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Abstract. Tomography deals with the reconstruction of the density dis-
tribution inside an unknown object from its projections in several direc-
tions. In Discrete tomography one focuses on the reconstruction of objects
having a small, discrete set of density values. Using this prior knowledge
in the reconstruction algorithm may vastly reduce the number of projec-
tions that is required to obtain high quality reconstructions.

Recently the first generation of real-time tomographic scanners has
appeared, capable of acquiring several images per second. Discrete to-
mography is well suited for real-time operation, as only few projections
are required, reducing scanning time. However, for efficient real-time op-
eration an extremely fast reconstruction algorithm is also required.

In this paper we present a new reconstruction method, which is based
on a feed-forward neural network. The network can compute reconstruc-
tions extremely fast, making it suitable for real-time tomography. Our
experimental results demonstrate that the approach achieves good re-
construction quality.

1 Introduction

Fig. 1. Basic principle of
tomography, 2 projections

Tomography deals with the reconstruction of the
density distribution inside an unknown object from
its projections in several directions [8]. Figure 1
shows the basic principle. In this paper we look
at transmission tomography, where the projections
are obtained by sending a beam (e.g., X-rays, neu-
trons, etc.) through the object and measuring the
attenuated beam that has passed through the ob-
ject. Tomography is used extensively in medical
imaging, industrial imaging and, more recently, in
materials science and biology. Typically, a large
number of projections is required (more than 100)
to obtain good reconstruction quality.

When it is known in advance that the scanned object consists of only a few
different materials, it may be possible to vastly reduce the number of required
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projections by using this prior knowledge in the reconstruction algorithm. Dis-
crete tomography focuses on the tomographic reconstruction of objects for which
the set of pixel values in the reconstructed image is discrete and small. In par-
ticular, the reconstruction of binary images (i.e., black-and-white images) has
received considerable attention [6].

Most tomographic scanners acquire static images, i.e., a single image, either
2D or 3D, of the object is reconstructed from the projection data. Therefore
it is not possible to do imaging of dynamic processes, where the scanned ob-
ject changes significantly in a short period of time. Recently, real-time medical
tomographic scanners have emerged [9], which are capable of acquiring several
images per second. Besides medical imaging, real-time tomography could prove
very useful in industrial imaging.

Discrete tomography is well suited for real-time imaging, since the small num-
ber of required projections results in a substantial reduction of the scanning time.
However, to compute a long series of reconstructions in reasonable time, a very
fast reconstruction algorithm is required. Several authors have proposed algo-
rithms for discrete tomography, usually for the reconstruction of binary images.
All these algorithms require at least several dozens of seconds to reconstruct a
single 2D 256 × 256 image [1, 2, 12, 13].

In this paper we present a new reconstruction method, which is based on
a feed-forward neural network. The neural network is first trained on a set of
representative images, which may take a substantial amount of time. After the
training phase, the network can be used to compute a reconstruction very fast.
When implemented on a Field Programmable Gate Array (FPGA), a piece of
computer hardware, frame rates of several hundreds per second are realistic.

We focus on the reconstruction of binary images from parallel projections.
Additional prior knowledge other than the binary constraint that is present in
the training set, is learned by the neural network during the training phase, so
it does not have to be modelled explicitly. Besides real-time tomography, our
approach can also be used to compute a good start solution for more accurate,
time-consuming reconstruction algorithms.

Neural network reconstruction methods for other types of tomographic recon-
struction have been considered in the literature, e.g., [10, 11]. Neural networks
are not well suited for general transmission tomography from many projections,
as the number of variables in the reconstruction problem is extremely large.
Besides that, it is very difficult to outperform other available approaches. In
discrete tomography the amount of projection data is much smaller, making the
reconstruction problem underdetermined. Neural networks are well known for
their ability to learn additional prior knowledge, which makes them suitable for
discrete tomography.

Section 2 contains a short description of the tomographic reconstruction prob-
lem. In Section 3 we first propose a basic neural network approach and discuss
its abilities and limitations. Subsequently we refine the approach, obtaining a
so-called single-pixel neural network architecture that is capable of computing
real-time reconstructions of large images. In Section 4 we provide experimental
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results of the neural network approach and a brief comparison with a continuous
tomography algorithm. Section 5 concludes.

2 Reconstruction Problem

Figure 2 shows the main setting of the binary tomography problem. We assume
that the object of interest is contained in the disc

A = {(x, y) ∈ R
2 : x2 + y2 ≤ R2}

with radius R. We call this disc the imaging area. For the sake of convenience
we assume that R is a positive integer.

O
(R, 0)

θ

Fig. 2. Basic setting for the tomography problem in disc A; the angle between the
parallel beam and the y-axis is denoted by θ

The unknown binary image that we would like to reconstruct is considered as a
mapping f : R

2 → {0, 1}, where 0 is black and 1 is white. We assume that the
support of f , i.e., the set {(x, y) ∈ R

2 : f(x, y) = 1}, is a measurable set that is
contained in A. Define the function Tθ : R

2 → R as follows:

Tθ(x, y) = x cos θ + y sin θ.

We call Tθ(x, y) the point projection of (x, y) for angle θ. Projections are mea-
sured along lines Lθ,t of the form

Lθ,t = {(x, y) ∈ R
2 : Tθ(x, y) = t}.

The Radon transform Pf of f is defined (cf. [5], where also Radon’s original
paper is reproduced) as

Pf (θ, t) =
∫

Lθ,t

f(x, y) ds for θ ∈ [0, 2π), t ∈ R.
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We can now formulate the main reconstruction problem, where the parameter n
determines the number of angles:

Problem 1. Let D = {θ1, θ2, . . . , θn} be a given set of projection angles with
0 ≤ θ1 < θ2 < . . . < θn < π, and let φ1, φ2, . . . , φn be given functions (the
measured projections) from R to R. Construct a function f : R

2 → {0, 1} such
that Pf (θi, ·) = φi(·) for i = 1, 2, . . . , n.

When the measured projections are obtained through physical measurements,
Problem 1 usually does not have an exact solution. Even if the reconstruction
problem has an exact solution theoretically, we need to approximate its solution
by representing it on a pixel grid.

In practice, the function Pf (θ, ·) is usually not measured in single points t.
Instead, the total projection in a strip, covering a small t-interval (t�, tr), is
measured as

Sθ,f(t�, tr) =
∫ tr

t=t�

Pf (θ, t) dt.

Typically, the value Sθ,f(t�, tr) is measured for consecutive strips of fixed width.
Without loss of generalization we assume that all these strips have width 1. For
any angle θ, 2R strip projections are measured. The first strip corresponds to
the t-interval (−R, −R + 1), the last strip to (R − 1, R). In our neural network
approach we also need to evaluate Sθ,f(t�, tr) for other values of (t�, tr), often
with integer width tr − t�. These values are computed by linear interpolation of
the measured projection data.

Although the reconstruction problem is defined using the projection data,
the performance of reconstruction algorithms is often evaluated by considering
a known image f and its projections Pθ1,f , Pθ2,f , . . . , Pθk,f , and comparing the
reconstruction to the original image f . In practice, resemblance to the original
image is often more important than perfect correspondence to the projection
data. This is particularly important if the projection data by itself is not enough
to determine the image f and additional prior knowledge must be used in the
reconstruction algorithm, which is the case if the number of projection angles n
is relatively small: the problem is then underdetermined.

3 Neural Network Approach

In this section we will discuss two neural network approaches to the discrete to-
mography problem. A feed-forward neural network consists of neurons, grouped
in layers, where neurons from one layer can have a weighted connection to neu-
rons from the next layer. The weights are trained simultaneously, hopefully to-
ward optimal values, by presenting the network with correct input-output pairs.

Both proposed networks are feed-forward back-propagation networks (see, e.g.,
[4, 7]) with one input layer, one hidden layer and one output layer. The networks
are fully connected. The first and probably most obvious version (referred to as
a full-image network) has one output node for each pixel. The second version (a
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so-called single-pixel network) has only one output node, to reconstruct one pixel,
but can be used — through appropriate adaptation — to reconstruct the whole
image. This type of network has several advantages over the full-image network.

3.1 A Full-Image Network for Tomography

The input nodes of the network contain the values of the projections, the output
nodes contain the pixel values. So the number of input nodes equals the number
of projections, while the number of output nodes equals the size of the imaging
area, i.e., approximately πR2. The hidden nodes are connected to all input nodes
and all output nodes. Output values are interpreted as gray values, yielding the
gray level reconstruction. If necessary, these values can be rounded in a post-
processing step to 0/1-values for a “crisp” or “rounded” reconstruction. These
networks were first introduced and examined in [3].

Training is performed as follows. The input pattern, consisting of the projec-
tion values, is offered to the input nodes. Every connection has a real-valued
weight, that is adapted during training. The hidden nodes receive the weighted
sum of their incoming connections, and generate an output through the standard
sigmoid σ : x �→ 1/(1 + e−x). Output nodes operate in a similar way. In each
epoch, a number (50,000, say) of random images (sampled from a certain distri-
bution) with their projections are presented to the network; after each epoch the
learning rate α is somewhat decreased. Note that samples are used only once,
unless they are by chance regenerated.

The weights are adapted using the normal back-propagation rule. A weight
wji from hidden node j to output node i is adapted through

wji ← wji + α · aj · Δi, Δi = σ′(ini) · (ti − ni).

Here aj is the output of node j, ini =
∑

j wjiaj is the weighted input to node i,
ni = σ(ini) is its output (for output nodes this is the net output) and ti is the
desired target value, i.e., the true pixel value. The update rule for weight wkj

from input node k to hidden node j is a little more complicated (cf. [4, 7]):

wkj ← wkj + α · ak · Δj , Δj = σ′(inj) ·
∑

i

wjiΔi.

As usual, one extra input node and one extra hidden node clamped to −1 are
added, the so-called bias nodes.

In [3] hidden nodes with only a small number of connections (so-called local
nodes, as opposed to the more common global nodes mentioned above) are added.
These local nodes are connected to a few input nodes and output nodes; they keep
track of the constraints that affect a pixel and its immediate neighbours. Each lo-
cal node corresponds with a unique pixel, receives input from the line projections
that intersect with that pixel, and is connected to the 9 output nodes correspond-
ing with the pixel and its immediate neighbours (6 or 4 near the boundaries). This
general network architecture is depicted in Figure 3. Though this type of network
was shown to perhaps have some advantages, in the sequel we will for comparison
purposes just report on the version with only global nodes.
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Fig. 3. General structure of the full-image network. Global hidden nodes are connected
to all input nodes and all output nodes. Local hidden nodes are connected to only a
few input and output nodes

3.2 A More Efficient Architecture: The Single-Pixel Network

Although the network from Section 3.1 is suitable for real-time reconstruction
once the training phase is complete, it has some disadvantages:

– The network contains a large number of input/output nodes; a large number
of hidden nodes is required to obtain reasonable reconstructions. Due to the
large number of nodes and connections between them, training the network
takes a very long time.

– Millions of training images and their projections are required to train the
network. In practical applications it is usually impossible to obtain such large
data sets.

In the sequel we propose an improvement by focussing on the reconstruction of
a single pixel, instead of the whole image. This vastly reduces the number of
hidden to output connections.

Reconstructing a Single Pixel

One of the principal goals of our neural network design is a reduction of the
number of input nodes in comparison to the network from Section 3.1. When
reconstructing a single pixel p = (xp, yp) within the imaging area A, it is clear
that projected lines that pass through p are more important for determining its
value than the other projected lines. Also, if we assume that the image is locally
smooth, projected lines that pass near p are more important than lines that pass
far away from this pixel, as neighbouring pixels of p are highly relevant to the
value of p.

We use this intuitive notion of relative importance between projected lines to
preprocess the projection data. The inputs of the neural network from Section 3.1
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correspond directly to the measured projection values. In the new single-pixel
network, each input corresponds to a strip projection. Strips that are far away
from p are much broader than strips near p.

Let k be a positive integer. Let 0 < d0 ≤ d1 ≤ . . . ≤ dk be real values, the
strip sizes. We require that the strip sizes satisfy

d0/2 +
k∑

i=1

di ≥ 2R. (1)

Define the strip boundaries s−k, . . . , s0, . . . , sk+1 as follows:

s0 = −d0/2;
si = si−1 + di−1 (i = 1, . . . , k + 1);
si = si+1 − d−i (i = −k, . . . ,−1).

Put τθ = Tθ(xp, yp), the point projection of p for angle θ. The set Iθ of input
strips for angle θ can now be defined as

Iθ =
k⋃

i=−k

{(θ, τθ + si, τθ + si+1)}.

Each element of Iθ is a 3-tuple, consisting of the angle θ and the left and
right boundary of a t-interval, which jointly define a strip through the imag-
ing area. The constraint in Equation (1) ensures that the strips in Iθ cover at
least the entire imaging area A, independent of the position of p. Given the
angles θ1, θ2, . . . , θn, define the set I of all input strips as I =

⋃n
i=1 Iθi .

For every triple (θ, t�, tr) ∈ I there is an input node in the neural network,
giving a grand total of (2k + 1) · n input nodes. The input for such a node is
Sθ,f(t�, tr), the strip projection for angle θ in the t-interval (t�, tr).

Figure 4 shows three possible choices for the set {d0, d1, . . . , dk} of strip sizes.
Setting d0 = d1 = . . . = dk yields equally spaced strips (Figure 4a). Setting
d0 = 1 and di = i for i ≥ 1 yields a set of strips for which the size increases
linearly as the distance from the pixel p increases (Figure 4b). In Section 4 we
will show that even if we set d0 = 1, di = 2i−1 for i ≥ 1 (Figure 4c), the results
are still satisfactory. Using strip sizes that grow exponentially with the distance
to p yields a large reduction in the number of inputs of the neural network.

Training the single-pixel network proceeds as in the case of the full-image
network. However, training a separate network for each pixel would take a huge
amount of time. Also, the problem that the training requires a large number of
training examples remains. In the sequel we will show how both problems can
be solved.

Reconstructing All Pixels

Although the binning approach from the previous section drastically reduces the
number of inputs of the network, a large number of images is still required to
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Fig. 4. Three different strip size configurations; a, top: constant, b, middle: linear, c,
bottom: exponential

perform the training. If a separate network needs to be trained for each pixel in
the image, the total training time may be even larger than for the basic network
from Section 3.1.

Note that all inputs of the single-pixel network are relative to the projections
of the center of the pixel. Therefore, there is no obvious reason why the network
cannot be used to reconstruct a different pixel, elsewhere in the image. The
only difference between two different pixels is that the relative position of the
imaging area A is different. However, if we use a varying set of pixels from the
training images, instead of using the same single pixel from each image, it may
be possible to train the network without providing additional information on
the relative position of the imaging area. This reconstruction task is harder,
since less information is offered to the network. In Section 4 we show that one
single-pixel network is capable of reconstructing arbitrarily positioned pixels.
This offers some major advantages over the network from Section 3.1:

– If exponentially increasing strip sizes are used (see Figure 4c) both the num-
ber of inputs (logarithmic in R) and the number of outputs (constant, 1)
is vastly reduced when compared to the network from Section 3.1, reducing
training time for the single-pixel network.

– Only a single network has to be trained, instead of a new network for each
pixel.

– Each training image, with its projections, now yields a new training example
for each pixel in the image. The network from Section 3.1 requires a new
image for each training example.

And finally, as we shall see in Section 4, the single-pixel networks seem more
capable of reconstructing images from their projections, rather than learning
images from certain classes.
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3.3 Computational Complexity

For a feed-forward neural network having NI input nodes, NH hidden nodes
and NO output nodes, the time required to propagate an input pattern to the
output nodes is O(NINH + NHNO). The time complexity for training a single
input-output pattern is of the same order.

For the full-image network from Section 3.1 we have NI = O(nR) and NO =
O(R2), so that propagating a pattern takes O(NH(nR + R2)) time. (Remember
that n is the number of projection angles or directions, and R is the radius of
the imaging area.) Typically R is much larger than n. Once the training phase
is complete, the time complexity of computing a reconstructed image from a set
of projection data is of this same order.

For the single-pixel network with logarithmic strip sizes from Section 3.2 we
have NI = O(n log R) and NO = 1, yielding a time complexity of O(nNH log R)
for propagating a pattern. To use the network for reconstruction after the train-
ing phase, a new input projection pattern has to be propagated through the net-
work for every pixel in the image, yielding a time complexity of O(nNHR2 log R).
Also, for this network the projection data must be preprocessed first to obtain
the input data for the network, with time complexity O(R). Note that the num-
ber NH can vary heavily between different types of networks.

Since the value that is computed at each (non-input) node of a feed-forward
network only depends on the values in the previous layer, the values for all nodes
in a layer can be computed in parallel. Moreover, the computation that needs to
be performed at each node is very simple. This allows for very efficient parallel
implementations.

4 Experimental Results

In this section we present experimental results for the full-image network from
Section 3.1 and the single-pixel network from Section 3.2. We restrict ourselves
to two classes of synthetic images.

Fig. 5. Top: 128×128 images from the 7-class; bottom: images from the 50-class
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The first class of examples consists of images with four large white ellipses
and three smaller black ones inside, in a dark background. This class is referred
to as the 7-class, or just “7”. The second class consists of images with fifty small
white ellipses in a dark background, and is referred to as the 50-class, or just
“50”. Figure 5 contains some examples.

Table 1. Results from experiments for the full-image network; 32 × 32 and 64 × 64
images; training runtime in hours

image angles image hidden gray 0–1 run-
width class nodes error error time

average over 3 runs
32 4 7 50 0.074 0.052 2.15
32 4 7 100 0.058 0.042 5.05
32 4 7 200 0.046 0.044 9.85
32 4 50 50 0.069 0.044 2.15
32 4 50 100 0.056 0.037 5.05
32 4 50 200 0.054 0.036 10.00
32 10 7 50 0.104 0.076 3.30
32 10 7 100 0.066 0.050 6.30
32 10 7 200 0.040 0.040 12.10
32 10 50 50 0.065 0.042 3.40
32 10 50 100 0.044 0.030 6.35
32 10 50 200 0.019 0.017 12.15
64 4 7 50 0.148 0.109 12.80
64 4 7 100 0.118 0.092 27.30
64 4 7 200 0.063 0.062 58.30
64 4 50 50 0.145 0.098 12.75
64 4 50 100 0.131 0.091 27.20
64 4 50 200 0.126 0.087 58.00
64 10 7 50 0.199 0.151 14.80
64 10 7 100 0.145 0.112 30.30
64 10 7 200 0.078 0.077 63.15
64 10 50 50 0.142 0.097 14.80
64 10 50 100 0.118 0.086 30.25
64 10 50 200 0.077 0.077 63.35

All experiments were repeated three times, and averages were taken over these
three runs. Because all images are in fact located within a circle (the imaging
area), we do not consider errors outside this area; therefore, mean error values
are computed with respect to pixels within the imaging area. Average absolute
errors are reported on independent test sets consisting of 1,000 images, both for
gray level reconstruction and for rounded reconstruction (the 0–1 error). Table 1
shows results for the full-image network for two image sizes: 32×32 and 64×64.
Table 2 gives results for the single-pixel network for three image sizes: 32 × 32,
64 × 64 and 128 × 128. The parameters are as follows: three sizes of the hidden
layer: 50, 100 and 200 hidden nodes; and two different sets of projection angles,
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Table 2. Results from experiments for the single-pixel network; 32 × 32, 64 × 64 and
128× 128 images; training runtime in hours; (*) contains run with 0–1 error equal to 0

image angles image hidden gray 0–1 run-
width class nodes error error time

average over 3 runs
32 4 7 50 0.038 0.026 3.05
32 4 7 100 0.038 0.025 4.95
32 4 7 200 0.037 0.025 9.65
32 4 50 50 0.054 0.034 3.10
32 4 50 100 0.054 0.034 4.95
32 4 50 200 0.054 0.034 9.55
32 10 7 50 0.004 0.003 6.95
32 10 7 100 0.004 0.002(*) 12.20
32 10 7 200 0.004 0.003 21.65
32 10 50 50 0.016 0.011 6.95
32 10 50 100 0.015 0.011 12.10
32 10 50 200 0.015 0.011 21.50
64 4 7 50 0.046 0.029 3.70
64 4 7 100 0.044 0.032 5.80
64 4 7 200 0.044 0.029 11.10
64 4 50 50 0.116 0.083 3.70
64 4 50 100 0.114 0.083 5.80
64 4 50 200 0.118 0.082 11.15
64 10 7 50 0.006 0.005 8.95
64 10 7 100 0.006 0.005 14.75
64 10 7 200 0.006 0.005 25.20
64 10 50 50 0.051 0.034 9.00
64 10 50 100 0.052 0.033 14.65
64 10 50 200 0.051 0.033 25.20
128 4 7 50 0.042 0.028 4.75
128 4 7 100 0.041 0.029 7.15
128 4 7 200 0.039 0.028 13.35
128 4 50 50 0.130 0.094 4.70
128 4 50 100 0.129 0.092 7.10
128 4 50 200 0.129 0.100 13.40
128 10 7 50 0.005 0.003 12.20
128 10 7 100 0.005 0.002 18.30
128 10 7 200 0.005 0.003 30.50
128 10 50 50 0.057 0.038 12.20
128 10 50 100 0.056 0.039 18.15
128 10 50 200 0.055 0.040 30.45

consisting of 4 and 10 projections, equally spaced in the interval [0◦, 180◦). In all
experiments 200 epochs, each consisting of 50,000 examples (full-pixel network)
or 2,300,000 examples (single-pixel network), were used for training. The number
of examples per epoch was chosen so that the training of the two networks took
the same amount of time for the case of 32 × 32 images from the 7-class using 4
projections and 100 hidden nodes. The reason for using more examples to train
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the single-pixel network is that each example only contains information on a
single pixel in that case. When using a real measured dataset, a new training
example can be constructed from each pixel in the dataset. Experiments were
run on a single processor AMD Athlon 2.2 GHz PC. Runtimes in the tables
refer to the training times of the networks; once trained, reconstruction of a new
image is almost instantaneously. The learning rate α started at 0.5, and was
multiplied by 0.99 after each epoch.

Experiments with the full-image network show that the network is capable
of reconstructing small images with acceptable quality, e.g., 32 × 32 images.
This requires a reasonably large number of hidden nodes, e.g., 200, giving a
huge number of connections. For larger images however, quality drops down,
while computing time increases heavily (therefore, no experiments on 128 ×
128 images were performed). The results suggest that a further increase in the
number of hidden nodes might improve reconstruction quality. Figure 6 shows
some examples from a run of the full-image network for 10 projections on the
7-class for 64 × 64 images, using 100 hidden nodes. The average absolute pixel
error for this particular run (using 1,000,000 training examples) was 0.133 (gray
level reconstruction) and 0.102 (rounded reconstruction).

Fig. 6. From left to right: 64 × 64 original, gray level reconstruction and rounded recon-
struction using a full-imagenetwork,with absolute total errors 413.7 and 291, respectively

As another example, we show results for 64 × 64 images within the 50-class,
using 10 projections, and 100 hidden nodes, see Figure 7. The figure shows best
and worst reconstruction from a random set of 25 images from the 50-class.

Fig. 7. From left to right: two pairs of 64 × 64 original and rounded reconstruction
using a full-image network, with absolute total errors 235 and 310, respectively

Clearly, the results for the 50-class are not satisfactory. As we can see in
Table 2, single-pixel networks give much better reconstructions. We now consider
the single-pixel network exclusively.
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For all test cases in Table 2 the number of hidden nodes has hardly any
effect on the quality of the reconstructions. This suggests that a relatively small
number of hidden nodes suffices. Structural Risk Minimization might be used to
find a suitable size for the hidden layer. The 50-class is clearly more difficult to
learn than the 7-class.

Figure 8 compares the single-pixel network and filtered backprojection (FBP),
which is the fastest algorithm available for continuous tomography and the only
one that can be used for real-time reconstruction. The FBP reconstructions were
computed with the MATLAB Imaging Toolbox, using the Ram-Lak filter mul-
tiplied by a Hann window. The single-pixel reconstructions are clearly better.
Other discrete tomography algorithms might be capable of producing more ac-
curate reconstructions, perhaps even using fewer projections. However, to our
knowledge these algorithms are far too slow for real-time reconstruction.

Fig. 8. From top to bottom: three 128 × 128 images and their reconstructions using
filtered backprojection, rounded filtered backprojection and the single-pixel network,
respectively; top and middle image from the 7-class, with 10 projections; bottom image
from the 50-class, with 18 projections. Absolute 0–1 errors for the single-pixel network
reconstructions are 101, 84 and 153, respectively

A natural question to ask is whether the network is capable of reconstructing
images outside the class it was trained on. Figure 9 shows the reconstruction
results of two such images, which are clearly not in any of the training classes.
Though not perfect, the results are surprisingly good.

Though results from [3] suggest that local nodes might give some improvement
for the full-pixel network (putting more complexity into the network), this was
only shown for relatively small images. In the current paper we have chosen
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Fig. 9. From left to right: two pairs of a 128 × 128 image and its reconstruction;
original images are not from the 7-class for which the single-pixel network was trained.
Absolute 0–1 errors are 189 and 291, respectively

Fig. 10. From left to right: 32 × 32 original and reconstruction using a full-image
network and a single-pixel network, respectively; only one projection

for global nodes only, to allow for better comparison between full-image and
single-pixel networks.

Another issue with the full-image networks is that they are more inclined
to learn location dependent information, in particular when there are very few
projections. In that extraordinary case they behave quite differently from the
single-pixel networks. As an example, in Figure 10 we show some results for the
reconstruction of a 32 × 32 image using only projection in one horizontal direc-
tion. The single-pixel reconstruction shows the density distribution of the 0–1
intensity in the projection direction, as any two pixels on the same horizontal
line cannot be distinguished by the network. The imaging area is clearly visible.

As mentioned before, the final 0–1 image is generated from the gray level re-
construction by simply rounding, giving a crisp figure, cf. Figure 6. Experiments
suggest that errors often occur for pixels that have a raw reconstruction value
near 0.5. It is possible to slightly improve the final reconstructed image by (for
those pixels, in parallel) trying both 0 and 1 as reconstruction value, meanwhile
comparing with the projections. Time restrictions clearly allow just a few pixels
to be toggled simultaneously. The quality of the reconstruction may also be im-
proved by introducing a stochastic model of the image class and computing an
image (in a postprocessing step) that corresponds well with both the output of
the neural netwerk and the model of the image class.

5 Conclusions

We conclude that the single-pixel network from Section 3.2 is capable of gen-
erating very good quality reconstructions of images from both classes, given
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sufficiently many projection directions. Once trained, such a network can com-
pute new reconstructions almost instantaneously, making it very suitable for
real-time reconstruction. The full-image networks from Section 3.1 perform less
satisfactory, but behave well if only very few projection directions are available
and the images are small.

Although we use the networks for the reconstruction of binary images, there is
no apparent reason why they could not be used for the reconstruction of images
that contain a larger set of gray values, or even a continuous range. We intend to
explore the possibility of using our neural network approach for continuous to-
mography in future research. For continuous tomography the size of the network
will increase significantly, as the number of projections that is required to ob-
tain a good reconstruction is typically much larger than for discrete tomography.
This will increase the training time and the reconstruction time after training.
For continuous tomography algorithms are already available that are both accu-
rate and fast. For discrete tomography, however, the current approach seems to
provide competitive algorithms, in particular for real-time reconstruction.
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7. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Compu-

tation. Addison-Wesley (1991)
8. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM

(2001)
9. Keat, N.: Real-time CT and CT Fluoroscopy. The British Journal of Radiology 74

(2001) 1088–1090
10. Kerr, J.P., Bartlett, E.B.: Neural Network Reconstruction of Single-photon Emis-

sion Computed Tomography Images. Journal of Digital Imaging 8 (1995) 116–126
11. Lampinen, J., Vehtari, A., Leinonen, K.: Application of Bayesian Neural Network

in Electrical Impedance Tomography. Proceedings of the 1999 International Joint
Conference on Neural Networks (1999)

12. Liao, H.Y., Herman, G.T.: A Coordinate Ascent Approach to Tomographic Recon-
struction of Label Images from a Few Projections. Discrete Applied Mathematics
151 (2005) 184–197
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