
How to Pass the Turing Test by Cheating

Jason L Hutchens

December 11, 1997

Abstract

Back in the heyday of computer hardware, some notable people actu-

ally believed that sentient computer programs were literally just around

the corner. This prompted the great British mathemetician, Alan Turing,

to devise a simple test of intelligence. If a computer program could pass

the Turing test, then it could be said to be exhibiting intelligence.

In 1991, the Cambridge Centre for Behavioural Studies held the �rst

formal instantiation of the Turing Test. In this incarnation the test was

known as the Loebner contest, as Dr. Hugh Loebner pledged a $100,000

grand prize for the �rst computer program to pass the test.

I have submitted two computer programs to the 1996 Loebner contest,

which is to be held on Friday April 19 in New York city. These computer

programs are nothing more than glorious hacks, but in constructing them

I have learned a great deal about how language works.

In this paper I will describe in detail how my computer programs

work, and will make comparisons with similar computer programs such as

ELIZA. After this, I will explain why the Loebner contest is doomed to

failure.

1 Introduction

Probably the most well known of the early conversation systems is Joseph

Weizenbaum's ELIZA. Written in the early 1960's at MIT, the program gained

immense popularity. Versions of ELIZA are available for practically all home

computers, and I'm sure that almost everyone reading this paper has played

with an ELIZA clone at some stage in their lives.

Back in the days when ELIZA was written, there was a certain mystique

surrounding computers, or \electronic brains" as they were then commonly

known, and there was a great enthusiasm amongst researchers that computers

would be able to solve many previously insoluble problems.

These days we have unfortunately lost a great deal of this enthusiasm, and

we tend to be skeptical about claims of machine intelligence and humble about

our research goals.

The Loebner contest, an instantiation of the Turing test, has managed to

recapture much of this early excitement about computers. It has attracted bed-

room programmers to begin thinking about computational intelligence again,

and has generated a great deal of media interest.

In this paper I give a history of conversation systems, and I describe the

Turing test as an indicator of intelligence. I go on to explain how my two

1



entries to the 1996 Loebner contest work, and I �nish by explaining why the

Loebner contest is doomed to failure.

2 Can Machines Think?

Alan Turing was a brilliant British mathematician who played a great role in

the development of the computer and posed one of the most famous challenges

in Computer Science. The imitation game, nowadays known as the Turing test,

was introduced by Turing to decide whether a computer program was intelligent.

The basis of the Turing test is simple. An interrogator can communicatewith

two subjects by typing messages on a computer terminal. The interrogator

knows that one subject is a human being and that the other is a computer

program, and it is his task to guess which is which. The computer program

tries to trick the interrogator into making the wrong identi�cation, while the

human being assists the interrogator to make the correct identi�cation[11].

To decide whether the computer program is intelligent we replace the ques-

tion \Can the computer program think" with the question \On the average,

after n minutes or m questions, is the interrogator's probability of correctly

identifying the subjects not signi�cantly greater than 50 percent?"[7].

One of the great advantages of the Turing test is that it allows the inter-

rogator to test almost all of the evidence that we would assume to constitute

thinking. As James Moor writes, it demands evaluation of linguistic behaviour

which is central to our inductive inferences about how others think[7].

As an example of the Turing test, try to work out which of the two sentences

below was generated by a computer program, and which was penned by a human

being. These sentences are taken from Douglas Hofstadter's book[5].

1. Blurting may be considered as the reciprocal substitution of semiotic ma-

terial (dubbing) for a semiotic dialogical product in a dynamic reexion.

2. Moreover, the Nobel Prizes will be achieved. By the same token, despite

the consequences, the Nobel Prizes which will be achieved will sometimes

be achieved by a woman.

Interestingly enough the �rst sentence was written by a human being. It

was taken from an art journal, and is \a completely serious attempt from a sane

individual to communicate something to the readership". The second sentence

was generated by a computer program written by Hofstadter.

Alan Turing died in 1954, a decade before computer programs such as ELIZA

began to proliferate. It is indeed unfortunate that he did not live to see and

analyze such programs. One cannot help but think that he would have been

dissapointed, and that his comments would have had a great impact on the

future directions of such work.

3 The $100,000 Question

Even though Turing published a paper describing his imitation game in 1950,

the test wasn't formally conducted until 1995.

1

The original Loebner contest

1

Apart from a few limited tests performed by programmers of conversation systems, such

as Colby's tests[2].

2



was touted as the �rst formal instantiation of the Turing test. It had a few

shortcomings, however, and therefore it was really only a restricted version of

the test. The 1995 Loebner contest solved some of these shortcomings.

The �rst Loebner contest was held on November 8, 1991 in Boston's Com-

puter Museum. Because this was a contest rather than an experiment, six

computer programs were accepted as subjects. Four human subjects and ten

judges were selected from respondents to a newspaper advertisement, and had

no special expertise in Computer Science[3].

The Loebner contest prize committee was aware that the computer pro-

grams didn't stand a chance. To make things fairer, they restricted the topic of

conversation on each terminal.

The original Turing test involved a binary decision between two subjects by

a single judge. With ten subjects and ten judges, the situation was somewhat

more complex. After months of deliberation, the prize committee developed

a suitable scoring mechanism. Each judge was required to rank the subjects

from least human-like to most human-like, and to mark the point at which they

believed the subjects switched from computer programs to human beings[3].

If the median rank of a computer program exceeded the median rank of

at least one of the human subjects, then that computer program would win

the grand prize of $100,000. If there was no grand prize winner, the computer

program with the highest median rank would win the contest with a prize of

$2000.[3].

In the 1991 contest, several computer programs were mistaken for human

beings by a few of the judges. More interestingly, however, was the fact that

one of the human beings was mistaken for a computer program, with one judge

stating that \no human being would have that amount of knowledge about

Shakespeare"[10]. This indicates that the expectations of people with little

computer experience may not have dropped o� signi�cantly since the 1960's.

After the 1991 contest concluded, Stuart Shieber asked the programmer of

the winning entry whether he could formulate a series of questions that would

unmask his program. All of his attempts fell outside of the rules[10]. This

reveals one of the problems with conducting a restricted Turing test.

To remedy this problem, the 1995 Loebner contest was unrestricted. This

meant that judges could talk to the subjects about anything whatsoever, and

were free to ask trick questions and spout gibberish. As a result, the computer

programs in the 1995 contest performed considerably worse than in previous

years. To add insult to injury, all the judges in the 1995 contest were involved

in the computer industry.

2

The judges therefore possessed the skills needed to

fool the computer programs into revealing their identity.

3

I will leave the �nal word to the contests benefactor, Hugh Loebner. He

writes that \. . . this contest will advance AI and serve as a tool to measure the

state of the art. . . "[6].

4 Early Optimism

Conversation systems such as ELIZA attracted a great deal of interest in the

1960's. The reason why these programs can be e�ective is because human beings

2

Most were computer journalists, in fact.

3

Egads! Even I am anthropomorphising now!

3



tend to read much more meaning into what is said than is actually there. This

anthropomorphisation is similar to that which causes some old ladies to claim

that their poodle understands what they are saying.

As Stuart Shieber so elegantly puts it, \People are easily fooled, and are

especially easily fooled into reading structure into chaos, reading meaning into

nonsense. Sensitivity to subtle patterns in our environment is extremely impor-

tant to our ability to perceive, learn and communicate. Clouds look like ships,

and non sequiturs are interpreted as whimsical conversation"[10].

Programs such as ELIZA are masters of the non sequiter, and usually have

a bucket load of cliches to throw at the unsuspecting user. However, there is

some evidence that human beings regularly use non sequiters and cliches in their

conversations too|the smarter ones being able to mix them up until they are

barely recognisable.

In this section I describe three of the most famous conversation systems in

existence, and give a brief example of each one in use.

4.1 ELIZA

Joseph Weizenbaum coded ELIZA at MIT during the years 1964-1966. The

program consists of two stages. The �rst stage uses a parser to extract informa-

tion from what was typed to the program, while the second stage uses a script

to formulate a suitable reply. Weizenbaum developed a script for ELIZA which

simulated a Rogerian psychotherapist, and this implementation is commonly

known as DOCTOR. This was smart, as a Rogerian psychotherapist attempts

to draw the patient out by reecting the patient's statements back to him, and

to encourage the patient to continue talking[12].

Weizenbaum was shocked at the reaction to ELIZA. He noticed three main

phenomenon which disturbed him greatly.

1. A number of practising psychiatrists seriously believed that ELIZA could

grow into an almost completely automatic form of psychotherapy.

2. People very quickly became emotionally involved with the computer, and

unequivocally anthropomorphised it. Even his secretary demanded to be

left alone with the program.

3. There was the spread of a belief that the program demonstrated a general

solution to the problem of computer understanding of natural langauge.

Weizenbaum was a member of the 1991 Loebner contest prize committee.

4.1.1 Example Interaction

Here I reproduce an example conversation given by Weizenbaum, between a

young lady and ELIZA running the DOCTOR script[12]. Note that the program

either encourages the patient to continue talking, or repeats what the patient

said.

4

Men are all alike.

4

As for all interactions I giuve in this paper, the human beings input is printed in the

normal font while the computer program's respose is given in italics.

4



In what way

They're always bugging us about something or other.

Can you think of a speci�c example

Well, my boyfriend made me come here.

Your boyfriend made you come here

He says I'm depressed much of the time.

I am sorry to hear you are depressed

It's true. I am unhappy.

Do you think coming here will help you not to be unhappy

I need some help, that much seems certain.

What would it mean to you if you got some help

Perhaps I could get along with my mother.

Tell me more about your family

My mother takes care of me.

Who else in your family takes care of you

My father.

Your father

You are like my father in some ways

What resemblance do you see

4.2 PARRY

Kenneth Colby was greatly inspired by the ELIZA program, and decided to

write his own version. His aim was to verify a theory of the paranoid mode of

behaviour by using the theory to build a computer simulation, and then using

the Turing test to determine whether an expert psychiatrist could distinguish

between the program and an actual paranoid patient[2].

Colby's model, known as PARRY, consists of a parsing module and an

interpretation-action module. The parsing module attempts to understand the

interview input of clinicians communicating in unrestricted natural language,

and the meaning of the input is passed to the interpretation-action module.

This second module is made up of production rules that size up the current

state of the interview and decide which linguistic actions to perform to ful�ll

the models intentions.

PARRY is therefore somewhat similar in design to ELIZA, but it extends

the concept in many ways. For example, PARRY has knowledge about the

conversation so far, and its current state of mind. If it is provoked it will get

angry, and its responses to the interviewer will change appropriately.

5



Interestingly enough, Colby's Turing test indicated that expert psychiatrists

were unable to do better than chance in distinguising the ramblings of PARRY

from transcripts of conversations with real paranoids. This is credited to the

fact that paranoids are generally unresponsive, and their use of the non sequitur

is high.

4.2.1 Example Interaction

Here I reproduce a transcript of an interview with PARRY as given by Ken-

neth Colby [2]. Note that PARRY is quite good at answering questions that

psychiatrists typically ask, and that it tries to introduce topics of its own.

Good afternoon. My name is Doctor Jones.

Pleased to meet you.

How are you?

All right I guess.

Could you tell me your name?

Pat Smith.

How old are you?

28.

I thought you might have some problems.

I've been upset lately.

By what?

People get on my nerves sometimes.

Tell me more.

Do you know anything about bookies?

No. What about bookies?

A bookie didn't pay me o� once.

When did this happen?

A couple of months ago.

6



4.3 Shrdlu

Terry Winograd's SHRDLU is probably the most advanced of these early sys-

tems. The program simulates a robot which can interact with a simple world

which consists of coloured building blocks and boxes on a at surface. SHRDLU

has knowledge about this world, and it can answer questions about it posed in

natural language. It is also able to perform actions on this world, and it has

the ability to learn about new tasks.

Winograd created SHRDLU as an example of how a natural language un-

derstanding system should be created. His two major beliefs that contributed

to the design of the program are as follows[14].

1. A computer cannot deal reasonably with language unless it can understand

the subject it is discussing.

2. In modeling language understanding, all aspects of language must be in-

tegrated.

Hence SHRDLU was given knowledge about it's world and itself, and the

parser, recognition grammar, semantic analysis and problem solving modules

are integrated in a tangled mess that is impossible to prise apart and separate.

Although SHRDLU wouldn't have a chance in winning the Turing test, be-

cause of it's limited domain of discourse, I believe thatWinograd has approached

the problem in a sensible way. My only gripe is that the various modules are

so intertwined, and his Lisp code is so obsfucated and free of comments, that I

cannot understand how the hell the thing works!

4.3.1 Example Interaction

Here I reproduce a sample conversation with SHRDLU as given by Terry Wino-

grad [14]. Note that SHRDLU is able to perform actions on the world, can

answer questions about the world, and can also answer questions about its ac-

tions.

pick up a red block

OK.

�nd a block which is taller than the one you are olding and put it in the box

OK.

what does the box contain?

The blue pyramid and the blue block.

what is the pyramid supported by?

The box.

how many blocks are not in the box?

Four of them.

is at least one of them narrower than the one which I told you to pick up?

7



Yes, the red cube.

is it supported?

Yes, by the table.

when did you pick it up?

While I was stacking up the red cube, a large red block and a large green cube.

why?

To get rid of it.

why did you do that?

To clean o� the red cube.

4.4 PARRY Visits the DOCTOR

Douglas Hofstadter recounts a humourous encounter between Weizenbaum's

DOCTOR and Colby's PARRY in his book [5]. I reproduce the conversation

below. Note that neither of the programs say anything new, but that both of

them respond to what the other says!

PARRY I don't understand your motives

DOCTOR Why don't you understand my motives?

PARRY Shouldn't I be?

DOCTOR Why do you say that just now?

PARRY That's just the way it is.

DOCTOR Suppose that's the way it were not.

PARRY So?

DOCTOR I am not sure I understand you fully.

PARRY You harp on the same questions too much.

DOCTOR What does that similarity suggest to you?

PARRY I don't get you.

DOCTOR Do you wish that you did get I?

PARRY It's about time that you showed some interest in my feelings.

DOCTOR Oh? I showed some interest in your feelings?

8



5 Not Much has Changed

Three decades have passed since ELIZA was created. Computers have become

signi�cantly more powerful, while storage space and memory size have increased

exponentially. The �eld of Arti�cial Intelligence has blossomed, and researchers

are working on problems such as image and speech recognition. Given this, we

may very well wonder why no computer program has yet passed the Turing test.

At least as far as the entrants of the Loebner contest go, the complexity and

capability of such systems have remained exactly where they were thirty years

ago. Indeed, judges in the 1991 contest said that they felt let down after talking

to the computer entrants, as they had had their expectations raised when using

ELIZA. Furthermore, Kenneth Colby entered the 1991 contest with a variation

of his PARRY program.

In this section I present three of the programs that entered the 1995 con-

test. Of these, Weintraub's PC Therapist has won the contest four times and

Whalen's TIP system has won the contest once. All three of the programs have

been entered in several of the Loebner contests.

5.1 PC Therapist

Joseph Weintraub spent �ve years coding the PC Therapist, and it consumes

around �ve megabytes of memory. I haven't been able to �nd any information

about how his system works, and I suspect this is because he sells it commer-

cially. An analysis of the transcripts, however, reveal that Weintraub's program

is probably nothing more than an ELIZA derivative.

Weintraub's program won the 1995 Loebner contest.

5.1.1 Example Interaction

Here I give an example of the PC Therapist talking to a judge from the 1995

Loebner contest[1]. Note that the program does keyword matching to retrieve

responses from a database, as well as echoing corrupted versions of the judges

input back at them. It also has an annoying habit of ending its replies with an

inane question, such as \How does that make you feel?". This is probably to

encourage the judge to respond to what the program said, and it rarely seems

to work.

Hi judge.... i think you're cute.... want to get together later?? How does that

make you feel?

I think you're a sexist pig. You should be judging me by my brains.

sex sex sex sex sex sex sex sex - there, now I got that out of my system!.Why

do you need to tell me you think i'm a sexist pig?

Daniel, I know it is you. You're supposed to be fooling the judge.

I know - you just said that.Perhaps in your fantasy we know it each other.

Who is Muddy Waters?

If you only drink water, and always walk to where you are going, you will live

much longer than you want to.

9



What does that mean?

What can't be cured must be endured.Why do you ask?

Ask what?

Do you think that men are better than woman.Does that question interest you?

No.

Please tell me something about your childhood, sometimes I wish i was a sys-

tems analyst...

Why don't you tell me something about your childhood?

Do you have many children you don't know about?Do you believe don't tell you

something about my childhood?

I don't have any children I don't know about. I don't have any children. How's

the weather?

To the best of your knowledge, do you have children?Don't you eally have any

children you don't know about?

5.2 TIPS

Thomas Whalen developed a system called TIPS to provide information on a

particular topic in response to queries in natural language. It is therefore more

of a database system than any other of the programs I discuss. His program

won the 1994 contest, where the domain of discourse was restricted, as his

program was suited perfectly to this restriction. The 1995 contest was open-

ended, however, and this provided Whalen with numerous problems.

Whalen believed the best approach was to attempt to model a human being,

to the extent of including a personality, personal history and world view within

the program[13]. To restrict the conversation, he created \. . . a character who

had a fairly narrow world view; who was only marginally literate and, therefore,

did not read books or newspapers; and who worked nights, and was, therefore,

unable to watch prime-time television"[13].

In another clever move, Whalen created a story for the character to reveal

to the judges. He hoped that the judges would be suitably interested in the

story to ask questions of the program which had hardwired responses to these

types of question.

I believe that Whalen's approach is more sophisticated than Weintraub's,

yet his program consistently comes second place to the PC Therapist. Whalen

believes that this is due to the fact that he refuses to use the non sequitur, which

Weintraub's program is a master of[13]. Besides, the purpose of Weintraub's

program is to simulate conversation whereas Whalen develops information sys-

tems for a particular topic.

10



5.2.1 Example Interaction

Here I give a section of the transcript produced by the TIPS program in the

1995 Loebner contest[1]. Note that the program performs admirably when the

Judge asks questions that directly relate to Whalen's pre-prepared character and

story, but that it fails miserable when asked about things outside of this area.

Also not that the program introduces the story as soon as possible, similarly to

Colby's PARRY.

Hello.

How are you?

Don't ask. I'm feeling kinda poor right now. It just hasn't been a good week for

me.

are you sick mentally or physically?

All week I been feeling sick in my stomach on account of my boss. I got real

trouble at work. I think I'm going to get �red.

are you taking pepto?

Of course not. I never stole nothing in my life. But they always blame the

cleaners whenever anything is missing.

you're a cleaner?

Yeah? You think I'm a thief, too? You're no better than the rest of them.

Leave me alone, asshole.

asshole?

I don't know.

you called me an asshole?

Huh?

don't you have manners. you don't even know me and you're calling me a bad

name

Beats me.

anyway, where do you do your cleaning?

What do you mean?

whose o�ce do you clean?

What?

where do you work?

At the university. I mostly clean the Standish Building.

what university?

11



University of Eastern Ontario. I'm a cleaner. I empty trash. Vacuum. Dust.

You know.

and why do they want to �re you?

It's just because my boss, Mr. Johnson, is mad at me.

why is he mad at you?

I didn't do nothing wrong. But he thinks I did. It's all because of that radio

they think I stole from the lab.

5.3 FRED

Robby Garner created the FRED program. He calls it a Functional Response

Emulation Device, which apparently means that it can be used as a natural

language interface to many di�erent types of software. He has been writing this

type of program for �fteen years, so one would assume this experience would

count for something.

FRED is able to learn while it is talking to people. Whenever it encounters

a new phrase, it responds with the closest suitable answer from it's database.

At a later stage, it can be taught suitable responses to any of the new phrases

it encountered[4].

FRED works by trying to match the user's input with phrases that it has

seen in the past. Each phrase is associated with an appropriate response, so

once a match is found that response is displayed to the user[4]. This approach

has merit, and is similar conceptually to Whalen's database query program.

5.3.1 Example Interaction

Here I give an extract of the transcript for the FRED program in the 1995

Loebner contest[1].

Welcome judge 6

hello

Hello? Hello?

It's going to waste a lot of time if you repeat everything.

Rock out!

Rock on! Don't you know anything?

Cool. Do you like Nine Inch Nails? I don't want to discuss religion today.

I'm an atheist, I don't discuss religion ever. So I guess Nine Inch Nails isn't

What? Tell me what to say. You're missing out on one of life's pleasures.

They have most everything on Star Trek.

Including Nine Inch Nails?

Yes.

12



What episode was that?

I can't remember.

Well, was it the original ST, the Second one, DS9, what?

No, he was a pirate.

Who was?

Harry Mudd, you know.

What does he have to do with 9 Inch Nails?

You know don't you?

If I knew I wouldn't ask.

Okay, I'll let you know.

Do so.

There's not that much to tell.

Good, because we don't have all day.

Yes. I always thought Beverly was a bit square.

What does beverly have to do with what we're talking about?

I think he likes some pretty strange mixed drinks.

If you're a human you're supposed to be trying to sound human

Yes.

So please do so

What about the costumes. You can tell me more.

6 How to Spout Gibberish

My �rst attempt at writing a conversation system was nothing to write home

about. Actually, I wrote it just for fun long before I knew of the Loebner contest.

I used a third order Markov chain to generate random psychobabble in much

the same way as Shannon did[9].

A Markov chain may be used to construct a simple model for a language. In

a third order Markov chain, there is a state corresponding to every valid word

pairing in the language. Arcs connect these states to indicate valid transitions

from state to state. For example, the state corresponding to the word pair <The,

cat> may be connected to the state corresponding to the word pair <cat, sat>.

Each arc may be labelled by the word which causes the transition. In the previ-

ous example, this word is `sat'. Finally, arcs may also have a probability of being

used, and these probabilities may be estimated from a corpora of utterances.

Hence the Markov chain may be constructed by writing a program that

analyses a lot of text. Once you have a Markov chain, it is easy to make it

13



generate strings. You simply choose a state at random, and follow the arcs

through the model. Each time you follow an arc, you print the word which

labels the arc. If there are several arcs to choose from, you select one based on

the corresponding probability.

At this stage all you will have will be a babble generator. To make the

system appear to converse with the user, the reply must be in some way related

to what they said. I do this by labelling certain words as keywords. All of the

keywords within the user's input are extracted, and the reply is constructed in

a way that maximises the number of keywords in it. There are algorithms that

make it easy to generate a random reply which contains at least some of the

words in a list, but I decline to give them here.

The last thing I did to write this program was to include a routine which

converted a keyword to another work. For example, the word `you' is converted

to `me'. This was necessary to ensure that the replies made more sense.

I named my �nished program MegaHAL, after the HAL 9000 computer in

2001. It was the �rst program that I submitted to the 1996 Loebner contest,

and I am fully aware that it will come last. I submitted it only as a bit of fun.

Rather deviously, I used transcripts of previous Loebner contests to train this

program.

I have made an early

5

version of the MegaHAL program available via the

Web, and many thouosands of users have talked to it. The advantage of the

program is that it learns from what the user types, so after a while the program

was uent in around six languages. The URL for the web page is:

http://ciips.ee.uwa.edu.au/ hutch/Talk.html.

6.1 Example Interaction

Here I present an example conversation with MegaHAL. Note that the �rst

thing it says is hardwired into the program to warn the user of what to expect.

Also note that it is usually nonsensical.

Hello. I'm a bit crazy! I like to say weird things!

hello there

Hi, are you going by that?

sorry, I don't understand

You may �nd this a boring game?

well, I have only just started

You start taking the subject?

i would like to talk about you, if you want to

The last time with talked to you?

i have never talked with you before. tell me something about yourself

5

By this I mean inferior!

14



You mean the last time I talked with you? Shut up about the trade o� of

oppurtunity that passes versus the happiness that my relationship if you

had any claims?

hey man, what are you on?

A rich man once told me hey life's a funny thing.

i beleive that he was probably right.

You think he was with the topic?

i reckon he was.

Is he mad at you are foolish?

i don't know. hey, what's your name anyway?

Did you �nd that odd or o�ensive? Hey man, what happenned to the name

wrong.

7 How to Fool the Proles

My aim for my second program is to win the Loebner contest. This means

beating Weintraub, Whalen and Garner|and these guys have been building

their systems for several years! Even so, I decided to limit my complete de-

velopment time, including analysis, design, implementation, training, testing

and debugging, to a single month. I did this to demonstrate the futility of the

Loebner contest. If I can beat those other systems with a program which took

only a month to make then there is something wrong with the way the contest

is structured.

I began my little project on February 1, 1996, and I set the project deadline

to February 29, 1996.

7.1 Analysis

The very �rst thing I did was obtain the transcripts to all previous Loebner

contests. Not only would it enable me to analyse the other computer programs,

it would give me an idea of how conversation works between two human beings.

I was determined not to read any books on the subject, or download ELIZA

style programs, until after my deadline. I didn't even wish to read books on

English grammar, preferring to work it out myself from �rst principles.

I realised that previous contestants limited the conversational possibilities

in some way. Whalen restricted the conversation to his little drama, Wein-

traub simulated whimsical conversation which can be meaningless by de�nition,

PARRY simulated a paranoid by using non sequiturs and by being unresponsive,

DOCTOR simulated a Rogerian psychotherapist by reformulating the user's

statements and echoing them back, one contestant simulated a young child, and

another gave his program such a slow typing speed that a judge could ask only

one or two questions per session. These were all creative and devious ways of

restricting what the judges could talk about. I wanted to simulate real conver-

sation, however.

15



I read an aricle in Wired magazine which was written by one of the human

subjects in the 1994 Loebner contest. He won the contest overall, and believed

that that was because he had exhibited human emotions rather than simply

answering the judges questions. He had been obnoxious, irritable and openly

rude to the judges[8]. So there was one clue|give the program human emotions.

Whalen had previously attempted to give his program a personality, so I would

do the same. I decided that for consistency I would model the program on

myself,

6

and that I would create a large supply of templated replies to give

when nothing else would do, rather than outputting `Huh?' all the time.

Another important source of informationwas a document written by Thomas

Whalen after he had `lost' the 1995 contest. He had a few very important points

to make[13].

� One can expect that the number of topics in a standard conversation would

be limited, and would follow some sort of order.

7

This wasn't the case

in the Loebner contest, however, as the judges intentions are to spot the

computer program. They therefore say things that no human being would

every ordinarily say to a stranger.

� Judges were very reluctant to talk about topics that were volunteerd by

the computer program, preferring to introduce their own.

� The judges weren't tolerant of the computer program saying \I don't

know", and were much more at home with a non sequitur.

� Even though the judges agreed that Whalen's program had the most well

de�ned personality, they did not use this as a factor for intelligence.

Even so, I decided to write the program to handle the things that people

most talked about according to Carnegie. But I would also make sure it was

tolerant of the weird things that judges said. The best way to do this was to

study the transcripts.

I found that judges often typed several sentences at once to the computer.

A sentence is very generally about a single topic, so I decided to process the

input sentence-by-sentence. Sentences can be of two di�erent types|questions

or statements. I will deal with the questions �rst.

Against my expectations, judges almost always ended a question with a

question mark. I also found that most questions were wh-questions. That is,

they began with `What', `Where', `Why' and so on. Other questions began with

one of twenty verbs, and most of the questions concerned the judge (`I'), or the

program (`you'). It was trivial to cut out the phrase following the question and

use it in a template reply to give a non sequitur. In this way the question \What

is a glooble?" would become, for example, \I don't know what a glooble is".

I found that the structure of statements was similarly simple.

Perhaps the most important discovery was that the single biggest giveaway

that the conversant was a computer program was its tendency to repeat itself

word-for-word. I vowed that my program would never do such a thing. I also

6

Yes I know|creating a computer program in my own image does seem a bit egotistical.

I'm not implying that I am God, just that the programs responses will seem more consistent

if I write them all myself as if I was participating in the conversation.

7

For example, strangers typically talk about their names, where they live, mutual friends,

the weather, sports, politics, books, television, movies, music and hobbies in that order.

16



found that longer replies seemed more human-like that curt replies, so I would

be careful to ensure that my program generated long replies.

This analysis led me to a simple design for my program.

7.2 Design

I decided that my program would parse the user's input by reading in sentences

one-by-one, and that each sentence would be converted to a list of words. The

program would attempt to formulate a reply to the sentence by calling modules

in the following order.

1. Firstly the sentence would be checked for keywords, and a database of

hardwired replies would be searched. If a suitable reply which had not yet

been used was found, then it would be displayed to the user.

2. If no database match was found, my program would then try to detect

whether the sentence was a trick sentence. It would look for common

ways judges used to trick programs (such as asking them mathematical

questions or typing nonsense words), and respond with suitably witty

replies.

3. If this too failed, a MegaHAL module would be called. The reply it gen-

erated would be used if it satis�ed certain criteria, such as containing at

least two keywords.

4. If even MegaHAL couldn't deliver, the program would avoid the user's

sentence completely by reformulating it and spurting it back to them as a

non sequitur. I would use hundreds of templates to make sure this routine

gave many varied responses.

5. If the program was able to give a reply, it would introduce a new subject

with a certain probability. Of course, the program would have replies in

the database for all subjects it introduced.

6. If the user didn't type anything, a routine would be called to give a hu-

mourous response to their silence.

7. If none of the above modules gave an answer, then the program would

accuse the user of being ungrammatical or something of the kind.

8. if even this module failed to work (which could happen if all of its wit-

ticisms had already been used), then the MegaHAL routine would be

invoked once more, and any babble that it generated would be used as the

reply.

This seemed to be a sensible way to do things, and it allowed me to break

the problem down and code each module separately.

7.3 Implementation

The coding of my programwas relatively straightforward. There was no complex

sentence parsing, and the most complicated module (MegaHAL) had already

been written.

17



The only thing I was careful about was the fact that the user must be

guaranteed a reply within a certain time limit. I therefore performed extensive

sanity checking within all functions, and if something went wrong (such as

memory not being allocated), the program wouldn't fail.

I also included a timeout, so that if a reply could not be generated within a

certain time limit, then the user would be given an opportunity to type some-

thing else.

All in all, I was extremely pleased with how my program developed. It was

very fault tolerant, and when I began testing it I found that it evem fooled

several PhD students who knew it was a program!

7.4 Example Interaction

Here I give a conversation between a human being and the HeX program. Note

that hardwired responses are given for many di�erent types of smalltalk, and

that the templated non sequiturs are slightly di�cult to spot.

G'day mate.

Greetings.

Hello to you! Now, that's the formalities over!

what's your name?

My name is Jason, but you can call me Jas if you like...

my name is bob.

Pleased to meet you.

how are you doing, jas?

I am just �ne thanks! And you?

i am feeling great!

If you are feeling great, it's your business, mate!

well, that's not very nice!

Well, thats not very nice I agree ... but who cares?

i care. anyway, where do you come from?

Wow - you care? Me too! I come from Perth which is in Western Australia.

It's a nice place at this time of year, so it was a bit of a shock to arrive

to these freezing temperatures.

it's not that cold here, is it?

We have such nice weather all year round back home. I'm not really used to

really cold temperatures.

so i am speaking to an aussie?

18



It's cool being from Australia I guess. Gives you something to chat about when

talking with a Yank!

hey, i'm not a yank!

In Australia we call all Americans yanks. It's a term of endearment actually.

that's alright then, i think...

It's nice to know that we can agree about something.

yes it is.

OK. That's good...

so, what do you do?

Well, I know what I do, but I refuse to tell you!

why?

Does there have to be a reason?

8 Why the Loebner Contest is Doomed to Fail-

ure

The Loebner contest is fated to be nothing more than an annual demonstration

for the media. It will never attract a serious entry, and so it will contribute noth-

ing substantial to our understanding of machine intelligence.

8

In this section I

outline why I think that this is the case.

Competitions established with the aimof encouraging technological advances

have exitsted before. Shieber gives two conditions that such competitions must

meet for them to be an incentive.

1. The goals of the prize must be made clear.

2. These goals should be just beyond the reaches of modern technology. That

is, the winner of the prize will be pushing the envelope within that �eld

rather than making a drastic advancement.

Unfortunately the Loebner contest meets neither of these criteria. It is

therefore nothing more than an amusing game, attracting entries that address

the test in the short term by engineering rather than science[10].

Turing's imitation game in general is inadequate as a test of intelligence as

it relies solely on the ability to fool people, and this can be very easy to achieve,

as Weizenbaum found[7].

My other objections to the Loebner prize are as follows.

� Restricting the domain of discourse renders the test meaningless. Fortu-

nately the 1996 test will not have this restriction.

8

This is, of course, just my humble opinion. I do not intend to vilify Dr. Loebner in the

slightest. In fact, I have great respect for the man. I think that his contest does provide a

challenge to people like me, but not to people working on \serious" AI.

19



� Each judge has only a limited time to converse with each subject. This

may not allow the judge to make a con�dent decision.

� The fact that the judges can see the messages as they are being typed

violates Turing's original idea. No clues to the subjects identity should

be given apart from the linguistic clues. Unfortunately I must simulate

typing speed, pauses for thought, typing errors, and so on to have a chance

of winning.

� Loebner changed the contest rules to state that the grand prize winner

must be able to cope with audio/visual input, but this capability is way

beyond state-of-the-art. This e�ectively removes the main incentive for

entering the contest.

The Loebner contest can be fun, and it was certainly interesting designing

and coding my two entries. I am only entering for the fame and fortune however,

as there is very little research potential in entering such a contest. A program

which could pass the original Turing test would be a very valuable piece of

software, but it won't get written as a result of the Loebner contest.

9 Conclusion

In this paper I have discussed the Loebner contest, and analyzed various con-

versation systems. I also described the design and implementation of my two

entries to the 1996 contest.

I �nished by badmouthing the Loebner contest, but this doesn't mean I

won't enter it again. On the other hand, I have very ambitious plans for my

1997 entry. I don't think that anyone is going to create an intelligent machine

any time soon, but the Loebner contest may just stimulate a few advances in

the �eld of natural language interfaces to database engines. We can only wait

and see . . .

On an amusing sidenote, Marvin Minsky posted a message on an AI news-

group o�ering a $100 prize to anyone who could stop Loebner from holding

the contest, calling it an \obnoxious and unproductive annual publicity cam-

paign". Loebner responded that the grand prize winner would e�ectively cause

the cessation of the contest, and that Minsky would be morally bound to pay

the winner the $100. Loebner therefore instigated Minsky as a co-sponser of

the contest.

References

[1] 1995 Loebner contest transcripts. Available at

http://www.acm.org/ loebner/loebner-prize-1995.html.

[2] Kenneth Mark Colby. Modeling a paranoid mind. The Behavioural and

Brain Sciences, 4:515{560, 1981.

[3] Robert Epstein. The quest for the thinking computer. AI Magazine, pages

80{95, 1992.

20



[4] Robby Garner. The idea of FRED. Available at

http://www.diemme.it/ luigi/fred.html.

[5] Douglas R. Hofstadter. G�odel, Escher, Bach: An Eternal Golden Braid.

Penguin Books, 1979.

[6] Hugh Loebner. In response to Shieber. Available at

http://www.acm.org/ loebner/In-response.html.

[7] James H. Moor. An analysis of the Turing test. Philosophical Studies,

30:249{257, 1976.

[8] Charles Platt. What's it mean to be human anyway? Wired, pages 133{,

April 1995.

[9] Claude E. Shannon and Warren Weaver. The Mathematical theory of Com-

munication. University of Illinois Press, 1949.

[10] Stuart M. Shieber. Lessons from a restricted turing test. Available at

http://xxx.lanl.gov/abs/cmp-lg/9404002, March 1994.

[11] A.M. Turing. Computing machinery and intelligence. In D.C. Ince, editor,

Collected works of A.M. Turing : Mechanical Intelligence, pages 133{160.

Elsevier Science Publishers B.V., 1992.

[12] Joseph Weizenbaum. Computer Power and Human Reason. W.H. Freeman

and Company, 1976.

[13] Thomas Whalen. My experience at Loebner prize. Available at

http://www.diemme.it/ luigi/whal2812.html.

[14] Terry Winograd. Understanding Natural Language. Academic Press, 1972.

21


