew is a pregiven small con-
stant≥ 0, e.g.,w = 0. Thestability valueof a patternp is
the number ofw-good triples inTrans(p), plus the number
of transactions inTrans(p) that occur as left endpoint in a
w-good triple, plus the number of transactions inTrans(p)
that occur as right endpoint in aw-good triple.

Note that the stability value of a patternp′ with p′ ⊆
p is at least equal to that ofp: the so-called APRIORI or
anti-monotone property. Also note that the stability value
remains the same if we consider the dataset in reverse order.

In our work on stable patterns [2] we showed that
equidistant events are “very” stable (in casew = 0).

Example 1Suppose we have the following itemsets in our
dataset:

transaction 1:{A, B, C}
transaction 2:{D, C}
transaction 3:{A, B, E}
transaction 4:{E, F}
transaction 5:{A, B, F}
transaction 6:{E, F}

transaction 7:{A, B, F}
transaction 8:{E, F}
transaction 9:{A, B, C}

The stability value (withw = 0) of {A,B} is4+3+3 = 10,
the maximal value possible. Indeed, there are 4 0-good
triples; we have 3 transactions that are left (right) endpoint
of a 0-good triple (see picture below, left). If we insert two
transactions{E, F} between transaction 1 and 2, and also
two between 8 and 9, we still have 4 0-good triples, but now
we only have 2 transactions that are left (right) endpoint of
a good 0-triple (see picture below, right), leading to stabil-
ity value4 + 2 + 2 = 8 < 10. By the way, this example
also shows that in order to guarantee equidistance one has
to add left and right endpoints to the stability value.

s s s s s s s s s s

2.2 Balanced Patterns

In this section we will define balanced patterns. We first
discuss several problems and possibilities, and finally give
the proper definition. We call the occurrences balanced if
between two successive occurrences there is (almost) al-
ways the same amount of transactions.

The problem with patterns with balanced occurrences
is that an itemset may occur less balanced than a superset
of this itemset. Patterns occurring with a balanced interval
do not have the anti-monotone property, where the subset
is either equally good or better than the superset. However
first we notice that for the distance between all occurrences
the count for one distance can only decrease for a superset.

Example 2Say that itemA occurs in transactions 1, 3, 4,
7 and 10 and itemB occurs in transaction 4, 7, 10 and
13, then the itemset{A, B} will occur in transaction 4, 7
and 10. BothA andB have three times two transactions
between (successive and non-successive) occurrences. For
instance, the non-successive occurrences 1 and 4 ofA have
the two transactions 2 and 3 in-between. However, the item-
set{A, B} has only two times two transactions between oc-
currences, because an occurrence can only become a non-
occurrence and not the other way around.

For our definition of balanced patterns we first no-
tice that all balanced occurrences (successive and non-
successive) should have at least one intermediate distance
a minimal number of times. Furthermore if you count the
distancesbetween all occurrencesthen this count is anti-
monotone: a superset never has more of one particular dis-
tance. This is obvious because the number of occurrences
will never increase for a superset and as a consequence the
count of one particular distance will never increase. This
property is also anti-monotone if we limit the distances we
count, e.g., we count a distance only if it is smaller than 10
in-between transactions.

Example 3The following table, where we only count up to
4 in-between transactions, is an example:



In-between transactions0 1 2 3 4
Count 0 5 200 30 199

The balanced valuefor the pattern with these counts will
be 200, the highest count in the table.

Still if we only look at the distance count we will not
find the balanced patterns we want, since patterns that oc-
cur with very unbalanced intervals might still have a min-
imum amount of one particular distance. We filter those
patterns by keeping the distance between occurrences that
immediately succeed each other (instead of taking all dis-
tances). If a pattern is balanced then these distances should
approach the average of all these distances. Their standard
deviation will be near0, since one distance should occur
the most. Note that in calculating the standard deviation
we do not limit the distances we consider. This can be done
because the number of possible distances is far less for suc-
cessive occurrences.

Now we can find all balanced patterns, however we
will still find many patterns that are occurring every trans-
action. Their distance is almost always 0 and although they
are well balanced they are often not interesting. These pat-
terns can be filtered if we demand a certain average dis-
tance, e.g., if the user-defined thresholdminavg is set to1
then all these patterns will be filtered out, since their aver-
age distance approaches0.

Before we define balanced patterns, we first intro-
duce the so-calledO-series. This series simply indicates in
which transactions from the original database a given item-
set occurs:

Definition 1 (O-series)Suppose we have an itemsetI and
let Oj ∈ {0, 1} (j = 1, 2, . . . , r) denote whether or not the
jth transaction in some ordered subsetS of the databaseD
containsI (Oj is 1 if it does containI, and 0 otherwise;
the series ofOj ’s are referred to as theO-series), r = |S|.
The functionϕ : N → N is a translation from the index
j for thej-th transaction inS to the indexϕ(j) giving the
position of this same transaction inD.

This O-series is used in the definition of balanced
patterns. We will introduce three parameters,minnumber,
maxstdevandminavg:

Definition 2 (Balanced Pattern)An itemsetI is called a
balanced patternif among all occurrence pairsOi = 1
andOj = 1, wherei < j, at least one distance (= j −
i − 1) occurs at least a user-defined numberminnumber
of times. Also the standard deviationσ for all distances
between successive occurrences is at most equal to a user-
defined valuemaxstdev. Two occurrencesOi andOj are
successive ifOi = 1 andOj = 1 and there is nok, i <
k < j, whereOk = 1. Finally the meanµ for all distances
between successive occurrences is at least equal to a user-
defined valueminavg.

The three parameters of Definition 2 are more intu-
itive and easier to estimate in comparison to the stability
value as defined in the previous section. Moreover, stability

value is more sensitive to small variations in the occurrence
interval.

3 Algorithm

We now consider algorithms that find all frequent item-
sets, given a database. Afrequentitemset is an itemset with
support at least equal to some pre-given threshold, the so-
calledminsup. Thanks to the APRIORI property many ef-
ficient algorithms exist. However, the really fast ones rely
upon the concept of FP-TREE or something similar, which
does not keep track of in-between distances. This makes
these algorithms hard to adapt for use in balanced patterns.

One fast algorithm that does not make use of FP-
TREEs is called ECLAT [4]. ECLAT grows patterns recur-
sively while remembering which transactions contained the
pattern, making it very suitable for balanced patterns. In the
next recursive step only these transactions are considered
when counting the occurrence of a pattern. All counting
is done by using a matrix and patterns are extended with
new items using the order in the matrix. This can easily be
adapted to incorporate balance counting.

Our algorithm BALANCECLAT will use the ECLAT

algorithm. However instead of counting support we count
the different distances between all occurrences, e.g., pat-
tern A has 10 times 3 transactions between occurrences.
We will prune on this value instead of pruning on the mini-
mal support threshold. In this case the user-defined thresh-
old will be the minimal number of times at least one of
ℓ + 1 distances{0, 1, 2, . . . , ℓ} is seen. For balanced pat-
terns we consider this threshold to be theminnumber

threshold. As said before, we can only find balanced pat-
terns if we also demand a maximal standard deviation for
distances between occurrences. This will be done by intro-
ducing themaxstdev threshold. Usually we are not inter-
ested in patterns occurring in every transaction. We intro-
duce a third user-defined threshold that demands a minimal
average distance:minavg . For maxstdev andminavg we
only use distances between successive occurrences and for
minnumber all distances≤ ℓ.

The main adaptation to ECLAT is replacing support
with a balance valuedenoted witht. Also the algorithm
calculates the standard deviation (stdev ) and average dis-
tance (avgdist ) for the successive occurrences.

The standard deviation forsuccdists can simply be
calculated in the following way:

√

∑

i(avg(succdists) − i)2 · succdistsi
∑

i succdistsi

(1)

ECLAT can now prune using the balance valuet
(if t < minnumber) and patterns are only displayed if
their standard deviation and average distance are sufficient.
These straightforward adaptations are not given in detail.

Standard deviation changes if patterns occur less bal-
anced in a certain small number of successive transac-



j := 2, h := −1
succdists := array of distance counts between

successiveoccurrences
alldists := array of distance counts (≤ ℓ)

betweenall occurrences
while ( j ≤ r ) do

if ( Oj = 1 ) then
i := 1
while ( i < j ) do

if ( Oi = 1 and ϕ(j) − ϕ(i) − 1 ≤ ℓ ) then
alldists [ϕ(j) − ϕ(i) − 1]++

fi
i++

od
if ( h 6= −1 ) then

succdists [ϕ(j) − ϕ(h) − 1]++
fi
h := j

fi
j++

od
t := max (alldists), the largest count in the sequence
stdev := standard deviation forsuccdists

avgdist := average forsuccdists , also denoted
with avg(succdists)

tions, small periods. In some cases it might be preferable
to remove the influence of these periods. One possible ap-
proach is to calculate average distance and the standard de-
viation for frequent distances(for successive occurrence)
only. The value for filtering with standard deviation for the
sequencesQ = 〈y|y = succdisti , y ≥ mindfreq〉 and
I = 〈i|y = succdisti , y ≥ mindfreq〉 will be:

stdev =







√

∑

i(avg(Q) − Ii)
2 · Qi

∑

i Qi
if Q is not empty

maxstdev + 1 otherwise
(2)

Note that via the thresholdmindfreq the user decides when
a distance is considered frequent.

4 Results and Performance

The experiments were done for three main reasons. First
of all we want to show thatknown balanced patterns will
be foundalso in the case of noise. Secondly we want to
show thatinteresting balanced patterns can be foundin real
datasets. Finally we will discussruntime for real dataand
how theminnumber threshold influences runtime.

Our implementation of the balanced pattern mining
algorithm is called BALANCECLAT . All experiments were
performed on an Intel Pentium 4 64-bits 3.2 GHz machine
with 3 GB memory. As operating system Debian Linux 64-
bits was used with kernel 2.6.8-12-em64t-p4.

The synthetic datasets used in our first experiment are

calledfind-noise-x%wherex is a noise value ranging from
0 to 30. E.g., if the noise is10%, this means there is a 10%
chance that one element of the balanced pattern does not
occur when it “should”. In each of thesefind-noise-x%
datasets one pattern of 5 of the 200 items occurs every 4
transactions (so distance = 3) and each dataset has 2,000
transactions. Furthermore the remaining items have a prob-
ability of 50% to occur. If 5 items always occur balanced
like this, we expect to find

∑5

k=1
5!/(5 − k)!k! = 31 pat-

terns when we would apply standard frequent itemset min-
ing algorithms. We will call these frequent occurring item-
setsexpected patterns.

The first real dataset we test our algorithm on is called
thewebsitedataset. This dataset is based on an access log
of the website of the Computer Science department of Lei-
den University, as said before. It contains all 1,991 items
of the web-pages that were visited, grouped in half-hour
blocks, so each of the 1,488 transactions contains the pages
visited during one half-hour.

The second real dataset is called theone-visitor
dataset and it stores the webpages accessed by one heavy
user of the formerPortalExecutivo.comwebsite. Each day
represents one transaction of pages accessed. Some days
there is no access and some of the 1,603 transactions are
empty. Webpages are categorised resulting in a total of 185
possible items for every transaction.

First the BALANCECLAT algorithm is executed with
maxstdev = 2.5, minavg = 2.0 andminnumber = 150.
Figure 1 displays the number of expected patterns that were
actually found by the algorithm. We see that the algorithm
detects most patterns up to a noise level of15%. Due to the
way we generate noise, long patterns become less likely as
the noise level increases. With a high noise level we only
find the patterns of 1 item in length. This can be improved
if we change our settings formaxstdev andminavg , but
we kept them fixed for comparison reasons.
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Figure 1. The effect of noise on the algorithm using the
find-noise-x% datasets.

We can use themindfreq threshold to decrease the in-
fluence of small noisy periods on the balanced occurrences.
Figure 2 shows how the effect of noise becomes less if we
set amindfreq of 50. Now one also finds more of the other
patterns that happen to occur reasonably balanced, however
we can filter them by loweringmaxstdev .
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Figure 2. The effect of noise on the algorithm using the
find-noise-x% datasets withmindfreq = 50.

With our next experiment we want to show the effect
of dataset size on the algorithm, scalability. To this end we
measured runtime for different sizes of the dataset where
each transaction can contain up to 200 items and 5 items
occur every 4 transactions and the remaining items have
a probability 50% to occur, thefind-noise-0% dataset. In
Figure 3 first the runtime drops; this is because many pat-
terns have distances occurring only a few times. E.g., when
the dataset size is 100 thenminnumber = 0.1 · 100 = 10.
Many patterns have distances that occur at least 10 times.
As this effect becomes less, runtime increases and eventu-
ally it becomes nearly linear.
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Figure 3. Runtime in ms for different dataset sizes for the
find-noise-0% dataset;minnumber is 10% of the dataset
size (maxstdev = 1.0, minavg = 2.0, ℓ = 10).

Figure 4 shows how the runtime for thewebsite
dataset drops fast asminnumber increases. Figure 5 also
shows a drop of runtime for theone-visitor dataset.

Many patterns in theone-visitor dataset occur mostly
unstable and only some occur stable in such a way that the
standard deviation of the interval does not suffer too much
(becomes more thanminavg ). One pattern that was found
was the access of research and training part of the website
on the same day every seven days, see Figure 6. Also this
pattern lasted for more than one month.

Another example is given below, showing the count
for distances between successive occurrences. This pattern
shows that the websites of two cooperating professors are
accessed every half-hour and often at least every hour.
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Figure 6. The occurrence of one pattern discovered with
BALANCECLAT in theone-visitor dataset (minnumber =
20, maxstdev = 3.0, minavg = 1.5, ℓ = 7).

Example 4 The distances (with count≥ 20) between
successive occurrences and their counts for one pattern
(two professors & the main page) in thewebsite dataset
(maxstdev = 2.0, minavg = 1.0, ℓ = 10):

In-between transactions 0 1 2 3 4
Count 385 171 78 25 23

Finally we also applied the BALANCECLAT algo-
rithm to theNakaodataset used in [12]. In this dataset each
of the 2,124 transactions is in fact a clone located on the hu-
man chromosomes. The items are the patients with a higher



than normal value for this clone (≥ 0.225). The specifics
of the dataset can be found in [13]. The parameterminavg

was set to0.0, because the interesting patterns are expected
to occur very close to each other. Alsomindfreq = 10
because patterns were expected to have small periods of
transactions where they occurred unbalanced. Furthermore
maxstdev = 0.2, ℓ = 10 andminnumber = 100. Results
were similar to results found with consecutive support as
presented in [12] where most consecutive patterns occurred
close together in chromosome 9, see Figure 7. However, the
difference with consecutive support is that it looks at all gap
sizes between occurrences and it does not have to maintain
a count for all possible distances.
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Figure 7. The occurrence of one pattern discovered with
BALANCECLAT in theNakao dataset (minnumber = 20,
maxstdev = 0.2, minavg = 0.0, mindfreq = 10, ℓ = 10).

5 Conclusions

We have presented a new way of mining for patterns oc-
curring with a regular interval. In comparison with previ-
ous methods we now use a pruning thresholdminnumber

that is more intuitive to website analysts and easier to esti-
mate. Definitions and algorithm are less complex and eas-
ier to understand. The analyst only indicates the number
of times at least one intermediate distance should occur.
Such a distance is the number of transactions between two
occurrences of the pattern, since transactions arrive unin-
terrupted at a constant rate. One can also use time stamps
to calculate the time between occurrences. In this work we
call patterns with a regular interval balanced and we discuss
an algorithm to find them efficiently. Runtime performance
and scalability are evaluated through experiments.

In the future we plan to study balanced patterns with
more complicated intermediate intervals. Also research
will be done on effectively visualizing balanced patterns.
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