
Pushdown Automata – H.J. Hoogeboom V

Closure and Determinism

Stack Languages and
Predicting Machines

V 1 deterministic union

p1 p2
a

q1 q2a

p1q1 p2q2
b

︸ ︷︷ ︸

⇓

p1 p2
λ;A/α

p1q p2q
λ;A/α

︸ ︷︷ ︸

⇓

L, R deterministic ⇒ L ∪R deterministic ?

I L, R ∈ REG ⇒ L ∪R ∈ REG

simulate deterministic automata in parallel

(automata should not block)

I L, R ∈ DPD` ⇒ L ∪R /∈ DPD`

{ anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }

I L ∈ DPD`, R ∈ REG ⇒ L ∪R ∈ DPD`

parallel simulation with λ-moves

I avoid infinite λ-computations: !!

PDA should read all possible input

V 2 example deterministic union

e o

×
a

a

b

b

a,b

L ∈ DPD`, R ∈ REG

{ anbman | m, n ∈ N } =

{ a2n | n ∈ N } ∪ { anbman | m, n ∈ N, m ≥ 1 }

1 2

b

3 4

a;+A

b;Z/Z

b;A/A

b;A/A

a;A/λ
b;Z/Z

a;A/λ λ;Z/λ

1o

1e 2×

b×

3× 4×

a;+A
a;+A

b;Z/Z

b;A/A

b;Z/Z

b;A/A

b;A/A

a;A/λ

a;A/λ λ;Z/λ

V 3 complementation

I regular languages
√

read all input:
complete

and deterministic

b

a

a

b

a, b b

a

a

b

a, b

I context-free languages ×

{ anbncn | n ∈ N } /∈ CF

complement {a, b, c}∗ − a∗b∗c∗

∪ { aibjck | i 6= j } ∪ { aibjck | j 6= k }

I deterministic cf languages
√

read all input 7→ as complete as possible

but 7→ infinite λ-computations

predicting machines

“can we reach a non-λ transition with present stack?”

V 4 adding an endmarker

L ∈ DPD` ⇒ L# ∈ DPD`

‘classic’ construction

λ, A/α

#, A/A

‘old’

‘new’

oops!

no λ-instructions leaving final state

(a normal form?)

how do we achieve that?

what about single letter quotient?

L/{a} = { x | xa ∈ L }

→ We study the language of stacks during

computations of a PDA. This language

is regular! The proof is a simple con-

sequence of the [p, A, q]-construction!

Exclamation mark! ←

V 5 stacks of the pushdown automaton

stack language

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ Q }
input w is irrelevant here

B1B2 . . . Bn ∈ SN(A)

Bn

B2

B1

B2

Bn

q1 q2 q3 qn q

q1 q2 q3 qn qB1 B2 Bn

this is regular!

build automaton:

p qB

iff

(p, w, B) `∗ (q, λ, λ)

iff

[p, B, q]⇒∗ w

(for some w ∈ Σ∗)

every state initial & final

V 6 stack language variants

pin

qin

λ;Z/Z�

qf

λ;�/λ

λ;�/λ

︸ ︷︷ ︸

intersect R

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ Q }
variant [also regular]

{ . . . | . . . for some w ∈ R , some q ∈ F }

SF(A) = { α ∈ Γ∗ | (pin , w, Zin) `∗ (q, λ, α)

for some w ∈ Σ∗, some q ∈ F }

V 7 application Buchi

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ F }

Buchi: regular canonical systems

type-0 productions α→ β

prefix rewriting α ⇒ β

L(rcs) = { w | w ⇒∗ λ }

rcs defines regular language

simulate prefix α→ β by PDA [use F]

V 8 regular properties of the stack

update stack

B/AB

〈B,1〉/〈A,1〉〈B,2〉
〈B,2〉/〈A,2〉〈B,1〉
〈B,3〉/〈A,3〉〈B,2〉
〈B, g〉/〈A, g〉〈B, g〉

success ∈ R

〈B,1〉, 〈B,3〉 on top

stack belongs to regular language R?

e.g. R = B(AA + B)∗

deterministic automaton for reverse

1 2

3

g
A

A

B

B

A
B

A,B

add state info to stack

A 1

A 2

B 1

A 3

B 2

1

2

1

3

2

g

A 2

B 1

1

2

1

3

V 9 predicting machines

I stack language SN(A) is regular

I a (deterministic) PDA can keep regular info

on its stack

⇒ a (deterministic) PDA can predict future be-

haviour using present stack by inspecting top

predicting machines

“reaches A the empty stack from my stack?”

A yes no no

A no no yes

B no yes yes

A yes yes no

B yes no yes

A1 A2 A3

V 10 application: quotient

p

quotient automaton

p p′

p′′

λ;N/N

λ
λ;Y/Y

Y : α ∈ SN(Ap,R)

N : α /∈ SN(Ap,R)

DPD` closed quotient with REG

px y ∈ R?

can we accept extending with y ∈ R?

stack α satisfies:

(p, y, α) `∗A (q, λ, β), q ∈ F , y ∈ R, some β

SN(Ap,R) = { α ∈ Γ∗ | (p, w, α) `∗Ap,R
(q, λ, λ)

for some w ∈ Σ∗ }

Ap,R constructed from A
– initial state p

– intersection with R (product construction)

– change to empty stack acceptance

V 11 application: quotient

as promised: I deterministic cf languages
√

read all input 7→ as complete as possible

but 7→ infinite λ-computations

predicting machines

“can we reach a non-λ transition with present stack?”

