
Pushdown Automata

Hendrik Jan Hoogeboom

Leiden, NL

April 19, 2007

1 Contents of the Course

* very unfinished

I. The Model

Introduction & Motivation

II. Pushdown Automata and

Context-Free Languages

III. Determinism

IV. Indexed Grammars,

Stack Automata*

V. Closure and Determinism.

Stack Languages and Predicting

Machines

VI. Pushdown as Storage.

Afstract Families of Automata

VII. Basic Parsing.

Building PDA for Grammars*

VIII. Famous Automata

(Examples / Exercises)

Figure 1: Contents of the Course

Transparencies made for a course at the
International PhD School in Formal Lan-
guages and Applications, Rovira i Virgili
University, Tarragona, Spain. With notes.

(Fig. 1) These transparencies are designed to re-
place my handwritten slides, and were not yet put
to classroom test. They are very ‘under construc-
tion’, in particular near the end.

Home for the slides
http://www.liacs.nl/home/hoogeboo/praatjes/tarragona/

(Fig. 2) Based on the ideas for this the course in
Tarragona we (Hoogeboom & Engelfriet) have writ-
ten a chapter on pushdown automata. Most of the
topics presented here are discussed in that chapter.

The chapters from the other two handbooks also
cover the standard material on PDA, each focussing
on specific aspects.

2 Literature

Handbooks

Autebert, Berstel & Boasson.
Context-Free Languages and Pushdown
Automata. Handbook of Formal
Languages (Rozenberg & Salomaa,
eds.) 1997

Berstel & Boasson. Context-Free
Languages. Handbook of Theoretical
Computer Science (van Leeuwen, ed.)
1990.

Hendrik Jan Hoogeboom & Joost
Engelfriet, Pushdown Automata.
Formal Languages and Applications
(Mart́ın-Vide, Mitrana & Pǎun, eds.),
2004. [this course]

Textbooks

Harrison. Introduction to Formal
Language Theory. Addison-Wesley,
1978.

Hopcroft & Ullman. Introduction to
Automata Theory, Languages, and
Computation, 2nd edition
Addison-Wesley, 1979.

Figure 2: Literature

1 The Model, Introduction &

Motivation

(Fig. 3) The four levels of the Chomsky hi-
erarchy. Four families of languages, with the
grammatical models and machine models gener-
ating/recognizing them. This course focusses the
pushdown automata from level 2.

(Fig. 4) The ‘Tower of Hanoi’ is a classic for Com-
puter Science students as it is used by many to
introduce the concepts of recursion. Here we use
it to show two sides of this medal: the recursive
(‘grammatical’) solution of the problem, and its im-
plementation (using a stack = push-down).

“The puzzle was invented by the French mathemati-

cian Édouard Lucas in 1883. There is a legend

about an Indian temple which contains a large room

with three time-worn posts in it surrounded by 64

golden disks. The priests of Brahma, acting out the

command of an ancient prophecy, have been mov-

1

http://www.liacs.nl/home/hoogeboo/praatjes/tarragona/

I 1 Chomsky hierarchy

grammar automaton

3 regular

right-linear finite state
A→ aB a

2 context-free

A→ α pushdown
(+lifo stack)

1 context-sensitive

(β`, A, βr)→ α linear bounded
α→ β |β| ≥ |α|

monotone

0 recursively enumerable

α→ β turing machine

Figure 3: Chomsky hierarchy

I 2 Hanoi

4 a b c

3 a c b
a→ c

3 b a c

a b c

move from a to c

– respecting sizes

– one disk at a time

s v t

move(n, source, via, target) :- n ≥ 1






move(n− 1, source, target, via)

source
n→ target

move(n− 1, via, source, target)

recursion, context-free grammar (-like)

Figure 4: Hanoi

ing these disks, in accordance with the rules of the

puzzle. According to the legend, when the last move

of the puzzle is completed, the world will end.”
wikipedia: Tower of Hanoi

(Fig. 5) Moving three disks (from a via b to c) in the
recursive way leads to the following tree of recursive
function calls. It is close to a derivation tree of
a context-free grammar, but not really one: the
parameter for the depth (a natural number) cannot
be modelled by a cfg.

Another slide shows the stack of function calls as
they are processed.

(Fig. 7) The PDA is a finite state device that reads
its input from a (one-way) tape. Additionally it is

I 3 solution for Hanoi

1 a b c

0 a c b

a→ c

0 b a c

1 c a b

0 c b a

c→ b

0 a c b

2 a c b

a→ b

1 b c a

0 b a c

b→ a

0 c b a

1 a b c

0 a c b

a→ c

0 b a c

2 b a c

b→ c

3 a b c

a→ c

n s v t

n− 1 s t v

s→ t

n− 1 v s t

Figure 5: solution for Hanoi

I 4 Hanoi – recursion

move(n, source, via, target) :- n ≥ 1






move(n− 1, source, target, via)

source
n→ target

move(n− 1, via, source, target)

3 a b c

2 a c b
a→ c
2 b c a

1 a b c
a→ b
1 c a b

0 a c b
a→ c
0 b a c
a→ b
1 c a b

a→ c
0 b a c
a→ b
1 c a b

0 b a c
a→ b
1 c a b

a→ b
1 c a b 1 c a b

a→ c
2 b c a

0 c b a
c→ b
0 a c b

c→ b
0 a c b 0 a c b

a b c

move(2, a, c, b) = a → c; a → b; c → b;

Figure 6: Hanoi – recursion

2

http://en.wikipedia.org/wiki/Tower_of_Hanoi

I 5 pushdown automaton (syntax)

a

input tape

· · · · · ·

δ

p

finite
control

stack

top

A

...

formally 7-tuple

A = (Q,∆,Γ, δ, qin , Zin , F)

Q states p, q
qin ∈ Q initial state
F ⊆ Q final states
∆ input alphabet a, b w, x
Γ stack alphabet A, B α
Zin ∈ Γ initial stack symbol

transition relation (finite)

δ ⊆ Q× (∆ ∪ {λ})× Γ×Q× Γ∗

from to

(p a A q α)
read pop push

︸ ︷︷ ︸

before
︸ ︷︷ ︸

after

Figure 7: pushdown automaton (syntax)

equipped with external memory in the form of a
lifo stack to store information.

The formal specification is a 7-tuple, much like that
of a finite state automaton, but additionally includ-
ing the stack alphabet, and an initial stack symbol.

The transition relation consists of 5-tuples: based
on the current state p, input symbol a, and topmost
stack symbol A, it specifies a new state q and a new
sequence of stack symbols α.

Our choice, representing the transitions as a rela-
tion δ ⊆ Q × (∆ ∪ {λ}) × Γ × Q × Γ∗ is one of the
standard choices. Alternatively one has a function
δ : Q × (∆ ∪ {λ}) × Γ → P(Q × Γ∗), where P de-
notes the power set. This is just a notational vari-
ant. Where we write (p, a, A, q, α) ∈ δ, the other
formalism has (q, α) ∈ δ(p, a, A).

We like the relation better because it enables to talk
about separate transitions. The function however
clearly separates input (before) from output (after).
In our ‘chapter’ we tend to write (p, a, A) 7→ (q, α)
as a compromise.

(Fig. 8) The ‘global configuration’ of a PDA con-
sists of state, the part of the tape not yet read,
and the stack. This is formalized as instantaneous
description (ID).

Single moves of the PDA are the result of transi-
tions applicable to the ID; sequences of moves form
a computation.

There are two natural ways to accept a computa-
tion of a PDA: either by internal state, or by exter-
nal storage. This leads to two languages for each

I 6 pushdown automaton (semantics)

a· · · · · ·
︸ ︷︷ ︸

w = ax

p A
...

β
=

A
γ

a· · · · · ·
︸ ︷︷ ︸

x

q
α

...

α
γ

Q×∆∗ × Γ∗ instantaneous descriptions

(p, w, β)







p state
w input, unread part
β stack, top-to-bottom

move (step) `A
(p, ax, Aγ) `A (q, x, αγ) iff

(p, a, A, q, α) ∈ δ, x ∈∆∗ and γ ∈ Γ∗

computation `∗A
L(A) final state language

{ x ∈∆∗ | (qin , x, Ain) `∗A (q, λ, γ)

for some q ∈ F and γ ∈ Γ∗ }

N(A) empty stack language

{ x ∈∆∗ | (qin , x, Ain) `∗A (q, λ, λ)

for some q ∈ Q }

Figure 8: pushdown automaton (semantics)

I 7 pushing and popping

general form (p, a, A, q, α)

(p, a, A) 7→ (q, α)

p q
a;A/α

intuitive formalized as

pop A (p, a, A, q, λ) α = λ
push A (p, a, X, q, AX) for all X ∈ Γ
read a (p, a, X, q, X) for all X ∈ Γ

our convention

p q
a;A/λ

p qa;+A p qa

Figure 9: pushing and popping

PDA, L(A) and N(A), and two families of PDA
languages, PD` and PDn.

(Fig. 9) A transition may read λ from the input,
but it always pops a specific symbol A from the
stack.

The intuitive actions ‘push X ’ (regardless the con-
tents of the stack) and ‘read a’ have to be coded as
a set of transitions, one for each value of the top of
the stack.

We introduce a personal pictorial representation for
PDA, including shortcuts for ‘push A’ (regardless
the topmost symbol) and for ‘read a’.

(Fig. 10) Three different automata for a single lan-
guage: final state, empty stack, and finally (on an-

3

I 8 example

0 1

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/λ

empty stack

N(A2) = L
L = { w c wR | w ∈ {a, b}∗ }

0 1 2

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/Z

final state

L(A1) = L

Z
A

A
B B

A
A

Z Z

0 0 0 0 1 1 1 1 2
a a b c b a a

(0,aabcbaa, Z) `
(0, abcbaa, AZ) `
(0, bcbaa, AAZ) `
(0, cbaa,BAAZ) `
(1, baa,BAAZ) `
(1, aa, AAZ) `
(1, a, AZ) `
(1, λ, Z) `
(2, λ, Z)

Figure 10: example

I 9 example (specification)

δ consists of

(0, a, Z,0, AZ)

(0, a, A,0, AA)

(0, a, B,0, AB)

(0, b, Z,0, BZ)

(0, b, A,0, BA)

(0, b, B,0, BB)

(0, c, Z,1, Z)

(0, c, A,1, A)

(0, c, B,1, B)

(1, a, A,1, λ)

(1, b, B,1, λ)

(1, λ, Z,2, Z)

L = { w c wR | w ∈ {a, b}∗ }

0 1 2

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/Z

final state

Lf(A1) = L

A = (Q,∆,Γ, δ, qin , Zin , F), where

Q = {0,1,2}
∆ = {a, b, c}
Γ = {A, B, Z}
qin = 0

Zin = Z

F = {2}

Figure 11: example (specification)

other slide) empty stack with only a single state.

(Fig. 11) The number of arrows in the diagram
does not equal the number of transitions, due to
the shortcuts we have introduced. This is nota-
tionally convenient but we should always avoid the
introduction of shortcuts that are not supported by
the original formal model.

(Fig. 13) A challenge: the coin exchange language.
Can you construct a cfg for it, or (equivalently) a
single state pda?

(Fig. 14) We note some peculiar properties of the
model.

Input is only accepted if it is completely read. A

I 10 example (ctd)

L = { w c wR | w ∈ {a, b}∗ }

single state :- stack codes state

1

a;Z/ZA
b;Z/ZB
c;Z/λ
a;A/λ
b;B/λ

Z A
Z A

Z B
Z

B
A

A ⊥
a a b c b a a

(1,aabcbaa, Z) `
(1, abcbaa, ZA) `
(1, bcbaa, ZAA) `
(1, cbaa,ZBAA) `
(1, baa, BAA) `
(1, aa, AA) `
(1, a, A) `
(1, λ, λ)

Figure 12: example (ctd)

I 11 coin change language

1 2 5 alphabet {1,2,5,=}

{ x = y | x ∈ {1,2}∗, y ∈ {5}∗,
#1x + 2#2x = 5#5(y) }

#ax number of a occurrences in x

212 = 5

22222 = 55

12(122)3 = 54

i 0

1

2

3

4
f

1;+A
2;+AA

=

5;A/λ

λ;A/λ

λ;A/λ

λ;A/λ

λ;A/λ

λ;Z/λ

empty stack / final state f

. context-free grammar?

. single state PDA?

Figure 13: coin change language

4

I 12 please note . . .

? completely read input

∗ input+stack may block

∗ infinite λ-computations!

? no steps on empty stack

? computations without reading

∗ at the end to reach acceptance

λ;A/λ

λ;A/λ

λ;B/λ

λ;Z/λ

λ;B/λ

λ

a;+A
b;+B

{A, B, Z}, initial Z

Figure 14: please note . . .

computation does not lead to acceptance when it
blocks, i.e., there is no applicable transition, or
when it is stuck in an infinite computation read-
ing λ.

Every transition pops a stack symbol, hence no
steps on the empty stack are allowed. The automa-
ton is blocked (this is important when we deal with
determinism).

Even after all symbols have been read the pda

can continue computing (and reach acceptance only
several steps later). We show a very simple exam-
ple that makes all its computations after the input
has been read. What is its empty stack language?

(Fig. 15) Context-free grammars are ‘context-free’,
its productions can be applied independently of the
context: A ⇒∗ α iff β1Aβ2 ⇒∗ β1αβ2 (in context
β1, β2). Moreover we can glue derivations: if A ⇒∗

α1Bα2, and B ⇒∗ β, then A ⇒∗ α1βα2.

For pda we have similar ways to combine compu-
tations, both involving input and stack. However,
when considering the stack we have to be careful
and avoid the empty stack.

2 Pushdown Automata and

Context-Free Languages

(Fig. 16) We study the families of languages ac-
cepted by pushdown automata.

I 13 computation lemma

cutting and pasting PDA computations

z input

(p, w, α) `∗ (q, λ, λ)

iff

(p, wz, α) `∗ (q, z, λ)

z stack

(p, w, α) `∗ (q, λ, λ)

then

(p, w, αβ) `∗ (q, z, β)

α

β β

p q

α

β β

p q

(p, w, α) `∗ (q, λ, λ)

iff

(p, w, αβ) `∗ (q, z, β)

and every stack is

longer than β.

Figure 15: computation lemma

II 1 (1) final state empty stack

f e A A′
L(A) = N(A′)

. empty pushdown ‘at’ final state

. prohibit early empty pushdown

Z

qin q qe

PDnPD` CF

(1)

1PDn=

q′
in

qin

λ;�/Zin� p

qe

λ;A/λ

λ;A/λ

Q′ = Q ∪ { q′
in

, qe }
Γ′ = Γ ∪ {�}
F ′ = ∅

δ′ = δ ∪ { (q′
in

, λ,�, qin , Z�) }
∪ { (p, λ, A, qe, λ) |

p ∈ F, A ∈ Γ ∪ {�} }
∪ { (qe, λ, A, qe, λ) | A ∈ Γ ∪ {�} }

Figure 16: (1) final state empty stack

First we show that the two ways of accepting are
equivalent. Given an automaton and one accep-
tance type it is possible to construct another, equiv-
alent, automaton with the other acceptance type
(1,2).

Then we argue that single state pda are actually
more or less the same as context-free grammars (3).

The main result is the equivalence of pda and cfg

(4).

As an ‘application’ we look at closure properties
of CF and prove them using pda (and finite state
transductions).

(Fig. 18) Any CFG can be simulated by a single
state PDA using the expand & match technique.
In case we start with a CFG satisfying a mild nor-

5

II 2 (2) empty stack final state

e f A A′
N(A) = L(A′)

. prohibit early empty pushdown

. go to final state at

‘empty’ pushdown

Z

p q qf

PDnPD` CF

(2)

1PDn=

q′
in

qin

λ;�/Z�

qf

λ;�/λ

λ;�/λ

Q′ = Q ∪ { q′
in

, qf }
Γ′ = Γ ∪ {�}
F ′ = { qf }

δ′ = δ ∪ { (q′0, λ,�, q0, Z�) }
∪ { (p, λ,�, qf , λ) | p ∈ Q }

Figure 17: (2) empty stack final state

II 3 (3) single state & empty stack

Z → a ZA
Z → b ZB
Z → c
A→ a
B → b

−

a;Z/ZA
b;Z/ZB
c;Z/λ
a;A/λ
b;B/λ

PDnPD` CF1PDn=
(3)

cfg G ⇐⇒ 1-pda A
A→ α (−, λ, A,−, α) expand

(−, a, a,−, λ) match

normal form α ∈ (∆ ∪ {λ}) · Γ∗
A→ aα (−, a, A,−, α)

leftmost derivation ⇐⇒ computation

S
⇒ a SA
⇒ ab SBA
⇒ abb SBBA
⇒ abbc BBA
⇒ abbcb BA
⇒ abbcbb A
⇒ abbcbba

(−, abbcbba, S)
` (−, bbcbba, SA)
` (−, bcbba, SBA)
` (−, cbba, SBBA)
` (−, bba, BBA)
` (−, ba, BA)
` (−, a, A)
` (−, λ, λ)

Figure 18: (3) single state & empty stack

mal form property, the two steps can be combined
into one, and we obtain a one-to-one correspon-
dence between productions and transitions.

This correspondence also works backwards: single
state PDA are just like grammars. Their computa-
tions are like the leftmost derivations of the corre-
sponding CFG.

Hence, to prove the equivalence of PDA with CFG
the problem is to deal with the states of the PDA.

(Fig. 19) The basic theorem of context-free lan-
guages: the equivalence of cfg and pda.

It is due to Chomsky (‘Context Free Grammars
and Pushdown Storage’), Evey (‘Application of
Pushdown Store Machines’), and Schützenberger

II 4 (4) pushdown automaton cf grammar

A
p q

PDnPD` CF1PDn=

(4)

nonterminals [p, A, q] p, q ∈ Q, A ∈ Γ

[p, A, q]⇒∗G w ⇐⇒ (p, w, A) `∗ (q, λ, λ)

productions

S → [qin , Zin , q] for all q ∈ Q

A B3

B2

B1

B2

B3

p q1 q2 q3 q

[p, A, q]→ a [q1, B1, q2] [q2, B2, q3] · · · [qn, Bn, q]

(p, a, A, q1, B1 · · ·Bn) ∈ δ

q, q2, . . . , qn ∈ Q

[p, A, q]→ a (p, a, A, q, λ) ∈ δ

Figure 19: (4) pushdown automaton cf grammar

(‘On Context Free Languages and Pushdown Au-
tomata’) in 1962/3.

Starting with a pda under empty stack acceptance
we construct an equivalent cfg. Its nonterminals
are triplets [p, A, q] representing computations of
the pda. Productions result from recursively break-
ing down computations. A single instruction yields
many productions, mainly because intermediate
states of the computations have to be guessed.

(Fig. 20) The previous slide ‘almost’ is the proof for
the equivalence of the PDA A and constructed CFG
G. Use induction on the length of the derivation/
computation to prove
[p, A, q] ⇒∗

G w ⇐⇒ (p, w, A) `∗
A (q, λ, λ)

⇐: Assume (p,w, A) `∗ (q, λ, λ). Consider the first
instruction ι used by A.

∗ ι = (p, a, A, p′, λ). This empties the stack; hence we
have a single step computation, (p, a,A) ` (p′, λ, λ), so
p′ = q, w = a. By construction there exists the rule
[p, A, p′] → a. This yields the derivation
[p, A, q] ⇒G w = a as required.

∗ ι = (p, a, A, q1, B1 . . . Bn), n ≥ 1. The computation
starts like (p, w, A) ` (q1, w

′, B1 . . . Bn) `∗ (q, λ, λ),
w = aw′. These Bi must be popped from the stack.
We can split the computation
(q1, w1w2 . . . wn, B1 . . . Bn) `∗

(q2, w2 . . . wn, B2 . . . Bn) `∗ (qn, wn, Bn) `∗

(qn+1, λ, λ), such that qi is the first position where Bi

appears as top of stack, qn+1 = q, and and
w′ = w1w2 . . . wn.

By the Computation Lemma [previous section], we
can remove common parts of the input and stack at
the start and end of a computation. We obtain
separate computations (qi, wi, Bi) `

∗ (qi+1, λ, λ).

6

II 5 pda cfg example (1)

1 2

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/λ

empty stack

N(A1) = L
L = { w c wR | w ∈ {a, b}∗ }
twelve transitions ⇒ 33 productions(!)

X ∈ {A, B, Z}:

(1, a, X,1, AX) [1, X,1]→ a [1, A,1][1, X,1]

[1, X,1]→ a [1, A,2][2, X,1]

[1, X,2]→ a [1, A,1][1, X,2]

[1, X,2]→ a [1, A,2][2, X,2]
(1, b, X,1, BX) . . .

(1, c, X,2, X) [1, X,1]→ c [2, X,1]

[1, X,2]→ c [2, X,2]

(2, a, A,2, λ) [2, A,2]→ a
(2, b, B,2, λ) [2, B,2]→ b

(2, λ, Z,2, λ) [2, Z,2]→ λ

guesses underlined

Figure 20: pda cfg example (1)

As these are shorter than the original computation
(even when n = 1 we separated the first step) we
know that [qi, Bi, qi+1] ⇒

∗
G wi.

Given ι we know G has the rule
[p, A, q] → a[q1, B1, q2][q1, B1, q2] . . . [qn, Bn, qn+1],
which can be combined with the computations we
found
[p, A, q] ⇒ a[q1, B1, q2][q1, B1, q2] . . . [qn, Bn, qn+1] ⇒

∗

aw1w2 . . . wn = aw′ = w. As qn+1 = q this is as
required.

⇒: For the other direction use a similar technique.
Given a derivation in G consider its first production
rule, use induction on the remaining subtrees of the
derivation to find computations, and join the pieces
into a full computation.

(Fig. 20) We apply the construction from pda to
cfg to one of our earlier examples. This leads to a
huge grammar.

One can reduce such grammars in the standard
way, by pruning symbols that are not productive,
i.e., do not produce terminals, or are not reachable
from the axiom. Alternatively one can be clever in
advance, eliminating symbols that correspond to
computations of the pda that do not exist. (Per-
haps the example will clarify this a little.)

(Fig. 21) There are algorithms that will reduce a
cfg, but here we directly use the ‘meaning’ of the
triples [p, A, q]: they represent computations from
state p to state q finally popping the stack that
started with A. If we look carefully at the pda we
can see several cases for which such computations
do not exist. We can delete the corresponding sym-

II 6 pda cfg example (2)

1 2

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/λ

empty stack

N(A1) = L
33 productions(!?) remember

[p, A, q]⇒∗G w ⇐⇒ (p, w, A) `∗ (q, λ, λ)

‘computation from p to q that pops A’

here: popping computations end in 2

– from twelve . . .
(1, a, X,1, AX) [1, X,1]→ a [1, A,1][1, X,1]

[1, X,1]→ a [1, A,2][2, X,1]

[1, X,2]→ a [1, A,1][1, X,2]

[1, X,2]→ a [1, A,2][2, X,2]

. . . to three
(1, a, X,1, AX) [1, X,2]→ a [1, A,2][2, X,2]

[1, Z,2]→ a [1, A,2][2, Z,2]

[1, A,2]→ a [1, A,2][2, A,2]

[1, B,2]→ a [1, A,2][2, B,2]

Figure 21: pda cfg example (2)

II 7 pda cfg example (3)

1 2

a;+A
b;+B

c

a;A/λ
b;B/λ

λ;Z/λ

empty stack

N(A1) = L

Z → aA | bB | c
A→ aAa | bBa | ca
B → aAb | bBb | cb

axiom [1, Z,2]

(1, a, X,1, AX) [1, Z,2]→ a [1, A,2][2, Z,2]

[1, A,2]→ a [1, A,2][2, A,2]

[1, B,2]→ a [1, A,2][2, B,2]

(1, b, X,1, BX) [1, Z,2]→ b [1, B,2][2, Z,2]

[1, A,2]→ b [1, B,2][2, A,2]

[1, B,2]→ b [1, B,2][2, B,2]

(1, c, X,2, X) [1, Z,2]→ c [2, Z,2]

[1, A,2]→ c [2, A,2]

[1, B,2]→ c [2, B,2]

(2, a, A,2, λ) [2, A,2]→ a

(2, b, B,2, λ) [2, B,2]→ b

(2, λ, Z,2, λ) [2, Z,2]→ λ

Figure 22: pda cfg example (3)

bols [p, A, q] and all productions containing them.

(Fig. 23) There are two natural ways to turn the fi-
nite state automaton into a PDA. We can ignore the
stack, using a single stack symbol that is replaced
each step, under final state acceptance. Alterna-
tively we can store the state on the stack, and get
a single state PDA, under empty store acceptance,
popping the final state as last move.

(Fig. 24) We have shown that CFG and PDA are
equivalent. There are also restricted forms of both
that are still equivalent. One example: linear gram-
mars vs. one-turn PDA. The standard construction
applied to a one-turn PDA does not always yield a
linear grammar.

7

II 8 finite state pushdown

I do not use stack: single stack symbol

p qa p q
a;Z/Z

I keep state on stack single state

a; p/q

acceptance by . . .

1 2

a

b

1 2

a;Z/Z

b;Z/Z

0

b; 2/1
a; 1/2

λ; 2/λ

(1, aba, Z) (0, aba,1)
(2, ba, Z) (0, ba,2)
(1, a, Z) (0, a,1)
(2, λ, Z) (0, λ,2)

(0, λ, λ)

final state empty stack

Figure 23: finite state pushdown

II 9 subfamilies

I linear grammars

A→ aBc, A→ a

A, B nonterminal

a, b terminal (or λ)

a

c a

b
c

LIN = 1tPD

I one-turn pushdown automata

Z
A B

X X A
A B

A
B A X

Z

Q = Q+ ∪Q−, qin ∈ Q+

(p, a, A, q, α) ∈ δ then







p, q ∈ Q+ and |α| ≥ 1,
p, q ∈ Q− and |α| ≤ 1, or
p ∈ Q+, q ∈ Q− and |α|= 1

standard construction:

(p, a, A, q, BC) ∈ δ then

[p, A, r]→ a[q, B, s][s, C, r]

not linear

Figure 24: subfamilies

II 10 CF = PDn = PD` ‘applications’

I normal form for pda

∗ single state empty stack

∗ real-time (no λ-transitions)

A G G′ A
greibach single state

real-time

I closure properties for CF

∗ intersection regular languages

∗ prefix

∗ inverse morphism

∗ quotient regular languages

Figure 25: CF = PDn = PD` ‘applications’

(Fig. 25) We can use the equivalence between CFG
and PDA in two ways.

First we may transfer the Greibach normal form
to PDA: every PDA can be transformed into an
equivalent PDA that is real-time: it reads a symbol
in every step. As it results from a grammar, it
additionally has only a single state.

Second we may use the PDA to show closure prop-
erties for the context-free languages. For some op-
erations this seems to give intuitively simple con-
structions. (Depending on your taste.)

(Fig. 26) In the Tarragona course context-free
grammars are presented by prof. Kudlek. Two
of the closure results for CF he proves are closure
under intersection with regular languages (triplet
construction) and closure under inverse morphisms.
The latter is shown using other closure properties
and arguments from AFL theory.

We will use PDA to obtain these and other closure
properties. First we introduce finite state trans-
ducers, and we argue that many operations can be
performed by these FST. Then we show that CF

is closed under all finite state transductions by a
direct product construction of PDA and FST.

(Fig. 30) A pictorial representation of the direct
product construction of a PDA and a FST, showing
the image of a PDA language under a transduction
is again accepted by a PDA. This proves closure of
CF under several operations.

Same construction is given on another trans-
parency, but now in a clear specification. No formal

8

II 11 closure properties of CF

chapter prof. Kudlek

thm CF closed intersection with regular sets

L ∈ CF, R ∈ REG, ⇒ L ∩R ∈ CF

〈q, A, q′〉 → 〈q, B, q′′〉〈q′′, C, q′〉
when A→ BC, q, q′, q′′ ∈ Q

〈q, A, q′〉 → a when A→ a, (q, a, q′) ∈ δ

Abstract Families of Languages AFL

thm if F is closed under

substitution with λ-free regular sets,

morphism,

union with regular sets [easy for cfg]

& intersection with regular sets,

then F is closed under inverse morphism

Figure 26: closure properties of CF

II 12 intersection with regular languages

a;A/α

a

a;A/α

λ;A/α λ;A/α

︷
︸
︸

︷

⇒

⇒

{ anbn | n ≥ 1 }∗ ∩
{ w ∈ {a, b}∗ |#ax even }

r1 p1 q1

r0 p0 q0

r p q
λ

λ;Z/Z

a;+A

b;A/λ
λ;Z/Z

λ

λ;Z/Z

b;A/λ

λ

λ;Z/Z

b;A/λ

λ;Z/Z

λ;Z/Z

a;+A a;+A

0

1

aa

b

b

Figure 27: intersection with regular languages

II 13 finite state transducers

1 b1

b00
b, b

a, a

a, λ a, a

b, b

a, λ

b, b

b, b

FST ∼ finite state automaton with output

A = (Q,Σ,∆, δ, qin , F)

δ ⊆ Q×Σ∗ ×∆∗ ×Q)

. . . (Σ ∪ {λ})× (∆ ∪ {λ}) . . .

T (A) ⊆ Σ∗×∆∗ transduction (translation)

K ⊆ Σ∗

T (K) = { y ∈∆∗ | (x, y) ∈ T (A), x ∈ K }

erase every 2nd a (keeping words ending in b)

Figure 28: finite state transducers

II 14 finite state transductions

a, a

a, a

b, b b, b

∗ intersection, quotient, concatenation

with regular languages

∗ morphism, inverse morphism

∗ prefix, suffix

∗ . . . erasing every second a

T (K) = K ∩ { x |#ax even }

a, λ

a, λ

b, λ b, λ

λ, λ

a,a
b,b

︸ ︷︷ ︸

copy x
︸ ︷︷ ︸

check y

T (K) = { x | xy ∈ K and #ay even }

Figure 29: finite state transductions

II 15 CF & fs transductions

thm CF is closed under fs transductions

L ∈ CF (given by FST) FST A : Σ∗ →∆∗

T (A)(L) = { v ∈∆∗ | u ∈ L, (u, v) ∈ T (A) }

a, A/α

a, b

b, A/α

λ, A/α λ, A/α

λ, b b

︷
︸
︸

︷

⇒

⇒

⇒

cor CF is closed under morphisms, inverse mor-

phisms, intersection, quotient & concatena-

tion with regular languages, prefix, suffix . . .

Figure 30: CF & fs transductions

proof (induction on computations) is given.

(Fig. 32) As an example of finite state transduc-
ers and the closure construction: the inverse mor-
phism.

For a morphism h we construct a FST that re-
alizes h−1. Then for the context-free language
K = {(100)n(10)n | n ≥ 0} we construct PDA
for K and h−1(K).

(Fig. 33) As promised, the CF languages are closed
under right quotient with regular languages, since
for every regular language R we can transform the
FSA for R into a FST that performs the quotient
by R as its function.

The next slide implements this construction. Given

9

II 16 product construction

a, A/α

a, b
b, A/α

λ, A/α λ, A/α

λ, b b

⇒

⇒

⇒

PDA A = (Q,∆,Γ, δ, qin , Zin , F)

FST M = (P,∆,Σ, ε, pin , E)

T (M)(L(A)) ⇒ PDA A′ = (Q′,Σ,Γ, δ′, q′
in

, Zin, F ′)

formally – Q′ = Q× P

– q′
in

= 〈qin , pin〉
– F ′ = F ×E, and

– δ′ is defined by

if (q1, a, A, q2, α) ∈ δ, and (p1, a, b, p2) ∈ ε

(with a 6= λ)

then (〈q1, p1〉, b, A, 〈q1, p1〉, α) ∈ δ′

if (q1, λ, A, q2, α) ∈ δ and p ∈ P ,

then (〈q1, p〉, λ, A, 〈q1, p〉, α) ∈ δ′

if q ∈ Q and (p1, λ, b, p2) ∈ ε,

then (〈q, p1〉, b, A, 〈q, p1〉, α) ∈ δ′

Figure 31: product construction

II 17 example: inverse morphism

h :







a 7→ 100
b 7→ 10
c 7→ 010

ε 0

10

00

1, b

0, λ

0, c 1, λ

1, a 0, λ

100100100101010

a a a b b b

b c c c b b

a b c c b b

K = { (100)n(10)n | n ≥ 0 }

1

23

4

5

6
1,+A

0

0

λ

1, A/λ0

λ, Z/λ

h−1(K) = { w ∈ {a, b, c}∗ | h(w) ∈ K }

1.ε

1.10

2.0

2.00

3.ε

3.0

4.ε

4.10

40

5.0
5.00

6.ε

6.10

6.0

a,+A

b,+A

λ

λ,+A

λ

λ

c

λ

λ

λ, A/λ

b

b, A/λ

a;A/λ

λ, Z/λ

λ, Z/λ

λ, Z/λ

λ

Figure 32: example: inverse morphism

II 18 specific case: right quotient regular

quotient transducer

ı
a, λ

a, λ

b, λ b, λ

λ, λ

a,a
b,b

︸︷︷︸
copy x

︸ ︷︷ ︸

check y∈R

K/R =

{ x | xy ∈ K and y ∈ R }

L(A) = L PDA A = (Q,∆,Γ, δ, qin , Zin , F)

L(M) = R FSA M = (P,∆, ε, pin , E)

PDA for right quotient L/R

A′ = (Q′,∆,Γ, δ′, q′
in

, Zin, F ′)

Q′ = Q× (P ∪ {ı})

δ′ contains
(〈q1, ı〉, a, A, 〈q2, ı〉, α) for (q1, a, A, q2, α) ∈ δ

(〈p, ı〉, λ, A, 〈p, pin〉) for p ∈ P , A ∈ Γ

(〈q1, p〉, λ, A, 〈q2, p〉, α)

for (q1, λ, A, q2, α) ∈ δ, p ∈ Q

(〈q1, p1〉, λ, A, 〈q2, p2〉, α)

for (q1, a, A, q2, α) ∈ δ & (p1, a, p2) ∈ ε

q′
in

= 〈qin , ı〉

F ′ = F ×E

Figure 33: specific case: right quotient regular

a PDA A and a FSA M it directly constructs the
PDA for the quotient of the languages. It uses
the general format for transductions from previous
slides, as if the transducer for the quotient had been
given. In fact, is has been implicitly derived from
the FSA, by adding a single state ı, see sketch to
the left.

3 Determinism

(Fig. 34) For finite state automata determinism is
simple: it is a normal form, equivalent to the gen-
eral model. Every nondet FSA can be made deter-
ministic by the subset construction, perhaps at the
cost of an exponentially larger state set.

We are not that lucky for PDA. First both lan-
guage definitions (final state and empty stack) are
no longer equivalent. Final state acceptance is
stronger than empty state acceptance. Unfortu-
nately even for this acceptance PDA are no longer
equivalent to CFG. There is a simple intuitive ex-
ample that makes this clear. A full formal proof
however takes some more hard work.

(Fig. 35) Determinism means the automaton has
no choice: at each moment it can take at most
one step to continue its computation. To translate
this intuition to a restriction on the instructions for
PDA is nontrivial, as the next step is determined
both by input letter and by topmost stack sym-
bol. Additionally this is complicated by the choice

10

III 1 non-determinism

a;Z/ZA
b;Z/ZB
λ;Z/λ
a;A/λ
b;B/λ

Z → aZA
Z → bZB
Z → λ
A→ a
B → b

P = { wwR | w ∈ {a, b}∗ } guessing the middle

(aabbaa, Z) ` (aabbaa, λ) 6`
T

(abbaa, ZA) ` (abbaa, A) ` (bbaa, λ) 6`
T

(bbaa, ZAA) ` (bbaa, AA) 6`
T

(baa, ZBAA) ` (baa, BAA) ` (aa, AA) ` (a, A) ` (λ, λ) ok.

T

(aa, ZBBAA) ` (aa, BBAA) 6`
T

(a, ZABBAA) ` (a, ABBAA) ` (λ, BBAA) 6`
T

(λ, ZAABBAA) ` (λ, ABBAA) 6`

also { anbn | n ∈ N } ∪ { anb`cn | `, n ∈ N }

Figure 34: non-determinism

III 2 definition

FSA = DFSA = RLIN

PDn = PD` = CF

DPDn ⊂ DPD` ⊂ CF

determinism means ‘no choice’ . . .

. . . where to start (ok)

. . . between two actions

with same tape & stack symbols

. . . between letter or λ

not allowed

p

a;A/α1

a;A/α2

(p, a, A, q1, α1)

(p, a, A, q2, α2)

p

a;A/α1

λ;A/α2

(p, a, A, q1, α1)

(p, λ, A, q2, α2)

final state DPD` deterministic CF languages

empty stack DPDn

Figure 35: definition

between reading an input letter and following a λ-
instruction.

We quote from our chapter:

The PDA A = (Q, ∆, Γ, δ, qin , Ain , F) is determin-

istic if

• for each p ∈ Q, each a ∈ ∆, and each
A ∈ Γ, δ does not contain both an in-
struction (p, λ, A, q, α) and an instruction
(p, a, A, q′, α′).

• for each p ∈ Q, each a ∈ ∆∪{λ}, and each A ∈
Γ, there is at most one instruction (p, a, A, q, α)
in δ.

(Fig. 37) Consider a language that both includes

III 3 example determinism

i 0

1

2

3

4
f

1;+A
2;+AA

=

5;A/λ

λ;A/λ

λ;A/λ

λ;A/λ

λ;A/λ

λ;Z/λ

in particular we allow

0

1

f

5;A/λ

λ;Z/λ

Figure 36: example determinism

III 5 determinism & prefixes

language L x ∈ L, xy ∈ L

∗ nondeterminism
x

xy

an bn

an bm cn different behaviour on b’s

∗ determinism
x

y

computation on xy and on x must coincide!

apply this to:

haspref(L) = { xy | x ∈ L, xy ∈ L, y 6= λ }

Figure 37: determinism & prefixes

string x and an extension xy of it. Nondetermin-
istic automata may have quite different accepting
computations on both strings. For deterministic
automata we know that the computation that ac-
cepts xy must start with the accepting computation
on x.

(Fig. 38) In the nondeterministic case the two types
of acceptance for PDA (empty stack, final state)
were shown to be equivalent. This is no longer true
in the deterministic case; only one of the inclusion
constructions carries over. Empty stack acceptance
is particularly weak: it cannot accept a word to-
gether with one of its prefixes. Hence it cannot
accept even a∗.

(Fig. 39) In order to rigorously show that DPD` ⊂

11

III 6 deterministic PD Languages

x

empty
stack

y

PD` ⊆ PDn PDn ⊆ PD`

what about determinism?

× f e
√

e f

q′
in

qin

λ;�/Z� p
qe

λ;A/λ

λ;A/λ

q′
in

qin

λ;�/Z�

qf

λ;�/λ

λ;�/λ

DPDn ⊆ DPD`

blocking on empty stack:

DPDn languages are prefix-free

x, xy ∈ L⇒ y = λ

REG 6⊆ DPDn a∗, {λ, a}
REG ⊂ DPD`

Figure 38: deterministic PD Languages

III 7 a strange operation

haspref(L) = { xy | x ∈ L, xy ∈ L, y 6= λ }

L0 = { anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }

haspref(L0) = { anbmcn | m ≥ n ≥ 1 } /∈ CF

> CF = PD` is not closed under haspref

> DPD` is closed under haspref

[proof follows]

consequences

> DPD` ⊂ PD` = CF L0 ∈ CF− DPD`

> DPD` is not closed under union

> also { wwR | w ∈ {a, b}∗ } /∈ DPD`

Figure 39: a strange operation

PD` = CF we define a ‘strange operation’ haspref.
We show that DPD` and CF behave differently with
respect to this operator. See properties on the slide.

(Fig. 40) The rigorous proof that DPD` is closed
under haspref. Well, the construction and the in-
tuition behind it.

The construction is illustrated on the next trans-
parency.

(Fig. 42) Some ramifications.

What we know: DPDn ⊂ DPD`, and languages in
DPDn are prefix-free.

Now we observe that for prefix-free languages the
two families are equal.

III 8 closure of DPD`

haspref(L) = { xy | x ∈ L, xy ∈ L, y 6= λ }

. intuition

x

λ’s

y
aA

︸ ︷︷ ︸

1
︸ ︷︷ ︸

2 wait
︸ ︷︷ ︸

3

x

λ’s

y
aA′

suppress

. construction

Q′ = Q× {1,2,3}
q′
in

= 〈qin ,1〉
F ′ = F × {3}

δ δ′ when

(p, a, A, q, α) (〈p,1〉, a, A, 〈q,1〉, α) q /∈ F
(〈p,1〉, a, A, 〈q,2〉, α) q ∈ F

(〈p,2〉, λ, A, 〈q,2〉, α) a = λ
(〈p,2〉, a, A, 〈q,3〉, α) a 6= λ

(〈p,3〉, a, A, 〈q,3〉, α)

Figure 40: closure of DPD`

III 9 example haspref construction

Q′ = Q× {1,2,3}
q′
in

= 〈qin,1〉
F ′ = F × {3}

(p, a, A, q, α) ∈ δ

δ′ contains when
(〈p,1〉, a, A, 〈q,1〉, α) q /∈ F
(〈p,1〉, a, A, 〈q,2〉, α) q ∈ F

(〈p,2〉, λ, A, 〈q,2〉, α) a = λ
(〈p,2〉, a, A, 〈q,3〉, α) a 6= λ

(〈p,3〉, a, A, 〈q,3〉, α)

p q r
a;B/BA
b;B/λ

λ;A/λ

λ;A/λ

λ;Z/Z

b;Z/BZ

p3 q3 r3
a;B/BA
b;B/λ

λ;A/λ

λ;A/λ

λ;Z/Z

b;Z/BZ

p2 q2 r2

a;B/BA
b;B/λ

λ;A/λ

λ;A/λ

λ;Z/Z

b;Z/BZ

p1 q1 r1
a;B/BA
b;B/λ

λ;A/λ

λ;A/λ

λ;Z/Z

b;Z/BZ

Figure 41: example haspref construction

12

III 10 e! f relations

(p, w, α) `∗ (q, λ, λ)

iff

(p, wz, α) `∗ (q, z, λ)

L ∈ DPDn ⇒ L ∈ DPD`

:

L ∈ DPDn ⇔ L ∈ DPD` and prefix-free

q′
in

qin

λ;�/Z�

p

qe

λ;A/λ

λ;A/λ

omit

×

endmarker: new letter #

L# ∈ DPDn ⇐ L ∈ DPD`

q′
in

qin

λ;�/Z�

p

qe

#;A/λ

λ;A/λ

. . . only if final states have no outgoing λ !!

Figure 42: e! f relations

III 11 strict deterministic grammars

X → α w

≡
X ′ → α w

then

X → α

=

X ′ → α

or

X → α Y v

≡ ≡
X ′ → α Y ′ v′

CFG characterization for DPDn

Harrison-Havel 1973

CFG G = (N, T, S, P) strict deterministic iff

equivalence relation ≡ on N ∪ T

– T is a class for ≡

– for all X, X ′ ∈ N , α, w, w′ ∈ (N ∪ T)∗

if X ≡ X ′, X → αw, X ′ → αw′

then w = w′ = λ and X = X ′

or w = Y v, w′ = Y ′v′ for some Y ≡ Y ′

Y, Y ′ ∈ (N ∪ T)

Figure 43: strict deterministic grammars

Choosing a new letter #, appending # to a lan-
guage L one obtains a prefix-free language L#. Do
we have L ∈ DPD` ⇒ L# ∈ DPDn? Yes, if we
may assume that final states have no outgoing λ-
instructions.

Indeed, we cán assume this. How can we obtain
that nornal form?

IV 1 indexed grammars

nonterminal A with stack ξ indexes

Aξ ∈ NI∗

productions:

Af → α, A ∈ N , f ∈ I ∪ {λ}, α ∈ (NI∗ ∪ T)∗

Af → X1X2 . . . Xk, Xi ∈ NI∗ ∪ T .

u Afξ v ⇒ u X1ξ1 . . . Xkξk v

terminals T Xi = a ξi = λ
nonterminal NI∗ Xi = Biχi ξi = ξ

L(G) = { w ∈ T ∗ | S⊥ ⇒∗ w }

Figure 44: indexed grammars

IV 2 examples indexed grammar

S → Sι generate ‘number’
S → ABA copy stack
Aι → aA pop, write a
Bι → bB pop, write b
A⊥ → λ bottom ends
B⊥ → λ

{ anbncn | n ∈ N }

{ ww | w ∈ {a, b}∗ }

S → Sι
S → A
Aι → AA
A⊥ → a

{ a2n | n ≥ 1 }

S⊥
⇒ Sι⊥

. . .
⇒ Sιn⊥
⇒ Aιn⊥ Bιn⊥ Aιn⊥
⇒ aAιn−1⊥ Bιn⊥ Aιn⊥

. . .
⇒ anA⊥ Bιn⊥ Aιn⊥
⇒ an Bιn⊥ Aιn⊥

. . .
⇒ anbncn

Figure 45: examples indexed grammar

13

V 1 deterministic union

p1 p2
a

q1 q2a

p1q1 p2q2
b

︸ ︷︷ ︸

⇓

p1 p2
λ;A/α

p1q p2q
λ;A/α

︸ ︷︷ ︸

⇓

L, R deterministic ⇒ L ∪R deterministic ?

I L, R ∈ REG ⇒ L ∪R ∈ REG

simulate deterministic automata in parallel

(automata should not block)

I L, R ∈ DPD` ⇒ L ∪R /∈ DPD`

{ anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }

I L ∈ DPD`, R ∈ REG ⇒ L ∪R ∈ DPD`

parallel simulation with λ-moves

I avoid infinite λ-computations: !!

PDA should read all possible input

Figure 46: deterministic union

V 2 example deterministic union

e o

×
a

a

b

b

a,b

L ∈ DPD`, R ∈ REG

{ anbman | m, n ∈ N } =

{ a2n | n ∈ N } ∪ { anbman | m, n ∈ N, m ≥ 1 }

1 2

b

3 4

a;+A

b;Z/Z

b;A/A

b;A/A

a;A/λ
b;Z/Z

a;A/λ λ;Z/λ

1o

1e 2×

b×

3× 4×

a;+A
a;+A

b;Z/Z

b;A/A

b;Z/Z

b;A/A

b;A/A

a;A/λ

a;A/λ λ;Z/λ

Figure 47: example deterministic union

4 Indexed Grammars, Stack

Automata

5 Closure and Determinism

Stack Languages and Pre-
dicting Machines

(Fig. 50) We study the language of stacks during
computations of a PDA. This language is regular!
The proof is a simple consequence of the [p, A, q]-
construction! Exclamation mark!

V 3 complementation

I regular languages
√

read all input:
complete

and deterministic

b

a

a

b

a, b b

a

a

b

a, b

I context-free languages ×

{ anbncn | n ∈ N } /∈ CF

complement {a, b, c}∗ − a∗b∗c∗

∪ { aibjck | i 6= j } ∪ { aibjck | j 6= k }

I deterministic cf languages
√

read all input 7→ as complete as possible

but 7→ infinite λ-computations

predicting machines

“can we reach a non-λ transition with present stack?”

Figure 48: complementation

V 4 adding an endmarker

L ∈ DPD` ⇒ L# ∈ DPD`

‘classic’ construction

λ, A/α

#, A/A

‘old’

‘new’

oops!

no λ-instructions leaving final state

(a normal form?)

how do we achieve that?

what about single letter quotient?

L/{a} = { x | xa ∈ L }

Figure 49: adding an endmarker

V 5 stacks of the pushdown automaton

stack language

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ Q }
input w is irrelevant here

B1B2 . . . Bn ∈ SN(A)

Bn

B2

B1

B2

Bn

q1 q2 q3 qn q

q1 q2 q3 qn qB1 B2 Bn

this is regular!

build automaton:

p qB

iff

(p, w, B) `∗ (q, λ, λ)

iff

[p, B, q]⇒∗ w

(for some w ∈ Σ∗)

every state initial & final

Figure 50: stacks of the pushdown automaton

14

V 6 stack language variants

pin

qin

λ;Z/Z�

qf

λ;�/λ

λ;�/λ

︸ ︷︷ ︸

intersect R

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ Q }
variant [also regular]

{ . . . | . . . for some w ∈ R , some q ∈ F }

SF(A) = { α ∈ Γ∗ | (pin , w, Zin) `∗ (q, λ, α)

for some w ∈ Σ∗, some q ∈ F }

Figure 51: stack language variants

V 7 application Buchi

SN(A) = { α ∈ Γ∗ | (pin , w, α) `∗ (q, λ, λ)

for some w ∈ Σ∗, some q ∈ F }

Buchi: regular canonical systems

type-0 productions α→ β

prefix rewriting α ⇒ β

L(rcs) = { w | w ⇒∗ λ }

rcs defines regular language

simulate prefix α→ β by PDA [use F]

Figure 52: application Buchi

V 8 regular properties of the stack

update stack

B/AB

〈B,1〉/〈A,1〉〈B,2〉
〈B,2〉/〈A,2〉〈B,1〉
〈B,3〉/〈A,3〉〈B,2〉
〈B, g〉/〈A, g〉〈B, g〉

success ∈ R

〈B,1〉, 〈B,3〉 on top

stack belongs to regular language R?

e.g. R = B(AA + B)∗

deterministic automaton for reverse

1 2

3

g
A

A

B

B

A
B

A,B

add state info to stack

A 1

A 2

B 1

A 3

B 2

1

2

1

3

2

g

A 2

B 1

1

2

1

3

Figure 53: regular properties of the stack

V 9 predicting machines

I stack language SN(A) is regular

I a (deterministic) PDA can keep regular info

on its stack

⇒ a (deterministic) PDA can predict future be-

haviour using present stack by inspecting top

predicting machines

“reaches A the empty stack from my stack?”

A yes no no

A no no yes

B no yes yes

A yes yes no

B yes no yes

A1 A2 A3

Figure 54: predicting machines

V 10 application: quotient

p

quotient automaton

p p′

p′′

λ;N/N

λ
λ;Y/Y

Y : α ∈ SN(Ap,R)

N : α /∈ SN(Ap,R)

DPD` closed quotient with REG

px y ∈ R?

can we accept extending with y ∈ R?

stack α satisfies:

(p, y, α) `∗A (q, λ, β), q ∈ F , y ∈ R, some β

SN(Ap,R) = { α ∈ Γ∗ | (p, w, α) `∗Ap,R
(q, λ, λ)

for some w ∈ Σ∗ }

Ap,R constructed from A
– initial state p

– intersection with R (product construction)

– change to empty stack acceptance

Figure 55: application: quotient

V 11 application: complement

as promised: I deterministic cf languages
√

read all input 7→ as complete as possible

but 7→ infinite λ-computations

predicting machines

“can we reach a non-λ transition with present stack?”

Figure 56: application: complement

15

VI 1 closure properties

families of languages

relations between closure properties

trio λ-free morphism
(=faithful cone) inverse morphism

intersection regular lang.

full trio (cone) & (arbitrary) morphism

[full] semi-AFL & union

[full] AFL & concatenation
plus [star]

example ∗ every full trio is closed under quotient with

regular lang.

∗ FAM1 and FAM2 full trio ⇒
HOM(FAM1 ∧ FAM2) full trio

FAM1 ∧ FAM2 = { K ∩ L | K ∈ FAM1 ∧ L ∈ FAM2 }
6= FAM1 ∩ FAM2

Figure 57: closure properties

6 Pushdown as Storage
Abstract Families of Au-

tomata

(Fig. 57) AFL theory (‘abstract family of lan-
guages’) is all about language operations, and clo-
sure properties of language families.

In an earlier lecture we have seen that a direct prod-
uct construction with PDA can be used to show
that CF is closed under the FST’s. Many known
operations are in fact FST’s. We return to finite
state transductions in this lecture.

(Fig. 57) Basic closure properties for the families
in the Chomsky Hierarchy, and deterministic vari-
ants. We distinguish three natural sets of opera-
tions: boolean, regular, and trio operations.

(Fig. 61) Thus we have an alternative formalization
of the notion of (full) trio as family closed under
arbitrary/λ-free FTS’s, rather than in terms of the
basic trio operations.

(Fig. 65) Here another example of a similar AFA
result. We consider blind multi-counter automata.
Each transition has an associated k-dimensional in-
teger vector, and a computation is accepted if it
runs from initial state to final state, while additon-
ally the vectors of the transitions in the computa-
tion add up to the zero-vector.

The automata are ‘blind’ as they cannot perform
a zero-test during the computation. There is only
one test at the end of the computation.

VI 2 closure properties

RLIN CF MON TYPE0

REG DPD` PDn DLBA LBA REC RE

intersection + – – + + + +
complement + + – + + + –
union + – + + + + +
concatenation + – + + + + +
star, plus + – + + + + +
λ-free morphism + – + + + + +
morphism + – + – – – +
inverse morphism + + + + + + +
intersect reg lang + + + + + + +
mirror + – + + + + +

fAFL fAFL AFL AFL AFL fAFL

∩ c ∪ – boolean operations

∪ · ∗ – regular operations

h h−1 ∩R – (full) trio operations

Figure 58: closure properties

VI 3 finite state transductions

h :







a 7→ 100
b 7→ 10
c 7→ 010

a, a

a, a

b, b b, b

ε 0

10

00

b,1

λ,0

c,0 λ,1

a,1 λ,0

ε 0

10

00

1, b

0, λ

0, c 1, λ

1, a 0, λ

a, h(a) h(a), a

> every ’basic’ trio operation is FST

> FST’s are closed under composition

⇒ sequence of trio op’s is FST

Figure 59: finite state transductions

VI 4 Nivat’s theorem

b,01

a, λ

a,1

every full trio operation is a fs transduction

thm every FST is composition of full trio op’s

RM regular language over ‘transitions’

{ a:λ, a:1, b:01 }
h and g select input and output

K 3 b b a a b a

↑ h
RM 3 b:01 b:01 a:λ a:1 b:01 a:λ

↓ g
TM(K) 3 01 01 λ 1 01 λ

x
input

h←− R
computation

g−→ y
output

TM(K) = g(h−1(K) ∩ RM)

Figure 60: Nivat’s theorem

16

VI 5 closure properties

families of languages

x
input

h←− R
computation

g
−→ y

output

TM(K) = g(h−1(K) ∩ RM)

trio λ-free morphism
(=faithful cone) inverse morphism

intersection regular lang.

⇔ λ-free fs transductions

full trio (cone) & (arbitrary) morphism

⇔ (arbitrary) fs transductions

Figure 61: closure properties

VI 6 legal pushdown instructions

A A
B

A
C

A
C

B
C

A

A, Ā push A, pop A A ∈ Σ

‘legal’ PDA instructions

S → A S Ā, A ∈ Σ

S → S S | λ

Dyck language DΣ

A B B̄ C A Ā B B̄ C̄ Ā

two pair brackets D{A,B} or D2

Figure 62: legal pushdown instructions

VI 7 PDA as transducer

0 1

b;X/λ

a;Z/Z

a;Z/XZ
a;X/XX

b;X/λa;Z/λ
AFA Automata abstract storage

AFL Languages closure properties

σ sequence transitions

legal iff h(σ) ∈ D2 iff σ ∈ h−1(D2)

a a b b a a ∆

↑ ↑g
Z a;Z/XZ a;X/XX b;X/λ b;X/λ a;Z/Z a;Z/λ R

↓ ↓h

Z Z̄ZX X̄XX X̄ X̄ Z̄Z Z̄ D2

CF = { g (h−1(D2) ∩R) |
g, h morphism, R regular }

g λ-free iff PDA real-time

Figure 63: PDA as transducer

VI 8 CF as full trio

CS, REC trio
REG, LIN, CF, RE full trio

L language family

M(L) smallest trio containing L
⇔ closed λ-free morphisms, inverse morphisms,

intersection regular

⇔ closed λ-free FTS’s

⇔ { g (h−1(L) ∩R) | g λ-free morphism,

h morphism, R regular }

M̂(L) smallest full trio containing L
[λ-free] ⇒ arbitrary

Greibach∗ M̂(D2) = CF
∗
=M(D2)

Figure 64: CF as full trio

VI 9 blind multicounter automata

S → aS +1,+1
S → T 0,0
T → bU −1,0
T → U 0,0
U → cU 0,−1
U → λ 0,0

S T U

a

(

+1
+1

)

λ

b

(

−1
0

)

λ

c

(

0
−1

)

blind: no zero test (except final acceptance)

k counters kBC – storage type Zk

legal storage operations

Σk = {a1, b1, . . . ak, bk}

Bk = { w ∈ Σ∗k |#aiw = #bi
w (i = 1 . . . k) }

Greibach kBC = M̂(Bk) full trio

Latteux =M(Bk) trio, real-time

B1 is context-free 1BC ⊂ CF

B2 is not context-free

kBC incomparable to CF

Figure 65: blind multicounter automata

We give the language Bk associated to this storage
type. As for PDA these automata accept the small-
est full trio containing Bk. By a result of Latteux
(algebraic, and more general) this equals the small-
est trio containing Bk. Translating this back to the
automata, we obtain a real-time normal form (no
λ-transitions).

(Fig. 67) We present some counter-like families,
each family with the associated language(s) of legal
storage operations.

A blind counter has as native storage Z, can add
and substract one from the counter, but has no
zero-test. There is only the final test on the storage
as each computation leads from 0 to 0.

A partially blind counter is exactly like the blind

17

VI 10 one-turn pushdown

LIN = 1tPDA

Z
A B

X X A
A B

A
B A X

Z

same level: by FST

Z
B

A
B

A
B

Z

two stack symbol normal form

LIN = M̂(cPal) cPal = { wcwR | w ∈ {a, b}∗ }

ZAĀBXX̄XX̄AAĀBB̄ĀB̄AĀXX̄Z̄

↔ ZBABB̄ĀB̄Z̄

↔ ZBAB c BABZ

Figure 66: one-turn pushdown

counter, except that the native storage is N. This
means that the computation blocks (halts unsec-
cessfully) if the automaton tries to decrease the
counter when zero. This is like a half test on the
sign of the counter.

We can also consider k (partially) blind counters
with storage N

k or Z
k. Quite surprisingly k blind

counters can be simulated by k + 1 partially blind
counters, while even a single partially blind counter
cannot be simulated by blind multi-counters.

Why is the slide called ‘FST hierarchy’? The fam-
ily of 1-turn counter languages is included in the
blind 1-counter languages because the exists a fst

that outputs {anbn | n ∈ N} on input B1, and sim-
ilarly for all other inclusions in the diagram.

As inspiration for the diagram I used the Habilita-
tions Thesis of K. Reinhardt, which contains many
more families. I hope I got all the arrows right ...

7 Basic Parsing

Building sPDA for Gram-
mars

8 Famous Automata (Exam-
ples / Exercises)

(Fig. 71) We convert the PDA for palindromes to
a CFG for the same language. We start by noting

VI 11 FST hierarchy

Z blind

N partially blind

Zk Nk+1

N 6 ∫ k Z
1-turn counter
{ anbn | n ∈ N }

context-free
D2

blind 1-counter
B1 = { |w|a = |w|b }

partially blind 1ctr
D1

partially blind mc
shuffle marked D1

blind multi-counter
Bm, m ∈ N

1-turn pushdown

cPAL = { wcwR }

1-counter
(D1c)∗

Figure 67: FST hierarchy

VII 1 8+16

transition table

E Z X T
a E → TZ T → a
+ Z → X X → +TZ
[E → TZ T → [E]
] Z → λ
λ Z → λ

a + [a + a]:

input stack production
a +[a+a] E ⊥ E → TZ
a +[a+a] TZ ⊥ T → a
a +[a+a] aZ ⊥ −
a + [a+a] Z ⊥ Z → X

a + [a+a] X ⊥ X → +TZ

a + [a+a] +TZ ⊥ −
a+ [a+a] TZ ⊥ T → [E]

a+ [a+a] [E]Z ⊥ −
a+[a +a] E]Z ⊥ E → TZ
a+[a +a] TZ]Z ⊥ T → a
a+[a +a] aZ]Z ⊥ −
a+[a + a] Z]Z ⊥ Z → X

a+[a + a] X]Z ⊥ X → +TZ

a+[a + a] +TZ]Z ⊥ −
a+[a+ a] TZ]Z ⊥ T → a
a+[a+ a] aZ]Z ⊥ −
a+[a+a] Z]Z ⊥ Z → λ

a+[a+a]]Z ⊥ −
a+[a+a] λ Z ⊥ Z → λ

a+[a+a] λ ⊥ −

Figure 68: 8+16

VII 2 building a deterministic PDA

q

aa

λ; a/λ

λ;E/TZ
λ;T/a

[

[

λ; [/λ
λ;E/TZ
λ;T/[E]]

]
λ;]/λ

λ;Z/λ

+

+ λ;]/λ

λ;Z/X
λ;X/+TZ

#

#

λ;Z/λ

λ;�/λ

λ;�/S�

G = (Σ,∆, P, S) a LL(1) grammar

A = ({q,#} ∪∆,∆ ∪ {#},Σ ∪ {�}, δ, q,�, ∅)

initialize (q, λ,�, q, S�)

look ahead (q, a, Z, a, Z), a ∈∆ ∪ {#} Z ∈ Σ ∪ {�}
expand (a, λ, A, a, α), a ∈ LA1(A→ α)

match (a, λ, a, q, λ), a ∈∆

empty stack (#, λ,�,#, λ)

E Z X T
a E → TZ T → a
+ Z → X X →+TZ
[E → TZ T → [E]
] Z → λ
λ Z → λ

Figure 69: building a deterministic PDA

18

VIII 1 palindromes

S → aSa | bSb

S → λ | a | b

L = { x ∈ {a, b}∗ | x = xR }

xR ’reverse’, mirror image

even wwR and odd lengths wσwR

x xR !

a;+A
b;+B

λ, a, b

a;A/λ
b;B/λ

λ;Z/λ

stacksymbols A, B, Z

final state and/or empty stack

(nondeterministic!)

Figure 70: palindromes

VIII 2 converting to grammar

rename & substitute

[p, Z, r] Z
[p, A, q] A
[p, B, q] B
[q, A, q] a
[q, B, q] b
[q, Z, r] λ

p q r

a;+A
b;+B

λ, a, b

a;A/λ
b;B/λ

λ;Z/λ

useful: [π, A, q] [π, B, q] [π, Z, r] π ∈ {p, q}

(p, a, Z, p, AZ) [p, Z, r]→ a [p, A, q][q, Z, r]
(p, a, X, p, AX) [p, X, q]→ a [p, A, q][q, X, q] X ∈ {A, B}
(p, b, Z, p, BZ) [p, Z, r]→ b [p, B, q][q, Z, r]
(p, b, X, p, BX) [p, X, q]→ b [p, B, q][q, X, q] X ∈ {A, B}
(p, σ, Z, q, Z) [p, Z, r]→ σ [q, Z, r] σ ∈ {λ, a, b}
(p, σ, X, q, X) [p, X, q]→ σ [q, X, q]
(q, a, A, q, λ) [q, A, q]→ a
(q, b, B, q, λ) [q, B, q]→ b
(q, λ, Z, r, λ) [q, Z, r]→ λ

Z → aA, A→ aAa, B → aAb,
Z → bB, A→ bBa, B → bBb,
Z → λ | a | b
A→ a | aa | ba
B → b | ab | bb

Figure 71: converting to grammar

that not all triples [p, X, q] are useful in the gram-
mar, but only those that represent existing compu-
tations starting in state p with X on the stack end
ending in q with empty stack. Here computations
starting in p with A can only end in q, etc. We can
drop the other triples from the set of nonterminals,
as well as the productions introducing those sym-
bols.

(Fig. ??) The pictures in these transparencies
were put into LATEX using GasTeX: Graphs and

Automata Simplified in TeX by Paul Gastin

http://www.lsv.ens-cachan.fr/~gastin/gastex/gastex.html

VIII 3 anbman

see:

Closure and Determinism

L = { anbman | m, n ∈ N }

1

a;Z/ZA
λ;Z/X
b;X/X
λ;X/λ
a;A/λ Z A

Z A
Z A

Z X X X
A

A
A ⊥

a a a λ b b λ a a a

deterministic:

1o

1e 2×

b×

3× 4×

a;+A
a;+A

b;Z/Z

b;A/A

b;Z/Z

b;A/A

b;A/A

a;A/λ

a;A/λ λ;Z/λ

Figure 72: anbman

VIII 4 aibjck i = j or j = k

S → AB | DC

A→ aA | λ
B → bBc | λ
C → cC | λ
D → aDb | λ

L = { aibjck | i = j or j = k }

choose what to push

λ

a;+A

λ

b;A/λ

λ;Z/Z

c

λ

λ

a

λ

b;+A

λ

c;A/λ

λ;Z/Z

initial stack symbol Z

Figure 73: aibjck i = j or j = k

VIII 5 ambn m > n

S → aSb | aS | a

L = { ambn | m > n }

first a is not ‘counted’

a;Z/Z

a;+A

b;A/λ

b;A/λ

initial stack symbol Z

‘blocks’ on ambn, m ≤ n

deterministic

Figure 74: ambn m > n

19

http://www.lsv.ens-cachan.fr/~gastin/gastex/gastex.html

VIII 6 ambn m ≤ n ≤ 2m

S → aSbb | aSb | λ

L = { ambn | m ≤ n ≤ 2m }

nondeterministic

λ

a;+A

a;+AA

λ;Z/Z

b;A/λ

initial stack symbol Z

Figure 75: ambn m ≤ n ≤ 2m

VIII 7 aibjck j = i + k

S → AB

A→ aAb | λ
B → bBc | λ

L = { aibjck | j = i + k }

= { aibi bkck | i, k ∈ N }

counting . . .

a;+A

λ

b;A/λ

λ;Z/Z

b;+A

λ

c;A/λ

λ;Z/Z

initial stack symbol Z

now deterministic (mind λ! etc)

λ

a;+A

b;A/λ

b;Z/AZ

b;A/λ

λ;Z/Z λ

b;+A

c;A/λ

c;A/λ

λ;Z/Z

Figure 76: aibjck j = i + k

VIII 8 matching brackets

a b b̄ a a ā b b̄ ā ā

S → SS | λ
S → aSā | bSb̄

Dyck language D2

a;+A
b;+B

ā;A/λ
b̄;B/λ

λ;Z/λ ? 0

a;Z/ZA
b;Z/BZ

ā;A/λ
b̄;B/λ

λ;Z/Z

a;A/AA
a;B/AB
b;A/BA
b;B/BB

stacksymbols A, B, Z

empty stack (left, nondeterministic)

final state (right, deterministic)

Figure 77: matching brackets

VIII 9 #a(w) = #b(w)

S → SS | λ
S → aSb | bSa

L = { w ∈ {a, b}∗ |#a(w) = #b(w) }

push #a(w)−#b(w)

Zero, Positive, Negative

deterministic: test for zero to accept

0 6= 0

a;Z/PZ
b;Z/NZ

λ;Z/Z a;P/PP
b;N/NN
a;N/λ
b;P/λ

L ∈ DPD`

L /∈ DPDn (not prefix-free: λ ∈ L)

Figure 78: #a(w) = #b(w)

VIII 10 2#a(w) = #b(w)

L = { w ∈ {a, b}∗ | 2#a(w) = #b(w) }

push 2#a(w)−#b(w)

Zero, Positive, Negative

deterministic: test for zero to accept

0 6= 0

a;Z/PPZ
b;Z/NZ

λ;Z/Z

a;P/PPP
b;N/NN
b;P/λ

a;N/λ

λ;Z/PZ
λ;N/λ

again L ∈ DPD`− DPDn

Figure 79: 2#a(w) = #b(w)

VIII 11 x c y x 6= y

L = { x c y | x, y ∈ {a, b}∗, x 6= y }
x 6= y ⇐⇒ |x| 6= |y|

or x = x1ax2, y = y1by2, |x1| = |y1|
or x = x1bx2, y = y1ay2, |x1| = |y1|

x ?

<

0 >

a;+X
b;+X

c

λ;X/X
a;X/λ
b;X/λ

a;Z/Z
b;Z/Z

a, b

a, b

x1 x2 y1 y2

a;+X
b;+X

a

a,b

c

a;X/λ
b;X/λ

b;Z/λ

a,b

+ variant a↔ b

Figure 80: x c y x 6= y

20

	The Model, Introduction & Motivation
	Pushdown Automata and Context-Free Languages
	Determinism
	Indexed Grammars, Stack Automata
	Closure and DeterminismStack Languages and Predicting Machines
	Pushdown as StorageAbstract Families of Automata
	Basic ParsingBuilding sPDA for Grammars
	Famous Automata (Examples / Exercises)

