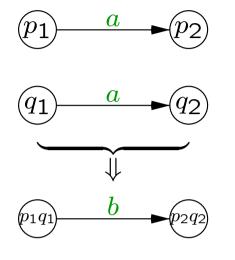
Closure and Determinism Stack Languages and Predicting Machines

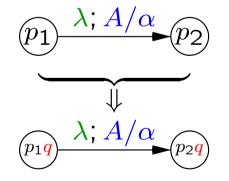


L, R deterministic $\Rightarrow L \cup R$ deterministic ?

 $\blacktriangleright L, R \in \mathsf{REG} \Rightarrow L \cup R \in \mathsf{REG}$

simulate deterministic automata in parallel (automata should not block)

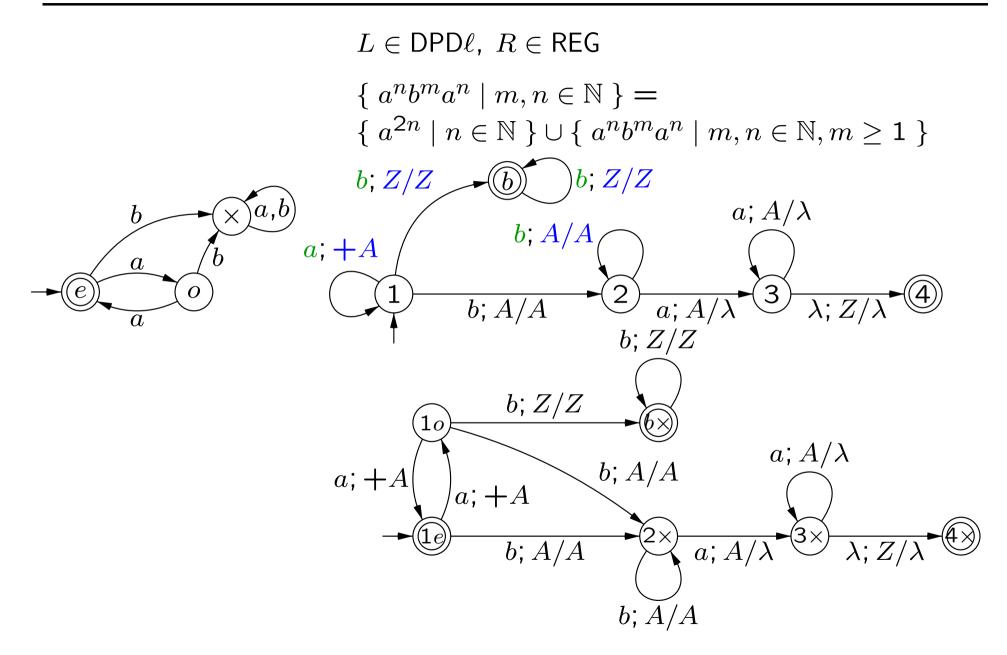
► $L, R \in \mathsf{DPD}\ell \Rightarrow L \cup R \notin \mathsf{DPD}\ell$ { $a^n b^n \mid n \ge 1$ } \cup { $a^n b^m c^n \mid m, n \ge 1$ }

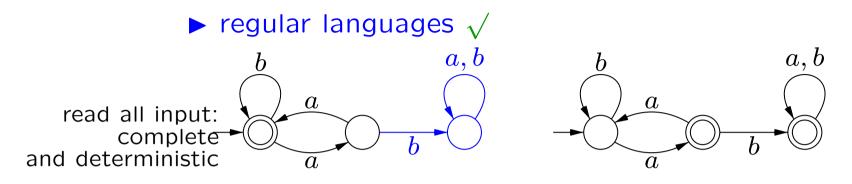


▶ $L \in \mathsf{DPD}\ell$, $R \in \mathsf{REG} \Rightarrow L \cup R \in \mathsf{DPD}\ell$

parallel simulation with λ -moves

avoid infinite λ-computations:
PDA should read all possible input





context-free languages ×

 $\{ a^n b^n c^n \mid n \in \mathbb{N} \} \notin \mathsf{CF}$

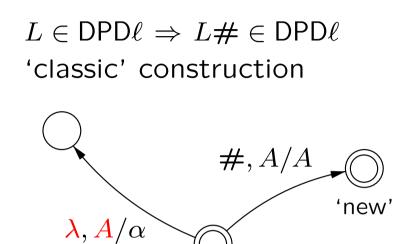
complement $\{a, b, c\}^* - a^* b^* c^*$ $\cup \{ a^i b^j c^k \mid i \neq j \} \cup \{ a^i b^j c^k \mid j \neq k \}$

 \blacktriangleright deterministic cf languages $\sqrt{}$

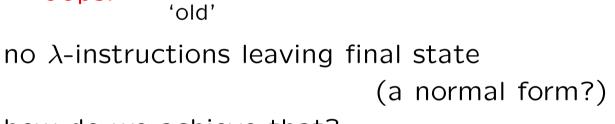
read all input \mapsto as complete as possible but \mapsto infinite λ -computations

predicting machines

"can we reach a non- λ transition with present stack?"



oops!



how do we achieve that?

what about single letter quotient?

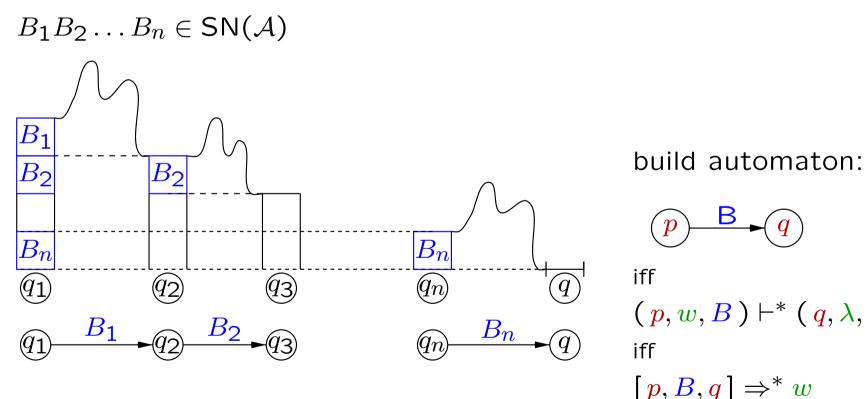
$$L/\{a\} = \{ x \mid xa \in L \}$$

 $\rightarrow \text{We study the language of stacks during} \\ \text{computations of a PDA. This language} \\ \text{is regular! The proof is a simple consequence of the } [p, A, q] \text{-construction!} \\ \text{Exclamation mark!} \qquad \leftarrow$

stack language

 $\mathsf{SN}(\mathcal{A}) = \{ \alpha \in \mathsf{\Gamma}^* \mid (p_{in}, w, \alpha) \vdash^* (q, \lambda, \lambda) \}$ for some $w \in \Sigma^*$, some $q \in Q$ }

input w is irrelevant here

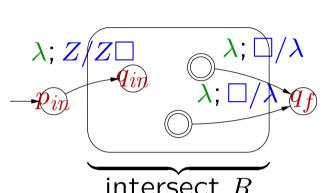


this is regular!

 $(p, w, B) \vdash^* (q, \lambda, \lambda)$

(for some $w \in \Sigma^*$)

every state initial & final



$$SN(\mathcal{A}) = \{ \alpha \in \Gamma^* \mid (p_{in}, w, \alpha) \vdash^* (q, \lambda, \lambda) \\ \text{for some } w \in \Sigma^*, \text{ some } q \in Q \}$$

variant [also regular]
$$\{ \dots \mid \quad \dots \text{ for some } w \in \mathbb{R}, \text{ some } q \in \mathbb{F} \}$$

intersect R

 $\mathsf{SF}(\mathcal{A}) = \{ \alpha \in \mathsf{\Gamma}^* \mid (p_{in}, w, Z_{in}) \vdash^* (q, \lambda, \alpha) \}$ for some $w \in \Sigma^*$, some $q \in F$ }

$$SN(\mathcal{A}) = \{ \alpha \in \Gamma^* \mid (p_{in}, w, \alpha) \vdash^* (q, \lambda, \lambda)$$
for some $w \in \Sigma^*$, some $q \in F \}$

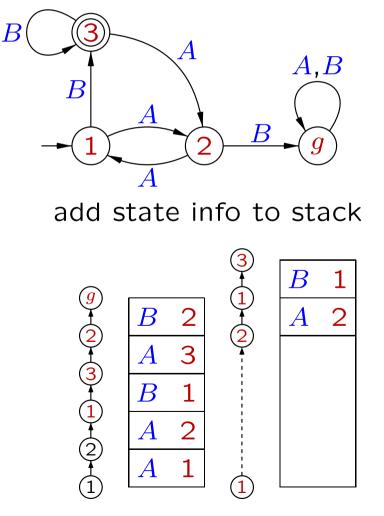
Buchi: regular canonical systems type-0 productions $\alpha \rightarrow \beta$ prefix rewriting $\alpha \longrightarrow \beta$ $L(rcs) = \{ w \mid w \Rightarrow^* \lambda \}$ rcs defines regular language

simulate prefix $\alpha \rightarrow \beta$ by PDA [use F]

stack belongs to regular language R?

e.g.
$$R = B(AA + B)^*$$

deterministic automaton for reverse



update stack

B/AB

 $\begin{array}{l} \langle B, \mathbf{1} \rangle / \langle A, \mathbf{1} \rangle \langle B, \mathbf{2} \rangle \\ \langle B, \mathbf{2} \rangle / \langle A, \mathbf{2} \rangle \langle B, \mathbf{1} \rangle \\ \langle B, \mathbf{3} \rangle / \langle A, \mathbf{3} \rangle \langle B, \mathbf{2} \rangle \\ \langle B, \mathbf{g} \rangle / \langle A, \mathbf{g} \rangle \langle B, \mathbf{g} \rangle \\ \end{array}$ success $\in R$

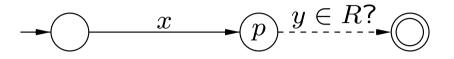
 $\langle B, \mathbf{1} \rangle$, $\langle B, \mathbf{3} \rangle$ on top

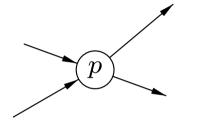
- ▶ stack language SN(A) is regular
- a (deterministic) PDA can keep regular info on its stack
- ⇒ a (deterministic) PDA can predict future behaviour using present stack by inspecting top predicting machines

"reaches ${\mathcal A}$ the empty stack from my stack?"

B	yes	no	yes
A	yes	yes	no
B	no	yes	yes
A	no	no	yes
A	yes	no	no
	\mathcal{A}_1	\mathcal{A}_2	\mathcal{A}_{3}

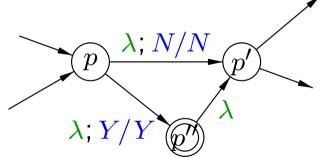
 $\text{DPD}\ell$ closed quotient with REG





can we accept extending with $y \in R$? stack α satisfies: $(p, y, \alpha) \vdash_{\mathcal{A}}^{*} (q, \lambda, \beta), q \in F, y \in R$, some β

quotient automaton



 $Y: \alpha \in \mathsf{SN}(\mathcal{A}_{p,R})$ $N: \alpha \notin \mathsf{SN}(\mathcal{A}_{p,R})$

$$SN(\mathcal{A}_{p,R}) = \{ \alpha \in \Gamma^* \mid (p, w, \alpha) \vdash^*_{\mathcal{A}_{p,R}} (q, \lambda, \lambda)$$
for some $w \in \Sigma^* \}$

- $\mathcal{A}_{p,R}$ constructed from \mathcal{A}
- initial state \boldsymbol{p}
- intersection with R (product construction)
- change to empty stack acceptance

as promised:

\blacktriangleright deterministic cf languages \surd

read all input \mapsto as complete as possible but \mapsto infinite λ -computations

predicting machines

"can we reach a non- λ transition with present stack?"