
Abstract. This chapter introduces Pushdown Au-

tomata, and presents their basic theory. The two

language families defined by pda (acceptance by final

state, resp. by empty stack) are shown to be equal.

The pushdown languages are shown to be equal to

the context-free languages. Closure properties of the

context-free languages are given that can be obtained

using this characterization. Determinism is considered,

and it is formally shown that deterministic pda are less

powerfull than the general class.

Pushdown Automata

A pushdown automaton is like a finite state automa-
ton that has a pushdown stack as additional mem-
ory. Thus, it is a finite state device equipped with a
one-way input tape and a ‘last-in first-out’ external
memory that can hold unbounded amounts of infor-
mation; each individual stack element contains finite
information. The usual stack access is respected: the
automaton is able to see (test) only the topmost sym-
bol of the stack and act based on its value, it is able
to pop symbols from the top of the stack, and to push
symbols onto the top of the stack.

Denoting the reversal of a string w by wR, the lan-
guage L = { w c wR | w ∈ {a, b}∗ } consists of palin-
dromes, the middle of which is marked by the special
symbol c. Using the pumping lemma for regular lan-
guages it is easily shown this language is not regular.
However, it can be recognized by a pushdown au-
tomaton as follows. Starting in the initial state the
pda reads the letters from the input, copying them
to the stack, until the special input marker c is en-
countered. Then it switches to the next state, where
the tape is read, and its letters are matched with the
stack, popping a stack symbol for each letter read.
When topmost stack symbol and letter on the in-
put do not match, the input does not belong to the
languages, and the automaton blocks, rejecting the

0http://www.liacs.nl/home/hoogeboo/praatjes/tarragona/
Based on: Pushdown Automata, Hendrik Jan Hoogeboom
and Joost Engelfriet. Chapter 6 in: Formal Languages and
Applications (C. Mart́ın-Vide, V. Mitrana, G. Paun, eds.),
Studies in Fuzziness and Soft Computing, v. 148, Springer,
Berlin, 117-138, 2004.

a

input tape

· · · · · ·

δ

p

finite
control

stack

top
A

...

Figure 1: Pushdown automaton

input. Otherwise, it reaches the end of the input,
which is then accepted only if the stack is empty.

1 Formal Definition

The formal specification of a pushdown automaton
extends that of a finite state automaton by adding
an alphabet of stack symbols. For technical reasons
the initial stack is not empty, but it contains a single
symbol which is also specified. Finally the transition
relation must also account for stack inspection and
stack operations and is changed accordingly.

Definition. A pushdown automaton, pda for short,
is specified as a 7-tuple A = (Q, ∆, Γ, δ, qin , Ain , F)
where

• Q is a finite set (of states),
• ∆ an alphabet (of input symbols),
• Γ an alphabet (of stack symbols),
• δ a finite subset of Q× (∆ ∪ {λ})× Γ×Q× Γ∗,

the transition relation,
• qin ∈ Q the initial state,
• Ain ∈ Γ the initial stack symbol, and
• F ⊆ Q the set of final states.

An element (p, a, A, q, α) of δ is called an instruction
(or transition) of A. If a is the empty string it is a
λ-instruction.

The instruction (p, a, A, q, α) of the pda is valid in
state p, with a next on the input tape, and A as
topmost symbol of the stack (as in Figure 1 for a ∈
∆), and it specifies a change of state from p into
q, reading a from the input, popping A off the stack,

1

and pushing α onto it. When one wants to distinguish
between the pre-conditions of an instruction and its
post-conditions, δ can be considered as a function
from Q× (∆ ∪ {λ}) × Γ to finite subsets of Q × Γ∗,
and one writes, e.g., (q, α) ∈ δ(p, a, A).

A transition may read λ from the input, but it always
pops a specific symbol A from the stack. Pushing a
string α to the stack regardless of its current top-
most symbol has to be achieved by introducing a set
of instructions, each popping a symbol A ∈ Γ and
pushing αA. In particular, when α = λ we have a
set of instructions that effectively ignores the stack
by popping the topmost symbol and pushing it back.

Convention. We introduce our personal pictorial
representation for pda, including shortcuts for actions
‘push A’ and ‘read a’ that do not touch the stack.

The general instruction (p, a, A, q, α) is depicted by
an arrow from node p to node q labelled by the input
read (like for finite automata) and by the operation
on the stack (replace topmost A by α).

p q
a; A/α

There are three intuitive actions we consider, some of
which have to be encoded using several instructions.
We list them, and their representations.

intuitive formalized as

pop A (p, a, A, q, λ) α = λ
push A (p, a, X, q, AX) for all X ∈ Γ
read a (p, a, X, q, X) for all X ∈ Γ

These three operations are depicted as follows. In
this way a single arrow may represent a set of related
instructions.

p q
a; A/λ

p q
a; +A

p qa

Example 1 The pushdown automaton
A = (Q, ∆, Γ, δ, qin , Zin , F) is given in the fig-
ure below. The intended meaning is that in initial
state 0 symbols a and b are read and pushed onto
the stack (as A and B). When a c is encountered
in the input regardless of the stack contents the
pda moves to state 1. In that state symbols of

the input are matched against the topmost stack
symbol, which is popped as we read. When the
original bottom-of-stack symbol is reached, the pda
can move to final state 2 without reading input.

In an explicit specification we have Q = {0, 1, 2},
∆ = {a, b, c}, Γ = {A, B, Z}, qin = 0, Zin = Z, and
F = {2}.

0 1 2

a; +A
b; +B

c

a; A/λ

b; B/λ

λ; Z/Z

Written out in full, δ consists of the instructions
(0, a, Z, 0, AZ), (0, a, A, 0, AA), (0, a, B, 0, AB),
(0, b, Z, 0, BZ), (0, b, A, 0, BA), (0, b, B, 0, BB),
(0, c, Z, 1, Z), (0, c, A, 1, A), (0, c, B, 1, B),
(1, a, A, 1, λ), (1, b, B, 1, λ), and (1, λ, Z, 2, Z)

Computations

A configuration (w, p, β) of a pda A is given by the
contents w of the part of the input tape that has not
been read, the current state p, and the current con-
tents β of the stack. Hence the set of configurations
of A is the set ∆∗×Q×Γ∗. In denoting the stack as
a string of stack symbols we assume that the topmost
symbol is written first.

According to the intuitive semantics we have given
above, δ defines a step relation ⊢A on the set of con-
figurations, modelling a single step of the pda:

(ax, p, Aγ) ⊢A (x, q, αγ) iff
(p, a, A, q, α) ∈ δ, x ∈ ∆∗, and γ ∈ Γ∗.

a· · · · · ·

︸ ︷︷ ︸
w = ax

p A

...

β
=

A
γ

2

a· · · · · ·

︸ ︷︷ ︸
x

q
α

...

α
γ

As a consequence of the definitions, a pda cannot
make any further steps on an empty stack, as each
instruction specifies a stack symbol to be removed.

A computation of the pda is a sequence of consecu-
tive steps; the computation relation is the reflexive
and transitive closure ⊢∗A of the step relation. That
is, c ⊢∗A c′ for two configurations c, c′ if there is a
sequence c0, c1, . . . , cn such that c0 = c, ci ⊢A ci+1

(0 ≤ i < n), and cn = c′.

Example 2 A configuration for the pda from
the previous example is for instance the tuple
(abbcabc, 1, AAZB), where abbcabc is the part of the
input not yet read, 1 is the state, and AAZB is the
stack (read from top A to bottom B).

For this pda we have the step (aabcbaa, 0, Z) ⊢A
(abcbaa, 0, AZ) which applies the instruction
(0, a, Z, 0, AZ).

The following sequence is a computation which starts
with this step (aabcbaa, 0, Z) ⊢A (abcbaa, 0, AZ) ⊢A
(bcbaa, 0, AAZ) ⊢A (cbaa, 0, BAAZ) ⊢A
(baa, 1, BAAZ) ⊢A (aa, 1, AAZ) ⊢A (a, 1, AZ) ⊢A
(λ, 1, Z) ⊢A (λ, 2, Z)

The computation starts with aabcbaa on the input, in
state 0 en with a stack consisting of the single symbol
Z. Then the symbols aab are read from the input,
and represented on the stack. The c is read and the
automaton moves to state 1. In that state baa is read
from the input and the symbols are compared to the
contents of the stack, popping a stacksymbol each
step. Finally the automaton moves to final state 2
not reading any input. This step is possible as the
topmost stack symbol is now Z.

There are two natural ways of defining the language
of a pda, basing the acceptance condition either on

internal memory (the states) or on the external mem-
ory (the stack). A pda accepts its input if it has a
computation starting in the initial state with the ini-
tial stack symbol on the stack, completely reading its
input, and either (1) ending in a final state, or (2)
ending with the empty stack. In general, for a fixed
pda, these languages are not equal. Note that in the
latter case the final states are irrelevant.

Definition. Let A = (Q, ∆, Γ, δ, qin , Ain , F) be a
pda.

1. The final state language of A is
L(A) = { x ∈ ∆∗ | (x, qin , Ain) ⊢∗A (λ, q, γ) for
some q ∈ F and γ ∈ Γ∗ }.

2. The empty stack language of A is
N(A) = { x ∈ ∆∗ | (x, qin , Ain) ⊢∗A (λ, q, λ) for
some q ∈ Q }.

We stress that we only accept input if it has been
completely read by the pda, however, the pda cannot
recognize the end of its input (and react accordingly).
This is especially important in the context of deter-
minism (see Section 5). We can remedy this by ex-
plicitly providing the input tape with an end marker
$, recognizing a language L$ rather than L.

We also stress that, due to the presence of λ-
instructions, a pda can have infinite computations.
Thus, it is not obvious that the membership prob-
lem ‘x ∈ L(A)?’ is decidable. This will follow from
Theorem 8.

Example 3 The automaton from the example ac-
cepts the string aabcbaa using the computation given
before. To the left is a pictorial representation, the
successive stacks as columns. Below the state se-
quence, and the letters read from the input. To the
right the corresponding computation is repeated as a
sequence of consecutive steps.

Z
A

A
B B

A
A

Z Z

0 0 0 0 1 1 1 1 2
a a b c b a a

(0,aabcbaa, Z) ⊢
(0, abcbaa, AZ) ⊢
(0, bcbaa, AAZ) ⊢
(0, cbaa,BAAZ) ⊢
(1, baa,BAAZ) ⊢
(1, aa, AAZ) ⊢
(1, a, AZ) ⊢
(1, λ, Z) ⊢
(2, λ, Z)

3

As a matter of fact L(A) = { w c wR | w ∈ {a, b}∗ },
while N(A) = ∅, as the bottom stack symbol is never
popped.

The same language can be accepted using empty
stack by a pda that has only a single state and only
five instructions.

1

a; Z/ZA

b; Z/ZB

c; Z/λ

a; A/λ

b; B/λ

Z A
Z A

Z B
Z

B
A

A ⊥
a a b c b a a

(1,aabcbaa, Z) ⊢
(1, abcbaa, ZA) ⊢
(1, bcbaa, ZAA) ⊢
(1, cbaa,ZBAA) ⊢
(1, baa, BAA) ⊢
(1, aa, AA) ⊢
(1, a, A) ⊢
(1, λ, λ)

The language accepted in the previous examples,
palindromes with a middle marker, are easily seen
to be context-free. The linear grammar with single
nonterminal S and productions S → aSa, S → bSb,
S → c generates the same language.

In the next example the stack is programmed to
count. One can also design a context-free grammar
for the language of this example, but this is more
complicated than the simple approach of the pda.

Example 4 Consider the exchange language Lex for
the small euro coins, which has the alphabet ∆ =
{1, 2, 5, =}:

{ x=y | x ∈ {1, 2}∗, y ∈ {5}∗, |x|1 + 2 · |x|2=5 · |y|5 },

where |z|a denotes the number of occurrences of
a in z. For instance, the language contains
12(122)311 = 5555. It is accepted using empty
stack acceptance by the pda A with states Q =
{i, 0, 1, 2, 3, 4, f}, initial state i, input alphabet ∆,
stack alphabet Γ = {Z, A}, initial stack symbol Z,
and the following instructions:

• pushing the value of 1 and 2 on the stack :
(i, 1, Z, i, AZ), (i, 1, A, i, AA), (i, 2, Z, i, AAZ),
(i, 2, A, i, AAA);

• reading the marker : (i, =, Z, 0, Z), (i, =, A, 0, A);

• popping 5 cents from the stack :
(0, 5, A, 4, λ), and (k, λ, A, k − 1, λ) for k = 4, 3, 2, 1;

• emptying the stack : (0, λ, Z, f, λ).

i 0

4

3

2

1
f

1; +A
2; +AA

=

5; A/λ

λ; A/λ

λ; A/λ

λ; A/λ

λ; A/λ

λ; Z/λ

While reading 1’s and 2’s the automaton pushes one
or two A’s onto the stack to represent the value of the
input. We have to provide two instructions for each
of the two input symbols as the topmost stack symbol
may be A or Z (when no input has been read). When
reading 5 a total of five A’s is removed in a sequence
of five consecutive pop instructions. The stack can
only be emptied when the value represented on the
stack is zero (there are no A’s left) and when we are in
state 0 (we are finished processing the input symbol
5). Thus, N(A) = Lex.

A technical lemma. Context-free grammars owe
their name to the property that derivations can be
cut-and-pasted from one context into another. For
pushdown automata, the part of the input that is not
consumed during a computation, as well as the part of
the stack that is not touched, can be omitted without
effecting the other components of the computation.
This leads to a technical result that is of basic use in
composing pda computations.

Lemma 5 Let A = (Q, ∆, Γ, δ, qin , Ain , F) be a pda.
If (x, p, α) ⊢∗A (λ, q, β) then (xz, p, αγ) ⊢∗A (z, q, βγ),
for all p, q ∈ Q, all x, z ∈ ∆∗, and all α, β, γ ∈ Γ∗.
The reverse implication is also valid, provided every
stack of the given computation (except possibly the
last) is of the form µγ with µ ∈ Γ∗, µ 6= λ.

4

The following picture illustrates the stack of the com-
putation. At the right we see why the extra condition
for the reverse implication is necessary.

α

γ

β

γ

p q

α

γ

β

γ

p q

2 Two Families

We have given two ways of defining a language for
a pda. For each individual pda these may be two
different languages. Over all pda, the two families of
final state languages and of empty stack languages
are the same.

Note that in our first example the pda recognizes the
moment when it reaches the bottom of its stack. This
is achieved by reserving a special symbol Z that takes
the bottom position of the stack, i.e., during the com-
putation the stack has the form Γ∗

1Z with Z /∈ Γ1.

This trick is also the main ingredient in the proof of
the following result stating that final state and empty
stack acceptance are equivalent. By putting a special
marker at the bottom of the stack (in the first step of
the computation) we can recognize the empty stack
and jump to a final state (when transforming empty
stack acceptance into final state acceptance) and we
can avoid reaching the empty stack before the input
has been accepted by final state (when transforming
final state acceptance into empty stack acceptance).

Lemma 6 Given a pda A one can effectively con-
struct a pda A′ such that N(A) = L(A′), and vice
versa.

Proof. (i) Given a pda A one can effectively construct
a pda A′ such that N(A) = L(A′).

Intuitively the new automaton moves to a final state when
the original has emptied the stack. We add a new symbol
at the bottom of the stack to make this move possible.

q′in

qin

λ; �/Z�

qf

λ; �/λ

λ; �/λ

Let A = (Q, ∆, Γ, δ, qin , Zin , F) be a pda. We adapt it
and constuct the new pda A′ = (Q ∪ {q′in , qf}, ∆, Γ ∪
{�}, δ′, q′in , �, {qf}), where q′in and qf are two new states,
and � is a new pushdown symbol.

The transition relation δ′ equals the original δ except that
we add new transitions:

• (q′in , λ, �, qin , Zin�),
• (q, λ, �, qf , λ), for all q ∈ Q.

If (w, qin , Zin) ⊢∗ (λ, w, λ) is a computation of A (accept-
ing w by empty stack) then it also is a computation for A′,
and remains a computation by adding � at the bottom
of the stack. This can be extended to the computation
(w, q′in , �) ⊢ (w, qin , Zin�) ⊢∗ (λ, q, �) ⊢ (λ, qf , λ), now
acepting w by final state for A′. This also works the other
way. Any computation of A′ can be split into the initial
step (w, q′in , �) ⊢ (w, qin , Zin�), a computation leaving
only � on the stack (w, qin , Zin�) ⊢∗ (λ, q, �) and a final
step to the new final state (λ, q, �) ⊢ (λ, qf , λ). The midle
part is also valid for A, even when � is removed from the
stack as � came never on top (there are no instructions
for � other than moving to qf), see Lemma 5.

(ii) Given a pda A one can effectively construct a pda A′

such that L(A) = N(A′).

Intuitively the new automaton moves (nondeterministi-
cally) to a new special state when the original has reached
a final state (assuming it has read all its input). In the
new state the stack is emptied. We add a new symbol at
the bottom of the stack to avoid emptying the stack when
we do not want to accept.

q′in

qin

λ; �/Zin� p

qe

λ; A/λ

λ; A/λ

5

Let A = (Q,∆, Γ, δ, qin , Zin , F) be a pda. We adapt it
and constuct the new pda A′ = (Q ∪ {q′in , qe}, ∆, Γ ∪
{�}, δ′, q′in , �, {qf}), where q′in and qe are two new states,
and � is a new pushdown symbol.

The transition relation δ′ equals the original δ except that
we add new transitions:

• (q′in , λ, �, qin , Zin�),
• (q, λ, A, qe, A), for all q ∈ F , A ∈ Γ ∪ {�},
• (qe, λ, A, qe, A), for all A ∈ Γ ∪ {�}.

The relation between computations of A and A′ is similar

to that for the other implication. A word w is accepted

by A using final state iff it is accepted by A′ using empty

stack. �

3 Context-Free Languages

Each context-free grammar generating a language
can easily be transformed into a pda recognizing
the same language. Given the context-free gram-
mar G = (N, T, S, P) we define the single state pda
A = ({q}, T, N ∪ T, δ, q, S, ∅), where δ contains the
following instructions:

• (q, λ, A, q, α) for each A→ α ∈ P ‘expand’
• (q, a, a, q, λ) for each a ∈ T ‘match’

The computations of A correspond to the leftmost
derivations ⇒∗

G,ℓ of G; the sequence of unprocessed
nonterminals is stored on the stack (with intermedi-
ate terminals). Formally, for x ∈ T ∗ and α ∈ (N ∪
T)∗, if (x, q, S) ⊢∗A (λ, q, α) then S ⇒∗

G,ℓ xα. The
reverse implication is valid for α ∈ N(N ∪ T)∗ ∪ {λ}.
This correspondence is easily proved by induction,
using Lemma 5.

By taking here α = λ, we find that S ⇒∗
G,ℓ x iff

(x, q, S) ⊢∗A (λ, q, λ), for all x ∈ T ∗. This means
that L(G) = N(A), as leftmost derivations suffice in
generating the language of a context-free grammar.

If the given context-free grammar G has only pro-
ductions of the form A → aα with a ∈ T ∪ {λ}
and α ∈ N∗ —this is satisfied both by grammars
in Chomsky normal form and by those in Greibach
normal form— then the construction is even more di-
rect, as we can combine an expand instruction with
its successive match instruction. The pda, with stack

alphabet N , is constructed by introducing for each
production A→ aα the instruction (q, a, A, q, α).

Example 7 Consider a context-free grammar and
the single state pda constructed as indicated above.

Z → a ZA
Z → b ZB
Z → c
A→ a
B → b −

a; Z/ZA

b; Z/ZB

c; Z/λ

a; A/λ

b; B/λ

The correspondence between (leftmost) derivations
of the grammar and computations of the pda is clear
from the diagram below. The tail consisting of non-
terminals in the sentential forms matches the stack
of the pda in each step.

S
⇒ a SA
⇒ abSBA
⇒ abb SBBA
⇒ abbcBBA
⇒ abbcbBA
⇒ abbcbbA
⇒ abbcbba

(−, abbcbba, S)
⊢ (−, bbcbba, SA)
⊢ (−, bcbba, SBA)
⊢ (−, cbba, SBBA)
⊢ (−, bba, BBA)
⊢ (−, ba, BA)
⊢ (−, a, A)
⊢ (−, λ, λ)

This correspondence shows the equivalence of sin-
gle state pda’s (under empty stack acceptance) and
context-free grammars. Keeping track of the states
during the derivations requires some additional effort.
The full equivalence of context-free grammars and
pda’s is the central result in the theory of context-
free languages; it is attributed to Chomsky, Evey,
and Schützenberger [4, 6, 16].

Theorem 8 A language is recognized by a pda, ei-
ther by final state or by empty stack, iff it is context-
free.

Proof. It suffices to demonstrate that every language
recognized by a pda using empty stack acceptance is
context-free.

Let A = (Q, ∆, Γ, δ, qin , Ain , F) be a pda. A computation
(xz, p, Aγ) ⊢∗

A (z, q, γ) of A is said to be of type [p, A, q]
if the symbols from γ are not replaced during the com-
putation, i.e., each of the intermediate stacks is of the

6

A B3

B2

B1

B2

B3

p q1 q2 q3 q

Figure 2: Computation of type [p, A, q]

form µγ with µ ∈ Γ∗, µ 6= λ, cf. Lemma 5. Such a com-
putation starts in state p, ends in state q, and effectively
removes the topmost A from the stack. If the first instruc-
tion chosen is (p, a, A, q1, B1 · · ·Bn) then A is replaced by
B1 · · ·Bn, and these symbols in turn have to be removed
from the stack, one by one, before the computation of
type [p, A, q] ends. This means that the remainder of the
[p, A, q] computation is composed of computations of type
[q1, B1, q2], [q2, B2, q3], . . . , [qn, Bn, q], respectively, where
q2, . . . , qn are intermediate states (cf. Figure 2 where
n = 3).

Now we construct a context-free grammar G =
(N, ∆, S, P) such that L(G) = N(A). The nontermi-
nals represent the types of computations of the pda:
N = { [p, A, q] | p, q ∈ Q, A ∈ Γ }∪{S}. The productions
simulate the pda by recursively generating computations
following the decomposition sketched above. The first
production nondeterministically guesses the last state.
The second production nondeterministically guesses the
intermediate states q2, . . . , qn.

1. S → [qin , Ain , q] for all q ∈ Q,

2. [p, A, q] → a[q1, B1, q2][q2, B2, q3] · · · [qn, Bn, q]
when (p, a, A, q1, B1 · · ·Bn) in δ, for all
q, q2, . . . , qn ∈ Q, n ≥ 1,

3. [p, A, q] → a when (p, a, A, q, λ) in δ.

Formally, the construction can be proved correct by show-
ing inductively the underlying relation between computa-
tions and derivations: [p, A, q] ⇒∗

G x iff there is a com-
putation of type [p, A, q] reading x from the input, i.e.,
(x, p,A) ⊢∗

A (λ, q, λ).

Use induction on the length of the derivation/ computa-
tion to prove [p, A, q] ⇒∗

G w ⇐⇒ (p, w, A) ⊢∗
A (q, λ, λ)

⇐: Assume (p, w, A) ⊢∗ (q, λ, λ). Consider the first in-
struction ι used by A.

∗ ι = (p, a, A, p′, λ). This empties the stack; hence we
have a single step computation, (p, a, A) ⊢ (p′, λ, λ), so
p′ = q, w = a. By construction there exists the rule
[p, A, p′] → a. This yields the derivation [p, A, q] ⇒G w =
a as required.

∗ ι = (p, a, A, q1, B1 . . . Bn), n ≥ 1. The computa-
tion starts like (p, w, A) ⊢ (q1, w

′, B1 . . . Bn) ⊢∗ (q, λ, λ),
w = aw′. These Bi must be popped from the stack. We
can split the computation (q1, w1w2 . . . wn, B1 . . . Bn) ⊢∗

(q2, w2 . . . wn, B2 . . . Bn) ⊢∗ (qn, wn, Bn) ⊢∗ (qn+1, λ, λ),
such that qi is the first position where Bi appears as top
of stack, qn+1 = q, and and w′ = w1w2 . . . wn.

By the Computation Lemma [previous section], we can
remove common parts of the input and stack at the start
and end of a computation. We obtain separate computa-
tions (qi, wi, Bi) ⊢

∗ (qi+1, λ, λ).

As these are shorter than the original computation (even
when n = 1 we separated the first step) we know that
[qi, Bi, qi+1] ⇒

∗
G wi.

Given ι we know G has the rule [p, A, q] →
a[q1, B1, q2][q1, B1, q2] . . . [qn, Bn, qn+1], which can
be combined with the computations we found
[p, A, q] ⇒ a[q1, B1, q2][q1, B1, q2] . . . [qn, Bn, qn+1] ⇒∗

aw1w2 . . . wn = aw′ = w. As qn+1 = q this is as required.

⇒: For the other direction use a similar technique. Given

a derivation in G consider its first production rule, use in-

duction on the remaining subtrees of the derivation to find

computations, and join the pieces into a full computation.

�

The proof gives an explicit construction that trans-
forms a pda (with empty stack acceptance) into an
equivalent context-free grammar. This construction
in general introduces non-terminals that are not use-
ful in the grammar: they cannot generate a terminal
string. Such non-terminals can be removed by stan-
dard constructions on cfg, or directly, by analyzing
the computations of the original pda. We give a small
example of this.

Example 9 The following pda accepts the language
L = { w c wR | w ∈ {a, b}∗ } by empty stack. We
transform it into an equivalent cfg.

7

1 2

a; +A
b; +B

c

a; A/λ

b; B/λ

λ; Z/λ

Its twelve transitions lead to a total of 33 productions,
where in the list below the variable X ranges over
{A, B, Z}. The underlined states are ‘guesses’ made
by the grammar on the intermediate states assumed
by the pda during the computation that is simulated.

initial S → [1, Z, 1] | [1, Z, 2]
(1, a, X, 1, AX) [1, X, 1]→ a [1, A, 1][1, X, 1]

[1, X, 1]→ a [1, A, 2][2, X, 1]
[1, X, 2]→ a [1, A, 1][1, X, 2]
[1, X, 2]→ a [1, A, 2][2, X, 2]

(1, b, X, 1, BX) [1, X, 1]→ b [1, B, 1][1, X, 1]
[1, X, 1]→ b [1, B, 2][2, X, 1]
[1, X, 2]→ b [1, B, 1][1, X, 2]
[1, X, 2]→ b [1, B, 2][2, X, 2]

(1, c, X, 2, X) [1, X, 1]→ c [2, X, 1]
[1, X, 2]→ c [2, X, 2]

(2, a, A, 2, λ) [2, A, 2]→ a
(2, b, B, 2, λ) [2, B, 2]→ b
(2, λ, Z, 2, λ) [2, Z, 2]→ λ

Recall the relation between derivations and compu-
tations: [p, A, q] ⇒∗

G w ⇐⇒ (p, w, A) ⊢∗ (q, λ, λ),
which, informally, is a computation from p to q that
pops A.

In the present automaton we see that popping com-
putations must end in state 2. This means that
the third component of the non-terminals only takes
this value in successful derivations. Thus, from
four productions for each of the three instructions
(1, a, X, 1, AX) we only need one each:

(1, a, X, 1, AX) [1, X, 2]→ a [1, A, 2][2, X, 2]

4 Application: Closure Proper-

ties

Pushdown automata are machines, and consequently
they can be ‘programmed’. For some problems this
leads to intuitively simpler solutions than building a
context-free grammar for the same task. We present
two examples of closure properties of the family CF

that can be proved quite elegantly using pushdown
automata.

As a first example consider the closure of CF under
intersection with regular languages: given a pda and
a finite state automaton, one easily designs a new
pushdown automaton that simulates both machines
in parallel on the same input. The construction ex-
tends tha classical product construction for simulat-
ing two finite state automata in parallel. States are
pairs of states, one for each of the simulated au-
tomata. In this way the new pda keeps track of
the state of both machines, while its stack mimics
the stack of the given pda. When simulating a λ-
instruction of the given pda it does not change the
state of the finite state automaton.

p p′
a; A/α

q q′
a

pq p′q′
a; A/α

p p′
λ; A/α

pq p′q
λ; A/α

︷
︸︸

︷

⇒

⇒

Thus, we have given the construction that can be
used to prove the following closure property. The
construction will be illustrated in an example.

Lemma 10 CF is closed under intersection with reg-
ular languages.

Example 11 We apply the construction to obtain a
pda for the intersection { anbn | n ≥ 1 }∗ ∩ { w ∈
{a, b}∗ | #ax even }.

The picture to the left is the fsa, while the upper
picture is the original pda; it accepts by final state.
The pda that is obtained by the construction is shown
as the ‘product’ of both atomata. Its initial state is

8

the product of both initial states, its final state the
product of both final states.

r1 p1 q1

r0 p0 q0

r p q
λ

λ; Z/Z

a; +A

b; A/λ

λ; Z/Z

λ

λ; Z/Z

b; A/λ

λ

λ; Z/Z

b; A/λ

λ; Z/Z

λ; Z/Z

a; +A a; +A

0

1

aa

b

b

Another closure application of the main equivalence
we treat explicitly. If h : Σ → ∆∗ is a morphism,
and K a language over ∆, then the inverse image
h−1(K) ⊆ Σ∗ is defined as { w ∈ Σ∗ | h(w) ∈ K }.

Lemma 12 CF is closed under inverse morphisms.

Proof. Let K ⊆ ∆∗ be a context-free language, and let
h : Σ → ∆∗ be a morphism. We show that the language
h−1(K) ⊆ Σ∗ is context-free. According to Theorem 8
we assume that K is given as the final state language of
a pda A = (Q, ∆, Γ, δ, qin , Ain , F).

The newly constructed pda A′ for h−1(K) simulates,
upon reading symbol b ∈ Σ, the behaviour of A on the
string h(b) ∈ ∆∗. So for input w the new pda checks
whether h(w) is accepted by A, or equivalently, whether
h(w) belongs to K. The simulated input string h(b) is
temporarily stored in a (bounded) buffer that is added
to the state. During this simulation A′ only follows λ-
instructions, ‘reading’ the input of the original automaton
A from the internal buffer. Now let Buf = {w ∈ ∆∗ | w
is a suffix of h(b) for some b ∈ Σ}. The pda A′ is given
as follows.

A′ = (Q × Buf, Σ, Γ, δ′, 〈qin , λ〉, Ain , F × {λ}), where δ′

contains the following instructions (for clarity we denote
elements from Q × Buf as 〈q, w〉 rather than (q, w)):

- (input & filling buffer) For each b ∈ Σ, p ∈ Q, and
A ∈ Γ we add (〈p, λ〉, b, A, 〈p, h(b)〉, A) to δ′.

- (simulation of A) For each a ∈ ∆ ∪ {λ} and v ∈ ∆∗

with av ∈ Buf we add (〈p, av〉, λ, A, 〈q, v〉, α) to δ′

when (p, a, A, q, α) belongs to δ.

The pda A′ obtained in this way accepts L(A′) = h−1(K)

and consequently, as pda’s accept context-free languages,

h−1(K) is context-free. �

Example 13 Consider the homomorphism h :

{a, b, c}∗ → {0, 1}∗ defined by h :

a 7→ 100
b 7→ 10
c 7→ 010

We construct a pda for h−1(K) ⊆ {a, b, c}∗ where K
is the context-free language { (100)n(10)n | n ≥ 0 };
K is accepted by the following pda with final states.

1

23

4

5

6

1, +A

0

0

λ

1, A/λ0

λ, Z/λ

Note that aaabbb, abccbb, and bcccbb belong to
h−1(K) as their image under h equals (100)3(10)3,
which belongs to K. Following the ‘buffer construc-
tion’ we obtain a pda for h−1(K). The picture shows
some states in gray. These states do not lead to a ter-
minal state and can be omitted form the automaton
without changing its language.

1.ε

1.10

2.0

2.00

3.ε

3.0

4.ε

4.10

40

5.0
5.00

6.ε

6.10

6.0

a, +A

b, +A

λ

λ, +A

λ

λ
c

λ

λ

λ, A/λ

b

b, A/λ

a; A/λ

λ, Z/λ

λ, Z/λ

λ, Z/λ

λ

Theorem 19 below, and the discussion preceding it
provide an alternative view on this closure property.

Normal forms and extensions. We have seen in
the beginning of this section that context-free gram-
mars in Greibach normal form can be disguised as

9

single state pushdown automata (under empty stack
acceptance). Together with Theorem 8 this shows
that these single state automata constitute a nor-
mal form for pda’s. More importantly, these au-
tomata are real-time, that is they do not have any
λ-instructions. Additionally we can require that each
instruction pushes at most two symbols back on the
stack, i.e., in (q, a, A, q, α) we have |α| ≤ 2.

For final state acceptance we need two states in gen-
eral, in order to avoid accepting the prefixes of every
string in the language.

Another normal form considers the number of stack
symbols. An elementary construction shows that two
symbols suffice. On the stack the element Bi of
Γ = {B1, B2, . . . , Bn} can be represented, e.g., by
the string AiB over the two symbol stack alphabet
{A, B}.

An extension of the model can be obtained by al-
lowing the pda to move on the empty stack. As we
have seen in connection with Lemma 6, this can be
simulated by our standard model by keeping a re-
served symbol on the bottom of the stack. A second
extension is obtained by allowing the model to push
symbols without popping, or to pop several symbols
at once, making the general instruction of the form
(p, a, β, q, α) with β, α ∈ Γ∗. Again this is easily sim-
ulated by the standard model.

A useful extension is to give the pda access to any
relevant finite state information concerning the stack
contents (i.e, does the stack contents belong to a
given regular language) instead of just the topmost
symbol.

5 Finite State Transductions

This section deals with a very general mechanism to
translate lanuages, the finite state transducer. We
show that the context-free languages are closed under
its translations. This result generalizes the closure
under morphism, inverse morphism, and intersection
under regular languages (and in fact any composition
of them). This theory is not always part of textbooks
on formal language theory, although it is not very
deep and at the same time rather elegant.

A finite state transducer (fst)M is a finite state ma-
chine having both input and output. It defines a
rational relation TM in Σ∗×∆∗ for two alphabets Σ
and ∆. Thus, for (u, v) to be in TM the fst must be
able to read u ∈ Σ∗ while writing v ∈ ∆∗.

A fst is specified as 6-tuple M = (Q, Σ, ∆, δ, qin , F)
with finite state set Q, alphabets Σ and ∆, initial
state qin ∈ Q, final state set F ⊆ Q, and instructions
δ, a subset of Q × Σ∗ × ∆∗ × Q. The pair (u, v) ∈
Σ∗ × ∆∗ belongs to TM if there exists a sequence
of instructions from the initial state to a final state,
such that the two sequences of labels concatenate to
u and v respectively. While we say that M reads u
and writes v, mathematically the two alphabets are
equivalent.

For a language K ⊆ Σ∗, the image (translation) of
K by M equals TM(K) = {v ∈ ∆∗ | (u, v) ∈
TM for some u ∈ K}.

Example 14 The following finite state transducer
accepts only strings ending with the letter b. All
other input is rejected. In the transduction every
second symbol a in the input is erased.

1 b1

b00

b, b

a, a

a, λ a, a

b, b

a, λ

b, b

b, b

A morphism h : Σ∗ → ∆∗ can be realised by a fst in
a simple way. Just introduce a single state q, and for
every symbol a ∈ Σ add a loop (q, a, h(a), q). Now
every path in the fst reads a string w ∈ Σ∗ while
writing the image h(w) ∈ ∆∗.

By swapping a and h(a) we obtain a fst for the inverse
morphism h−1 : ∆∗ → Σ∗.

Additionally fst can also realise other operations, like
intersection with a regular language, and quotient
with a regular language.

Example 15 Let R be the regular language { x ∈
{a, b}∗ | #ax even }. It is easy to transform a finite

10

stae automaton for R into a transducer A that real-
izes the intersection TA(K) = K∩R, by just copying
the input to the output.

a, a

a, a

b, b b, b

One also may build a transducer for the quotient op-
eration T (K) = { x | xy ∈ K and y ∈ R } copying
a prefix of the input, and checking whether the re-
maining suffix belongs to R.

a, λ

a, λ

b, λ b, λ

λ, λ

a, a
b, b

︸ ︷︷ ︸
copy x

︸ ︷︷ ︸
check y

We have he following general closure property of the
context-free languages.

Lemma 16 CF is closed under finite state transduc-
tions.

Proof. Assume the context-free language K is given
by a pushdown automaton A = (QA, Σ, Γ, δA, qA, Z, FA),
such that L(A) = K (using final state acceptance).

Given a fst M = (QM, Σ, ∆, δM, qM, FM), we build a
pda A′ for T (M)(K) that simulates A and M in paral-
lel, not reading the original symbol, but rather its trans-
lation by M. We take some special care to deal with λ:
when either the pda A or the fst M read λ, the other
‘component’ does not make a step.

The new pda is specified as A′ = (QA ×
QM, ∆, Γ, δ, 〈qA, qM〉, Z, FA × FM), where the transition
relation δ is constructed as follows.

• For each (p1, a, A, p2, α) ∈ δA, and each
(q1, a, b, q2) ∈ δM (with a 6= λ),
we have (〈p1, q1〉, b, A, 〈p2, q2〉α) ∈ δ,

• for each (p1, λ, A, p2, α) ∈ δA and each q ∈ QM,
we have (〈p1, q〉, λ, A, 〈p2, q〉α) ∈ δ, and

• for each (q1, λ, b, q2) ∈ δM and each p ∈ QA, X ∈ Γ,
we have (〈p, q1〉, b, X, 〈p, q2〉, X) ∈ δ.

p1 p2

a, A/α

q1 q2

a, b
p1q1 p2q2

b, A/α

p1 p2

λ, A/α
p1q p2q

λ, A/α

q1 q2

λ, b
pq1 pq2

b

︷
︸︸

︷

⇒

⇒

⇒

In this way a successful computation of A on u ∈ Σ∗ and

a accepting computation of M on (u, v) ∈ Σ∗ × ∆∗ is

combined into a successful computation of A′ on v. �

Thus we can generalize the results from Lemma 10
and Lemma 12 to all finite state transductions (reg-
ular relations).

Corollary 17 CF is closed under morphisms, in-
verse morphisms, intersection, quotient & concate-
nation with regular languages, prefix, suffix, . . .

Chomsky-Schützenberger. There are several el-
ementary characterizations of CF as a family of lan-
guages related to the Dyck languages, i.e., languages
consisting of strings of matching brackets (see Sec-
tion II.3 in [2]). We present here one of these results,
claiming it is directly related to the storage behaviour
of the pushdown automaton being the machine model
for CF.

Many common operations, most notably intersection
with a regular language and (inverse) morphisms, are
in fact rational relations. Moreover, the family of ra-
tional transductions is closed under inverse and under
composition. A famous result of Nivat characterizes
rational transductions τ as a precise composition of
these operations: τ(x) = g(h−1(x) ∩ R) for every
x ∈ ∆∗

1, where g is a morphism, h−1 is an inverse
morphism, and R is a regular language. There is
a clear intuition behind this result: R is the regu-
lar language over δ of sequences of transitions lead-
ing from initial to final state, and h and g are the

11

morphisms that select input and output, respectively:
h(〈p, u, v, q〉) = u, g(〈p, u, v, q〉) = v.

Example 18 Consider the following fst, with in-
put alphabet {a, b} and output alphabet {0, 1}. Its
domain (input language) is the regular language
{aa, b}∗a, and it changes every aa into 1, changes
every b into 01, and deletes the last a.

b, 01

a, λ

a, 1

K ∋ b b a a b a

↑ h

RM ∋ b:01 b:01 a:λ a:1 b:01 a:λ

↓ g

TM(K) ∋ 01 01 λ 1 01 λ

x
input

h
←− R

computation

g
−→ y

output

A pda A can actually be seen as a transducer
mapping input symbols to sequences of pushdown
operations. Assuming stack alphabet Γ we inter-
pret Γ as a set of push operations, and we use
a copy Γ̄ = {Ā | A ∈ Γ} to denote pop op-
erations. The pda instruction (p, a, A, q, Bn · · ·B1)
can thus be re-interpreted as the transducer transi-
tion 〈p, a, ĀB1 · · ·Bn, q〉, mapping input a to output
ĀB1 · · ·Bn (pushdown operations ‘pop A, push B1,
. . . , push Bn’). Now input x is accepted with empty
stack by the pda A if the sequence of pushdown op-
erations produced by the transducer is a legal lifo

sequence, or equivalently, if transduction τA maps
x to a string in DΓ, the Dyck language over Γ ∪ Γ̄,
which is the context-free language generated by the
productions S → λ, S → SS, S → ASĀ, A ∈ Γ.
Thus, N(A) = τ−1

A (DΓ).

Since we may assume that Γ = {A, B}, it follows
from this, in accordance with the general theory of
Abstract Families of Languages (afl), that CF is the
full trio generated by D{A,B}, the Dyck language over
two pairs of symbols; in the notation of [8]:

Theorem 19 CF = M̂(D{A,B}), the smallest family
that contains D{A,B} and is closed under morphisms,
inverse morphisms, and intersection with regular lan-
guages (i.e., under rational relations).

This is closely related to the result attributed to
Chomsky and Schützenberger that every context-
free language is of the form g(DΓ ∩ R) for a mor-
phism g, alphabet Γ, and regular R; in fact, DΓ =
h−1(D{A,B}), where h is any injective morphism
h : Γ→ {A, B}∗, extended to Γ̄ in the obvious way.

6 Deterministic PDA

From the practical point of view, as a model of rec-
ognizing or parsing languages, the general pda is not
considered very useful due to its nondeterminism.
Like for finite state automata, determinism is a well-
studied topic for pushdown automata. Unlike the fi-
nite state case however, determinism is not a normal
form for pda’s.

In the presence of λ-instructions, the definition of
determinism is somewhat involved. First we have to
assure that the pda never has a choice between exe-
cuting a λ-instruction and reading its input. Second,
when the input behaviour is fixed the machine should
have at most one applicable instruction.

Definition 20 The pda A = (Q, ∆, Γ, δ, qin , Ain , F)
is deterministic if

• for each p ∈ Q, each a ∈ ∆, and each
A ∈ Γ, δ does not contain both an instruction
(p, λ, A, q, α) and an instruction (p, a, A, q′, α′).
• for each p ∈ Q, each a ∈ ∆∪{λ}, and each A ∈ Γ,

there is at most one instruction (p, a, A, q, α) in
δ.

We like to stress that it is allowed to have both the
instructions (p, λ, A, q, α) and (p, a, A′, q′, α′) in δ for
a 6= λ provided A 6= A′. That is, the choice between
these two instructions is determined by the top of
the stack in otherwise equal configurations. The pda
from Example 4 is deterministic.

12

Example 21 The pda in the picture below is deter-
ministic. There are two outgoing transitions in state
q, both λ-transitions: (q, λ, A, p, λ) and (q, λ, Z, r, Z).
These does not conflict as the stack symbols differ.

Then there are three transitions leaving state p.
Two of these, (p, a, B, p, BA) and (p, b, B, p, BA),
have the same stack symbol, but determinism is en-
forced by the two different input symbols. The third
(p, λ, A, q, λ) is a λ-transition, a possible cause for
non-determinism, but here the stack symbol differs
from the two transitions reading a and b.

p q r
a; B/BA

b; B/λ
λ; A/λ

λ; A/λ

λ; Z/Z

b; Z/BZ

Keep in mind that a pda can engage in a (possibly in-
finite) sequence of λ-steps even after having read its
input. In particular, this means that acceptance is
not necessarily signalled by the first state after read-
ing the last symbol of the input.

Again, we can consider two ways of accepting lan-
guages by deterministic pda: either by final state or
by empty stack. Languages from the latter family are
prefix-free: they do not contain both a string and one
of its proper prefixes. As a consequence the family
is incomparable with the family of regular languages.
The pda construction to convert empty stack accep-
tance into final state acceptance (cf. Lemma 6) can be
made to work in the deterministic case; the converse
construction can easily be adapted for prefix-free lan-
guages.

Lemma 22 A language is accepted by empty stack
by a deterministic pda iff it is prefix-free and accepted
by final state by a deterministic pda.

Here we will study languages accepted by determinis-
tic pda by final state, known as deterministic context-
free languages, a family denoted here by DPDA. The
strict inclusion REG ⊂ DPDA is obvious, as a deter-
ministic finite state automaton can be seen as a de-
terministic pda ignoring its stack, and a deterministic

pda for the non-regular language { anban | n ≥ 1 }
can easily be constructed.

Intuitively, the deterministic context-free languages
form a proper subfamily of the context-free lan-
guages. In accepting the language of palindromes
Lpal = { x ∈ {a, b}∗ | x = xR }, where xR denotes
the reverse of x, one needs to guess the middle of the
input string in order to stop pushing the input to the
stack and start popping, comparing the second half
of the input with the first half. However, this is far
from a rigorous proof of this fact. We establish the
strict inclusion indirectly, by showing that CF and
DPDA do not share the same closure properties (as
opposed to using some kind of pumping property).

For a language L we define pre(L) = {xy | x ∈
L, xy ∈ L, y 6= λ}, in other words, pre(L) is the
subset of L of all strings having a proper prefix
that also belongs to L. Observe that CF is not
closed under pre, as is witnessed by the language
Ld = { anban | n ≥ 1 } ∪ { anbamban | m, n ≥ 1 } for
which pre(Ld) = { anbamban | m ≥ n ≥ 1 }.

Lemma 23 DPDA is closed under pre.

Proof. Let A = (Q, ∆, Γ, δ, qin , Ain , F) be a determin-
istic pda, with final state acceptance. The new deter-
ministic pda A′ = (Q′, ∆, Γ, δ′, q′in , Ain , F ′) with L(A′) =
pre(L(A)) simulates A and additionally keeps track in its
states whether or not A already has accepted a (proper)
prefix of the input. Let Q′ = Q×{1, 2, 3}. Intuitively A′

passes through three phases: in phase 1 A has not seen a
final state, in phase 2 A has visited a final state, but has
not yet read from the input after that visit, and finally
in phase 3 A has read a symbol from the input after vis-
iting a final state; A′ can only accept in this last phase.
Accordingly, F ′ = F × {3}, and q′in = 〈qin , 1〉 whenever
qin 6∈ F and 〈qin , 2〉 when qin ∈ F . The instructions of A′

are defined as follows:

• for (p, a, A, q, α) in δ and q 6∈ F , add
(〈p, 1〉, a, A, 〈q, 1〉, α) to δ′,

• for (p, a, A, q, α) in δ and q ∈ F , add
(〈p, 1〉, a, A, 〈q, 2〉, α) to δ′,

• for (p, λ, A, q, α) in δ, add (〈p, 2〉, λ, A, 〈q, 2〉, α) to δ′,

• for (p, a,A, q, α) in δ with a ∈ ∆, add
(〈p, 2〉, a, A, 〈q, 3〉, α) to δ′, and

13

• for (p, a, A, q, α) ∈ δ, add (〈p, 3〉, a, A, 〈q, 3〉, α) to δ′.

x

λ’s

y

aA

︸ ︷︷ ︸
1

︸ ︷︷ ︸
2 wait

︸ ︷︷ ︸
3

x

λ’s

y

aA′

suppress
�

Example 24 We apply the construction of the pre-
vious proof to the deterministic pda from Exam-
ple 21.

p q r
a; B/BA

b; B/λ
λ; A/λ

λ; A/λ

λ; Z/Z

b; Z/BZ

Make three copies of the automaton. For the first
level, the instruction (p, λ, A, q, λ) enters the final
state, and its copy will go to the second level
(p1, λ, A, q2, λ). For the second level we keep only
λ-instructions. The instructions that read a letter
will end in the third copy.

In this we we get the following pda.

p3 q3 r3
a; B/BA

b; B/λ
λ; A/λ

λ; A/λ

λ; Z/Z

b; Z/BZ

p2 q2 r2

a; B/BA

b; B/λ

λ; A/λ

λ; A/λ

λ; Z/Z

b; Z/BZ

p1 q1 r1
a; B/BA

b; B/λ
λ; A/λ

λ; A/λ

λ; Z/Z

b; Z/BZ

As an immediate consequence we have the strict in-
clusion DPDA ⊂ CF, and in fact it follows that the
language Ld above is an element of the difference
CF − DPDA. Additionally we see that DPDA is not
closed under union.

Without further discussion we state some basic
(non)closure properties. Note that these properties
differ drastically from those for CF. By min(L) =
L − pre(L) we mean the set of all strings in L that
do not have a proper prefix in L; max(L) is the set
of all strings in L that are not the prefix of a longer
string in L.

Theorem 25 DPDA is closed under the language
operations complementation, inverse morphism, in-
tersection with regular languages, right quotient with
regular languages, pre, min, and max; it is not closed
under union, intersection, concatenation, Kleene
star, (λ-free) morphism, and mirror image.

We just observe here that closure under min is ob-
tained by removing all instructions (p, a, A, q, α) with
p ∈ F , and that closure under inverse morphisms and
under intersection with a regular language is proved
as in the nondeterministic case. The latter closure

14

property allows us to prove rigorously that Lpal is not
in DPDA: otherwise, Ld = Lpal∩(a+ba+∪a+ba+ba+)
would also be in DPDA. We return to the proof of
the remaining positive properties in the next section.

Real-time. For deterministic automata, real-time,
i.e., the absence of λ-instructions is not a normal
form. However, it is possible to obtain automata in
which every λ-instruction pops without pushing, i.e.,
is of the form (p, λ, A, q, λ). This is explained in [1].

Decidability. Partly as a consequence of the ef-
fective closure of DPDA under complementation, the
decidability of several questions concerning context-
free languages changes when restricted to determin-
istic languages. Thus, the questions of completeness
‘L(A) = ∆∗?’, and even equality to a given regular
language ‘L(A) = R?’, are easily solvable. Also regu-
larity ‘is L(A) regular?’ is decidable, but its solution
is difficult.

The questions on complementation and ambiguity —
‘is the complement of L(A) (deterministic) context-
free?’ and ‘is L(A) inherently ambiguous?’— are
now trivially decidable, while undecidable for CF as
a whole.

The equivalence problem ‘L(A1) = L(A2)?’ for de-
terministic pda’s has been open for a long time. It
has been solved rather recently by Sénizergues, and
consequently it is not mentioned in most of the text-
books on Formal Language Theory. The problem is
easily seen to be semi-decidable: given two (deter-
ministic) pda’s that are not equivalent a string prov-
ing this fact can be found by enumerating all strings
and testing membership. The other half of the prob-
lem, establishing a deduction system that produces
all pairs of equivalent deterministic pda’s was finally
presented at ICALP’97. A more recent exposition of
the decidability is given in [17]. Many sub-cases of
the equivalence problem had been solved before, like
the equivalence for simple context-free languages, ac-
cepted by single state deterministic (real-time) pda’s.
For an exposition of the theory of simple languages
see [9].

7 Related Models

There are really many machine models having a data
type similar to the pushdown stack. Some of these
were motivated by the need to find subfamilies of
pda’s for which the equivalence is decidable, others
were introduced as they capture specific time or space
complexity classes. We mention a few topics that
come to our mind.

Simple grammars. A context-free grammar is
simple if it is in Greibach normal form, and there are
no two productions A→ aα and A→ aβ with termi-
nal symbol a and α 6= β. Via a standard construction
we have given before, these grammars correspond to
single state, deterministic, and real-time pda’s. But
in fact the real-time property can be dropped, cf. [9,
Section 11.9].

Two stacks. Finite state devices equipped with
two stacks are easily seen to have Turing power. Both
stacks together can act as a working tape, and the
machine can move both ways on that tape shifting
the contents of one stack to the other by popping
and pushing.

Counter automata. When we restrict the stack to
strings of the form A∗Z, i.e., a fixed bottom symbol
and one other symbol, we obtain the counter automa-
ton, cf. Example 4. The stack effectively represents a
natural number (N) which can be incremented, decre-
mented, and tested for zero.

As such an automaton can put a sign in its finite
state, while keeping track of the moments where the
stack ‘changes sign’ this can be seen to be equiva-
lent to having a data type which holds an integer (Z)
which again can be incremented, decremented, and
tested for zero.

With a single counter, the counter languages form
a proper subset of CF, as Lpal cannot be accepted in
this restricted pushdown mode, see [2, Section VII.4].
Automata having two of these counters can, by a
clever trick, code and operate on strings, and are

15

again equivalent to Turing machines. See [12, Theo-
rem 7.9] for further details.

Blind and partially blind counters. A counter
is blind if it cannot be tested for zero [7]. The counter
keeps an integer value that can be incremented and
decremented. It is tested only once for zero, at the
end of the computation as part of the (empty stack)
acceptance condition.

The family of languages accepted by blind multi-
counter automata, i.e., automata equipped with sev-
eral blind counters, is incomparable with CF. Let
Σk be the alphabet {a1, b1, . . . , ak, bk}. Define Bk =
{x ∈ Σ∗

k | |x|ai
= |x|bi

for each 1 ≤ i ≤ k}. Observe
that Bk models the possible legal operation sequences
on the blind counter storage, interpreting ai and bi

as increments and decrements of the i-th counter. Of
course, Bk can be recognized by an automaton with
k blind counters, while it can be shown that it can-
not be recognized by a pda (for k > 1) or by a blind
(k−1)-counter automaton. In fact, in the vein of The-
orem 19, the family of languages accepted by blind
k-counter automata equals the full trio generated by
Bk.

A counter is partially blind if it is blind and holds a
natural number; on decrementing zero the machine
blocks as the operation is undefined. Partially blind
multicounters form the natural data type for mod-
elling Petri nets.

Valence grammars. Valence grammars associate
with each production of a context-free grammar a
vector of k integers, and consider only those deriva-
tions for which these valences of the productions used
add to the zero vector. An equivalent machine model
for these grammars consists of a pda equipped with
k additional blind counters. Consequently, their lan-
guage family is characterized as the full trio generated
by the shuffle of D{A,B} and Bk, from which closure
properties follow. Greibach normal form (for gram-
mars) and real-time normal form (for automata) can
be shown to hold. See [10] for an afl approach and
further references.

Finite turn pda’s. A pda is finite turn if there is
a fixed bound on the number of times the machine
switches from pushing to popping. Like for bounded
excursions (Section 3) such a bound can be imple-
mented in the machine itself. The restriction to a sin-
gle turn leads to the linear languages, whereas finite
turn pda’s are equivalent to ultralinear context-free
grammars, as explained in [9, Section 5.7]. A context-
free grammar G = (N, T, S, P) is ultra linear if there
is a partition of the nonterminals N = N0 ∪ · · · ∪Nn

and each production for A ∈ Ni is either of the form
A→ α with α ∈ (T∪N0∪· · ·∪Ni−1)

∗ —A introduces
only nonterminals of lower ‘levels’ of the partition—
or of the form A → uBv with u, v ∈ T ∗ and B ∈ Ni

—the only nonterminal introduced by A is from the
same ‘level’.

Alternation. A nondeterministic automaton is
successful if it has a computation that reads the input
and reaches an accepting configuration. Thus, along
the computation, for each configuration there exists a
step eventually leading to success. A dual mode —all
steps starting in a configuration lead to acceptance—
is added in alternating automata; states, and hence
configurations, can be existential (nondeterministic)
or universal. The alternating pda’s accept the family⋃

c>0 DTIME(cn) of languages recognizable in expo-
nential deterministic time [14]. Note that alternating
finite automata just accept regular languages.

Two-way pda’s. Considering the input tape as a
two-way device, we obtain the two-way pushdown
automaton; it is customary to mark both ends of
the input tape, so that the two-way pda detects the
end (and begin) of the input. These machines can
scan their input twice, or in the reverse direction,
etcetera, making it possible to recognize non-context-
free languages like { anbncn | n ≥ 1 } (easy) and
{ ww | w ∈ {a, b}∗ } (try it). Hence, just as for alter-
nation, the two-way extension is more powerful than
the standard pda, unlike the case for finite automata
where both variants define the regular languages.

Languages of the deterministic two-way pda can
be recognized in linear time, which has led to
the discovery of the pattern matching algorithm of

16

Knuth-Morris-Pratt, as the pattern matching lan-
guage { v#uvw | u, v, w ∈ {a, b}∗ } can be recog-
nized by such an automaton. See Section 7 in [13] for
a historical account.

Finally, multi-head pda’s, either deterministic or non-
deterministic (!), characterize the family P of lan-
guages recognizable in deterministic polynomial time.
An introduction to automata theoretic complexity is
given in [12, Chapter 14], while more results are col-
lected in [18, Sections 13 and 20.2]. Multi-head k-
iterated pda’s characterize the deterministic (k − 1)-
iterated exponential time complexity classes [5].

Stack automata. A stack automaton is a pda with
the additional capability to inspect its stack. It may
move up and down the stack, in read-only mode, i.e.,
without changing its contents. This makes the stack
automaton more powerful than the pda. The family
of languages recognized by stack automata lies prop-
erly between CF and the indexed languages. Stack
automata that do not read input during inspection
of the stack are equivalent to pda’s.

A nested stack automaton has the possibility to start
a new stack ‘between’ the cells of the old stack. This
new stack has to be completely removed before the
automaton can move up in the original stack. These
automata are equivalent to pushdown-of-pushdowns
automata, i.e., to indexed grammars. More generally,
k-iterated nested stack automata correspond to 2k-
iterated pda’s.

Again, variants of the corresponding two-way and
multi-head automata characterize complexity classes;
see the references mentioned above. Let us men-
tion that the families accepted by the nondetermin-
istic two-way stack (or nested stack) and nonerasing

stack automata coincide with
⋃

c>0 DTIME(cn2

) and
NSPACE(n2), respectively (where a stack automaton
is nonerasing if it never pops a symbol). The non-
deterministic multi-head k-iterated stack (or nested
stack) and nonerasing stack automata define deter-
ministic (2k−1)-iterated exponential time and (k−1)-
iterated exponential space.

Bibliography

Early studies in this subject are [15, 16]. The main
text of this introductory text is taken from our book
chapter [11]. Examples from the Tarragona lectures
were added. Two in-depth introductions to push-
down automata (and context-free grammars) are the
handbook chapters [1] and [3].

References

[1] J.-M. Autebert, J. Berstel, L. Boasson. Context-
Free Languages and Pushdown Automata. In:
Handbook of Formal Languages, Vol. 1 (G.
Rozenberg, A. Salomaa, eds.) Springer, Berlin,
1997. pages 15, 17

[2] J. Berstel. Transductions and Context-Free Lan-
guages. Teubner Studienbücher, Stuttgart, 1979.
pages 11, 15

[3] J. Berstel, L. Boasson. Context-Free Languages.
In: Handbook of Theoretical Computer Science,
Vol. B: Formal Models and Semantics (J. van
Leeuwen, ed.) Elsevier, Amsterdam, 1990. pages
17

[4] N. Chomsky. Context Free Grammars and Push-
down Storage. Quarterly Progress Report, Vol.
65, MIT Research Laboratory in Electronics,
Cambridge, MA, 1962. pages 6

[5] J. Engelfriet. Iterated Stack Automata. Informa-
tion and Computation, 95 (1991) 21–75. pages
17

[6] J. Evey. Application of Pushdown Store Ma-
chines. Proceedings of the 1963 Fall Joint Com-
puter Conference, Montreal, AFIPS Press, 1963.
pages 6

[7] S. Greibach. Remarks on Blind and Partially
Blind One-way Multicounter Machines. Theoret-
ical Computer Science, 7 (1978) 311–324. pages
16

17

[8] S. Ginsburg. Algebraic and Automata-theoretic
Properties of Formal Languages. Fundamental
Studies in Computer Science, Vol. 2, North-
Holland, 1975. pages 12

[9] M.A. Harrison. Introduction to Formal Language
Theory. Addison-Wesley, Reading, Mass., 1978.
pages 15, 16

[10] H.J. Hoogeboom. Context-Free Valence Gram-
mars – Revisited. In: Developments in Language
Theory, DLT 2001 (W. Kuich, G. Rozenberg, A.
Salomaa, eds.), Lecture Notes in Computer Sci-
ence, Vol. 2295, 293-303, 2002. pages 16

[11] Hendrik Jan Hoogeboom and Joost Engelfriet.
Pushdown Automata. Chapter 6 in: Formal Lan-
guages and Applications (C. Mart́ın-Vide, V. Mi-
trana, G. Paun, eds.), Studies in Fuzziness and
Soft Computing, v. 148, Springer, Berlin, 117-
138, 2004. pages 17

[12] J. Hopcroft, J. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation.
Reading, MA: Addison-Wesley, 1979. pages 16,
17

[13] D.E. Knuth, J.H. Morris, V.R. Pratt. Fast Pat-
tern Matching in Strings. SIAM Journal on Com-
puting, 6 (1977) 323–360. pages 17

[14] R.E. Ladner, R.J. Lipton, L.J. Stockmeyer. Al-
ternating Pushdown and Stack Automata. SIAM
Journal on Computing 13 (1984) 135–155. pages
16

[15] A.G. Oettinger. Automatic Syntactic Analysis
and the Pushdown Store. Proceedings of Sym-
posia on Applied Mathematics, Vol. 12, Provi-
dence, RI, American Mathematical Society, 1961.
pages 17

[16] M. Schützenberger. On Context Free Languages
and Pushdown Automata. Information and Con-
trol, 6 (1963) 246–264. pages 6, 17

[17] G. Sénizergues. L(A) = L(B)? A Simplified De-
cidability Proof. Theoretical Computer Science,
281 (2002) 555–608. pages 15

[18] K. Wagner, G. Wechsung. Computational Com-
plexity. Reidel, Dordrecht, 1986. pages 17

Leiden, October 13, 2008. Work in progress.

Preliminaries

A context-free grammar is specified as a 4-tuple G =
(N, T, S, P), where N is the set of non-terminals, T
is the set of terminals (N ∩ T = ∅), S ∈ N is the
start symbol (or axiom), and P ⊆ N × (N ∪ T)∗ is a
finite set of productions (or rules).

If (A, α) is a production, then we usually write A→
α.

Using the productions of G strings over (N ∪T)∗ can
be rewritten. In a rewrite step an occurrence in a
string of the left hand side of a rule is replaced by the
right hand side of the rule. One defines a rewriting
relation accordingly. For x, y ∈ (N ∪ T)∗ and A→ α
we have xAy ⇒ xαy.

18

