Pushdown Automata — H.J. Hoogeboom

Closure and Determinism

Stack Languages and
Predicting Machines



deterministic union

L, R deterministic = L U R deterministic 7

» LR REG = LUR € REG

simulate deterministic automata in parallel
(automata should not block)

» L,R e DPD{ = LUR ¢ DPD/
{a™" |n>1}u{ad"b"" | m,n>1}

» L. DPD¢, R€ REG = LU R € DPD/

parallel simulation with A-moves

» avoid infinite A\-computations: I
PDA should read all possible input



V 2

example deterministic union

L € DPD?¢, R € REG

{a"a™ | m,n e N } =

{a’" | neNYU{a™"a" | m,neN,m>1}




V 3 complementation
» regular languages /
b a,b b a,b
complete @.‘ b ‘ .@ b @
and deterministic a a

» context-free languages x
{a""*c" |ne N} ¢&CF
complement {a,b,c}* — a*™b*c*
U{abich| i £ Uu{abicF| j£ k)
» deterministic cf languages /

read all input — as complete as possible
but — infinite A-computations

predicting machines

“‘can we reach a non-X\ transition with present stack?”



V 4

adding an endmarker

L € DPDY¢ = L# < DPD/
‘classic’ construction

A, Al

oops!
‘old’

no A-instructions leaving final state

(a normal form?)
how do we achieve that?

what about single letter quotient?

L/{a} ={x|xae€ L}



— We study the language of stacks during
computations of a PDA. This language
is regular! The proof is a simple con-
sequence of the [p, A, g]-construction!

Exclamation mark! —



V 5 stacks of the pushdown automaton

stack language

SN(A) ={ael™ | (pp,w,a) F* (g, A, A)
for some w € *, some g€ Q }

input w is irrelevant here

B1B>...Bp € SN(A)

build automaton:

iff
(p,w,B)F* (g, \,\)
iff

[p, B,q] =% w

(for some w € >%)

this is regular!

every state initial & final



V 6 stack language variants

SN(A) ={ael™ [ (pp,w,a) F* (g, A, A)
for some w € >*, some g€ Q }

variant [also regular]

{...] ... forsome we R, someqge F }

intersect R

SF(A) ={aecl™| (pin,w, Zin) F* (g, A\, )
for some w € ¥, some g€ F }



V7

application Buchi

SN(A) ={ a el [ (pip,w,a) F* (¢, A, X)
for some w € X% some g€ F }

Buchi: regular canonical systems
type-0 productions a — (3
prefix rewriting o = | g

L(rcs) ={w|w=*A}

rcs defines regular language
simulate prefix a« — 8 by PDA  [use F]



V 8 regular properties of the stack

stack belongs to regular language R?

e.g. R=B(AA+ B)*
deterministic automaton for reverse

update stack add state info to stack

B/AB
(B,1)/{A,1)(B,2) . 51
(B,2)/(A,2)(B,1) z 5 o -
(B,3)/({A,3)(B,2) I A 3 °
(B,g)/(A,g9)(B,g) B 1

D s
success € R b A2
(B,1), (B,3) on top A A 1 @
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predicting machines

» stack language SN(.A) is regular

» a (deterministic) PDA can keep regular info
on its stack

= a (deterministic) PDA can predict future be-
haviour using present stack by inspecting top

predicting machines

“reaches A the empty stack from my stack?”

Yes no Yyes

Ye€s VYesS no

NnO YeS Yes

no no Yyes

| e |

Yes no no

Ay Ax A3z




V 10 application: quotient

DPD/ closed quotient with REG

can we accept extending with y € R?
stack o satisfies:

(p,y, ) F% (¢, \,B8), g€ F, y € R, some 3

quotient automaton

SN(Ap,r) =1 el [(pw,a)F  (6:AX)
for some w e <* }

A, r constructed from A
— initial state p
— intersection with R (product construction)
— change to empty stack acceptance




V 11 application: quotient

as promised: » deterministic cf languages +/

read all input — as complete as possible
but — infinite A-computations

predicting machines

“‘can we reach a non-\ transition with present stack?”



