
Automated Synthesis of Streaming C Applications

to Process Networks in Hardware

Sven van Haastregt and Bart Kienhuis

LIACS, Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{svhaastr,kienhuis}@liacs.nl

Abstract—The demand for embedded computing power is con-
tinuously increasing and FPGAs are becoming very interesting
computing platforms, as they provide huge amounts of customiz-
able parallelism. However, programming them is challenging, let
alone from a high level language. In [1], the ESPAM methodology
was already presented to quickly obtain realizations on FPGAs
from sequential C code. The realization consists of a network
of processors and IP cores. In this approach, a problem was
that the IP cores had to be provided manually. In this paper, we
present an extension on the ESPAM methodology by incorporating
the industrial high level synthesis tool PICO from Synfora Inc.
In this way, we realize the automated generation of efficient
hardware implementations on FPGAs from a single sequential C
input specification of a streaming application. We demonstrate
our approach for the Sobel and QR applications.

I. INTRODUCTION

Real-time stream processing applications are common in

many different application fields. These applications are con-

stantly subject to improvements and extensions, leading to

increased computing power demands which can no longer be

delivered by a single processor. Instead, Field Programmable

Gate Arrays (FPGAs) may provide an attractive platform for

such real-time stream processing applications, as they offer

the opportunity to exploit a huge amount of customizable

parallelism. However, implementing efficient streaming ap-

plications for such platforms is not trivial and is currently

performed mainly manually; a complex, time-consuming and

error-prone process. Also, extensive knowledge about the plat-

form is required to obtain efficient implementations satisfying

performance and cost constraints. This limits access to those

platforms to skilled engineers. If such platforms could be

programmed from a high level language, a much broader

audience could benefit from FPGA technology.

To make FPGA technology more broadly accessible, the

ESPAM methodology [1] was developed to provide a fast and

convenient way to implement sequentially specified applica-

tions as process networks in hardware, giving designers access

to considerable speedups. Unfortunately, the designer has to

provide IP cores to realize a completely functional implemen-

tation. This still limits the target audience to engineers who can

either write such IP cores themselves in HDL, or have access

to a rich library of IP cores. To circumvent this problem, we

have extended ESPAM with the industrial PICO tool [2] from

Synfora, Inc. This way, we realize the ESPAM-PICO flow that

further automates quick generation of complete and efficient

functional hardware implementations from high level C input

describing a streaming application. The result is then mapped

onto an FPGA. Converting C to HDL has been the subject of

research in many projects (e.g., [3], [4], [5]). Our work differs

in its focus on streaming applications and exploitation of task

level parallelism.

In this paper, we present the incorporation of PICO in

ESPAM. In Section II, we present our solution approach. In

Section III, we give a brief overview of the Synfora PICO tool.

In Section IV, we show the flow of our ESPAM-PICO approach

and in Section V, we present results we have obtained with

the ESPAM-PICO flow and show that we obtain competitive

results from C code in matters of tens of minutes of design

time instead of hours or even days. We conclude our work in

Section VI.

II. SOLUTION APPROACH

To further automate the synthesis of streaming C applica-

tions to efficient hardware, we have developed the approach

depicted in Fig. 1. As a first step, we extract coarse-grained

parallelism from the sequential C input specification, as de-

picted in Fig. 1 by the “Partitioning Compiler” block. This

results in a network of multiple smaller units of execution

which we call processes. Each process can again be expressed

as a C program. This C program consists of a control part and

a functional part. The control part is a result of the partitioning.

The functional part is taken unmodified from the original C

program. Next, we synthesize a hardware processor implemen-

tation for each of these processes and connect the hardware

processors according to the network topology. This is depicted

by the “Synthesis” block of Fig. 1. A hardware processor is

either a conventional microprocessor like a MicroBlaze (MB)

or a PowerPC (PPC), or a specialized accelerator (HWN).

The accelerator is an IP core with equivalent behaviour of

Sequential

C code

Partitioning

Compiler

MB HWN

... PPC

 C
Code

SynthesisKPN
Hardware

Implementation

...

“IP” C
Code

 C
Code

Network of C

programs

(KPNGen) (ESPAM)

PICO

Fig. 1. Overview of our solution approach.

978-3-9810801-5-5/DATE09 © 2009 EDAA

source

hfilter vfilter

data[]

int data[N];

for (i = 0; i < N; i++) {

 data[i] = source();

}

for (i = 0; i < N; i++) {

 hfilter(data[i]);

 vfilter(data[i]);

}

source

hfilter vfilter

F
IF
O

F
IF
O

Shared memory model Distributed memory model

Fig. 2. Shared vs. distributed memory.

the original C program. The novelty presented in this paper is

that the IP core is now automatically synthesized using PICO,

which takes the C code of the process as its input. During this

step, fine-grained parallelism is extracted and exploited.

We use the Kahn Process Network (KPN) Model of Com-

putation (MoC) to describe the network of processes and

their behaviour. The KPN model has proven to be appropriate

in similar cases [6]. The KPN MoC employs a distributed

memory model, which is different from the shared memory

model inherent to the C language. In Fig. 2, the differences

between both memory models are illustrated. The shared

memory implementation shown to the left of the code fragment

consists of a (large) memory containing the entire array. In

order to allow shared access, the amount of read and/or

write ports is increased, or the memory component is time-

shared across multiple entities. The first approach leads to a

considerable increase in gate cost while the second approach

is likely to limit throughput. The FIFO memories of the

distributed memory model shown on the right do not require

arbitration logic, as now only point-to-point connections are

involved. Also, the sum of the FIFO buffer sizes for streaming

applications is in general lower than the size of a single shared

memory. An additional advantage of the KPN MoC is that high

level transformations can be applied to its individual nodes [7],

like unrolling and skewing, offering the possibility to explore

alternative implementations of the same application.

III. PICO

PICO employs sophisticated optimization algorithms to gen-

erate a functionally equivalent RTL implementation from a

specification written in PICO-C. The RTL implementation is

expressed as a Pipeline of Processing Arrays (PPA), which is

composed of a set of configurable architectural IP cores. The

resulting PPA satisfies the constraints set by the designer, of

which throughput is the most important one.

It is also possible to synthesize a Tightly Coupled Ac-

celerator Block (TCAB). TCABs have been introduced to

provide the designer with means to make hardware reuse and

sharing inside a PPA possible. These TCABs typically exhibit

less complex control. This puts additional restrictions on the

accepted C input: only a single perfect loop nest is allowed.

Various restrictions are imposed on the PICO-C language,

as it is not trivial to map concepts like pointers and recur-

sive procedure calls onto a customizable distributed memory

architecture. Another restriction on the PICO-C language is

that multiple loop statements at the same nesting level inside

another loop are not allowed, that is, it only accepts perfectly

nested loops. Interestingly, our partitioning compiler KPNGEN

is not affected by this perfectly nested loop requirement while

the resulting KPN is always expressed as a collection of

perfectly nested loop programs. Thus, each process generated

by KPNGEN is always synthesizable using PICO, as long

as the functional part of the process adheres to the PICO-

C requirements. Another difference is that KPNGEN does a

more thorough dataflow analysis, allowing a more aggressive

employment of the distributed memory model, whereas PICO

sometimes has to fall back to a shared memory model.

IV. IMPLEMENTATION

The realization of the high level flow given in Fig. 1 is

given in Fig. 3. This figure shows the flow of our ESPAM-

PICO approach. The user specifies the application as a C

file, which is translated into a KPN by KPNGEN [8]. The

input to KPNGEN is restricted to Static Affine Nested Loop

Programs (SANLPs). By translating sequential code to a KPN

representation, KPNGEN automatically obtains an implemen-

tation based on the distributed memory model shown in Fig. 2.

Next, ESPAM-PICO takes this KPN, together with a platform

specification describing the amount and types of processors

in the system and a mapping specification which maps the

processes of the KPN onto the processors. It then synthesizes

an RTL implementation of the specified multiprocessor system

by producing a Xilinx Platform Studio (XPS) project. ESPAM-

PICO relies on the XPS tool to generate the final bitstream that

configures an FPGA.

A processor can be a conventional microprocessor like a

PowerPC or MicroBlaze, or it can be a hardware accelerator. In

the conventional ESPAM flow, an IP core library is required to

implement the functional part of a hardware accelerator. In this

section, we present two new models, which incorporate PICO

to synthesize completely functional hardware accelerators: the

PPA hardware node model and the TCAB hardware node

model.

Top level

C file KPNGen Platform MappingKPN

Hardware

implementation

Synfora PICO

PICO

PPA/TCAB

Output, ready

for synthesis

ESPAM-PICO

flow

ESPAM

XPS Visitor / back end

PICO

input

Conventional Flow

IP
cores

Fig. 3. The ESPAM-PICO design flow.

Read unit

Read

mux

Eval. logic

Write unit

 Write

demux

Eval. logic

Execute unit

TCAB Wrapper

PICO

TCAB

Control unitControl

Incoming

data

Status

Outgoing

data

Fig. 4. The TCAB hardware node model.

A. PPA Hardware Nodes

As a first model, we use PICO to synthesize the C code

belonging to a process into a PPA. This means that the PPA

is responsible for both the control part (loop nest control,

data input and output operations) and the functional part (the

actual computation of the node). This PPA is integrated into

a process network by using the stream interfaces offered by

PICO-C, allowing a straightforward integration in the KPN

model. However, we found that the PPA hardware node model

is not suitable for KPNs containing feedback loops (cycles) or

nodes with self-loops. This is because the entire PICO PPA

is stalled when data is not available on one or more input

streams.

B. TCAB Hardware Nodes

Because of the limitations of the PPA hardware node model,

we propose a second model which builds further upon the

LAURA processor model [9]. This processor model wraps an

IP core in such a way that it can be integrated in a network

of processors. A LAURA processor consists of a read and

write unit which handle data communication from and to the

right FIFO channels, and a control unit which synchronizes

the different units. The functional part is implemented in the

execute unit, and is where the actual computations of a node

take place. Instead of integrating an IP core taken from a

library in the execute unit, which was the default action, we

now use a TCAB generated by PICO. The resulting TCAB

hardware node model is shown in Fig. 4. This model is more

robust than the PPA hardware node model, because the read

and write units are now completely decoupled. Therefore,

the TCAB hardware node model can much better handle

deeply pipelined IP cores and the asynchronous behaviour of

a KPN. As a result, the model can cope with self-loops and

avoids undesired node stalls in the case of input unavailability.

Furthermore, the node can be parameterized at runtime. For

example, in case of imaging, the dimensions of a frame can

be used as parameters of which the values are set or even

changed at runtime.

V. EXPERIMENTS & RESULTS

To demonstrate how our methodology performs in terms

of throughput and resource usage, we have examined two

different applications: Sobel edge detection and QR decom-

position. The first is a common image processing operation,

the latter finds applications in adaptive beamforming systems

for example. In the experiments, we used the XUP-V2P

board, containing a Virtex-II Pro 30 FPGA (XC2VP30). Our

implementations run at a clock frequency of 100 MHz.

A. Sobel Edge Detection

In Table I, the results of our experiments with the Sobel

application are shown. The first column contains the name

of the experiment. Next, the amount of FPGA slices and

BRAMs needed for implementation are given. The last two

columns show the absolute and relative amounts of 280×200

images (“frames”) that could be processed in one second by

the particular implementation.

The first four experiments in the table are implemented us-

ing the ESPAM-PICO flow presented in this paper. In the Sobel-

PPA experiment, we implement the Sobel application using the

PPA hardware node model. In the Sobel-PPA-2 and Sobel-

PPA-4 experiments, the nodes of the network are unrolled

by a factor of 2 and 4, respectively, to demonstrate that the

unrolling transformation allows us to increase throughput in

exchange for increased hardware resource usage. In the Sobel-

TCAB experiment, we implement the Sobel application using

the TCAB hardware node model. Both our models achieve the

same throughput but the TCAB hardware node model requires

23 percent more resources than the PPA hardware node model.

Part of this can be attributed to the presence of infrastructure

for runtime parameter adjustment, which is not present in a

regular PPA. Also, the extensions for more flexible pipeline

behaviour supporting self-loops lead to increased slice usage.

The remaining experiments use approaches that already

existed. This allows us to compare our work to other ap-

proaches. In the Sobel-PICO-naive experiment, we implement

the application by providing the unmodified sequential C

code of Sobel to PICO. This code does neither adhere to

the PICO coding recommendations, nor does it make use

of any PICO specific constructs like internal streams. This

experiment yields the smallest implementation in terms of slice

count. However, a huge memory component is required, which

additionally limits throughput due to its single access port, as

explained using Fig. 2. In the Sobel-PICO-hand experiment, a

PICO hand design that makes use of a line buffer is evaluated.

This design yields a small implementation, both in terms

of slice count and memory usage, but manual rewriting of

TABLE I
RESULTS FOR SOBEL ON A 280× 200 GRAYSCALE IMAGE.

Setup
Device utilization Throughput

Slices BRAMs (frames/sec) %

Sobel-PPA 1226 7 1784 100
Sobel-PPA-2 2768 14 3567 200
Sobel-PPA-4 5860 28 7129 400
Sobel-TCAB 1507 7 1784 100

Sobel-PICO-naive 665 27 181 10
Sobel-PICO-hand 895 4 1784 100

Sobel-ESPAM 1641 7 897 50

the input C code was required. Once buffers and pipelines

are filled, the Sobel-PPA, Sobel-TCAB and Sobel-PICO-hand

implementations deliver one pixel of the result per cycle. The

Sobel-ESPAM experiment is the result of previous research [1]

in which handwritten IP cores were used. Because Sobel-

TCAB and Sobel-ESPAM have the components of the LAURA

processor in common, the small difference in slice usage

shows that the PICO-generated TCAB is an efficient IP core.

Sobel-ESPAM requires about two times more clock cycles

than the Sobel-PPA and Sobel-TCAB implementations, which

is caused by the use of a memory unit instead of purely stream-

based I/O.

B. QR Decomposition

In Table II, the results of our experiments with the QR

application are shown. The columns of this table are similar

to those of Table I, except that the last two columns now

show the amount of 21 × 7 matrices that could be processed

in one second. The trigonometric functions used in QR are

implemented using a lookup table (LUT) or using the Maclau-

rin/Taylor series expansions (TA). The different realizations for

the trigonometric functions could easily be expressed in the C

program of QR. Due to the presence of self-loops in the KPN

of the application, an implementation using the PPA hardware

node model was not possible. All experiments are therefore

done with the TCAB hardware model.

Only small FIFO sizes are involved, so all FSL components

are implemented in logic only leading to zero BRAM usage. A

first observation is that the lookup table based implementation

is more efficient than the Taylor series based implementation,

both in terms of device utilization and throughput. This is due

to the higher complexity of the QR-TA implementation, which

leads to deeper pipelines. Due to the flow dependencies in the

QR network, the pipelines in the various hardware processors

are underutilized which leads to limited throughput. By ap-

plying the skew transformation, we reschedule asynchronously

the moments on which those dependencies occur. This makes

it possible to keep the pipelines better filled, resulting in higher

throughput, as shown in Table II for both QR-LUT and QR-

TA.

In Table III, we show tool running times for two of our

experiments. The translation from a sequential C specification

into a parallel KPN representation takes only a couple of

seconds. The amount of time needed by ESPAM-PICO depends

greatly on the number of PICO hardware nodes in the network,

as the PICO tool is invoked for each node in a KPN that is

implemented by a PPA or TCAB hardware node. Synthesis

TABLE II
RESULTS FOR QR ON A 21× 7 MATRIX.

Setup
Device utilization Throughput

Slices BRAMs (matrices/sec) %

QR-LUT 1417 0 43365 100
QR-LUT skewed 1798 0 191570 442

QR-TA 2705 0 23781 100
QR-TA skewed 3075 0 125313 527

TABLE III
RUNNING TIMES OF THE TOOLS.

Step
Compile time

Sobel-PPA QR (LUT)

1. KPNGEN 5 sec. 5 sec.
2. ESPAM-PICO 6:50 min. 5:05 min.
3. Synthesis using XPS 12:45 min. 16:25 min.

Total 19:40 min. 21:35 min.

into an FPGA bitstream still consumes most of the time for

both experiments.

VI. CONCLUSIONS

In this paper, we have presented the ESPAM-PICO flow

that further automates synthesis of streaming C applications

written as static affine nested loop programs to process net-

works in hardware. The obtained results are efficient, because

our flow exploits automatically different levels of parallelism

and employs more aggressively a distributed memory model,

without requiring source code annotations. Our ESPAM-PICO

flow allows us to obtain an implementation in matters of tens

of minutes. Next to our PPA hardware node model, our TCAB

hardware node model proved to be an interesting addition, as

it can be parameterized and handles self-loops.

The results shown in Table I and II have been obtained

by only specifying C code. No HDL has been written or

had to be inspected to get the results. This shows that in

principle someone only familiar with C can obtain efficient

implementations of streaming applications on FPGAs. Our

ESPAM-PICO flow shows a promising collection of principal

technologies and concepts that can help to provide a broader

audience with tools to use FPGA technology.

REFERENCES

[1] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated
Multi-processor System Design, Programming, and Implementation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 27, no. 3, March 2008.
[2] Synfora Inc., “PICO Technology,”

http://www.synfora.com/, last accessed: 2008-06-11.
[3] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Optimized Generation

of Data-Path from C Codes,” in Design Automation and Test Europe

(DATE’05), March 2005.
[4] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK : A High-Level

Synthesis Framework For Applying Parallelizing Compiler Transforma-
tions,” in International Conference on VLSI Design, January 2003.

[5] Y.D. Yankova et al., “DWARV: DelftWorkbench Automated Reconfig-
urable VHDL Generator,” in Proc. of the 17th Intl. Conference on Field

Programmable Logic and Applications (FPL’07), 2007, pp. 697–701.
[6] E. de Kock, “Multiprocessor Mapping of Process Networks: A JPEG

Decoding Case Study,” in Proc. of the 15th International Symposium on

System Synthesis (ISSS’02). ACM Press, 2002, pp. 68–73.
[7] T. Stefanov, B. Kienhuis, and E. Deprettere, “Algorithmic Transfor-

mation Techniques for Efficient Exploration of Alternative Application
Instances,” in Proc. of the tenth international symposium on Hard-

ware/software codesign (CODES’02). ACM Press, 2002, pp. 7–12.
[8] S. Verdoolaege, H. Nikolov, and T. Stefanov, “PN: a Tool for Improved

Derivation of Process Networks,” EURASIP Journal on Embedded Sys-

tems, 2007.
[9] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “LAURA:

Leiden Architecture Research and Exploration Tool,” in Proc. of the 13th

Int. Conference on Field Programmable Logic and Applications (FPL’03),
September 2003, pp. 911–920.

