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Complement neighborhood of a vertex p in a graph.

Here: complement subgraph induced by {q, r , s}.
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Many applications: Transforming Euler circuits in 4-regular
graphs (Kotzig, 1968), Quantum Computing, Interlace
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Complement neighborhood of a vertex p in a graph.

Here: complement subgraph induced by {q, r , s}.

Many applications: Transforming Euler circuits in 4-regular
graphs (Kotzig, 1968), Quantum Computing, Interlace
Polynomial.

Simple graphs considered.
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Curious Result for Simple Graphs

Theorem (Bouchet,1988)

Let G be a simple graph with edge {u, v}. We have

G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v.

Define, in this case, ∗u ∗ v ∗ u to be edge complementation

(involution),
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Curious Result for Simple Graphs

Theorem (Bouchet,1988)

Let G be a simple graph with edge {u, v}. We have

G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v.

Define, in this case, ∗u ∗ v ∗ u to be edge complementation

(involution),

A goal: Understand nature of this equality (and obtain others
like it).
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Local Complementation for Graphs with Loops
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Graphs where loops are allowed, called graphs,

Local complementation on p only applicable when loop is
present for p.
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Local Complementation for Graphs with Loops
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Graphs where loops are allowed, called graphs,

Local complementation on p only applicable when loop is
present for p.

Original motivation: Gene Assembly in Ciliates
(Computational Biology)
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Loop Complementation
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Loop complementation on vertex p:
if p has a loop, then remove the loop, and
if p has no loop, then add a loop.
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Loop Complementation
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Loop complementation on vertex p:
if p has a loop, then remove the loop, and
if p has no loop, then add a loop.

A main function: Bridge gap between
1) local complementation on simple graphs, and
2) local complementation on graphs.
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Adjacency Matrix
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p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0









Identify a graph G = (V ,E ) with its adjacency matrix,
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Identify a graph G = (V ,E ) with its adjacency matrix,

A symmetric V × V -matrix (columns and rows are indexed by
V ) over F2 corresponds precisely to a graph.
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Identify a graph G = (V ,E ) with its adjacency matrix,

A symmetric V × V -matrix (columns and rows are indexed by
V ) over F2 corresponds precisely to a graph.

Choice for F2 is important:
addition is logical exclusive-or ⊕, and
multiplication is logical conjugation ∧.
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Adjacency Matrix

r
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







p q r s

p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0









Identify a graph G = (V ,E ) with its adjacency matrix,

A symmetric V × V -matrix (columns and rows are indexed by
V ) over F2 corresponds precisely to a graph.

Choice for F2 is important:
addition is logical exclusive-or ⊕, and
multiplication is logical conjugation ∧.

Now: consider local complementation as a special case of a
general matrix operation.
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The Bigger Picture: Principal Pivot Transform

Definition

Let A be a V × V -matrix (over an arbitrary field), and let X ⊆ V

with A[X ] is nonsingular. If A =

(

P Q

R S

)

with P = A[X ], then

the pivot of A on X is

A ∗ X =

(

P−1 −P−1Q

RP−1 S − RP−1Q

)

.

The pivot is the partial (component-wise) inverse:

A

(

x1
x2

)

=

(

y1
y2

)

iff A ∗ X

(

y1
x2

)

=

(

x1
y2

)

, (1)

where the vectors x1 and y1 correspond to the elements of X .
Relation (1) forms alternative definition of pivot.
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Properties of Pivot

If A is skew-symmetric, then A ∗ X is too. Hence if G is a
graph, then G ∗ X is too.
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Properties of Pivot

If A is skew-symmetric, then A ∗ X is too. Hence if G is a
graph, then G ∗ X is too.

For graph G , G ∗ {u} is local complementation, and
G ∗ {u, v} is edge complementation!! Although observed by
Geelen, 1997, (and by Bouchet for edge complementation)
this observation is almost unknown.
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For graph G , G ∗ {u} is local complementation, and
G ∗ {u, v} is edge complementation!! Although observed by
Geelen, 1997, (and by Bouchet for edge complementation)
this observation is almost unknown.

Local and edge complementation together define pivot for
graphs (they form the elementary pivots).
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Properties of Pivot

If A is skew-symmetric, then A ∗ X is too. Hence if G is a
graph, then G ∗ X is too.

For graph G , G ∗ {u} is local complementation, and
G ∗ {u, v} is edge complementation!! Although observed by
Geelen, 1997, (and by Bouchet for edge complementation)
this observation is almost unknown.

Local and edge complementation together define pivot for
graphs (they form the elementary pivots).

Theorem (Tucker, 1960)

Let A be a V × V -matrix, and let X ⊆ V be such that A[X ] is
nonsingular. Then, for Y ⊆ V ,

det(A ∗ X )[Y ] = detA[X ⊕ Y ]/ detA[X ].

(A ∗ X )[Y ] is nonsingular iff A[X ⊕ Y ] is nonsingular.
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Set Systems

A set system (over V ) is a tuple M = (V ,D) with V a finite
set and D ⊆ P(V ) a family of subsets of V .
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Set Systems

A set system (over V ) is a tuple M = (V ,D) with V a finite
set and D ⊆ P(V ) a family of subsets of V .

Let, for graph G , MG = (V ,DG ) be the set system with
DG = {X ⊆ V | detG [X ] = 1} (computed over F2).
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Set Systems

A set system (over V ) is a tuple M = (V ,D) with V a finite
set and D ⊆ P(V ) a family of subsets of V .

Let, for graph G , MG = (V ,DG ) be the set system with
DG = {X ⊆ V | detG [X ] = 1} (computed over F2).

MG is known to be a ∆-matroid. (We will not use this
property here.)
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Set Systems Example

r

p q

s









p q r s

p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0









(V , {∅, {p}, {q},
{p, r}, {p, s}, {r , s},
{p, q, r}, {p, q, s},
{p, r , s}, {q, r , s}})

V = {p, q, r , s}. For example, {p, r} ∈ MG as

G [{p, r}] =

(

1 1
1 0

)

is nonsingular over F2.
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Set Systems Example
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p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0









(V , {∅, {p}, {q},
{p, r}, {p, s}, {r , s},
{p, q, r}, {p, q, s},
{p, r , s}, {q, r , s}})

V = {p, q, r , s}. For example, {p, r} ∈ MG as

G [{p, r}] =

(

1 1
1 0

)

is nonsingular over F2.

Define, for X ⊆ V , the pivot M ∗ X = (V ,D ∗ X ), where
D ∗ X = {Y ⊕ X | Y ∈ D}.
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Set Systems Example
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


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

p q r s

p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0









(V , {∅, {p}, {q},
{p, r}, {p, s}, {r , s},
{p, q, r}, {p, q, s},
{p, r , s}, {q, r , s}})

V = {p, q, r , s}. For example, {p, r} ∈ MG as

G [{p, r}] =

(

1 1
1 0

)

is nonsingular over F2.

Define, for X ⊆ V , the pivot M ∗ X = (V ,D ∗ X ), where
D ∗ X = {Y ⊕ X | Y ∈ D}.

By determinant formula: MG∗X = MG ∗ X (if X ∈ MG ).
Explicit: Exclusive-or ⊕ “simulates” pivot ∗.
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Set Systems Example
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s

{∅, {p}, {q}, {p, r},
{p, s}, {r , s},
{p, q, r}, {p, q, s},
{p, r , s}, {q, r , s}}

{∅, {p}, {r}, {s},
{p, q}, {q, r}, {q, s},
{r , s}, {p, r , s},
{p, q, r , s}}

∗p

∗p

M(·) M(·)

V = {p, q, r , s}. Indeed MG∗p = MG ∗ p.
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Loop Complementation on Set Systems

Let M = (V ,D) be a set system.

Define, for u ∈ V , loop complementation of M on u, as
M + u = (V ,D ′), where D ′ = D ⊕{X ∪ {u} | X ∈ D, u 6∈ X}.

Theorem

Let G be a graph and u ∈ V . Then MG+u = MG + u.
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Loop Complementation on Set Systems Example
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{∅, {p}, {q}, {p, r},
{p, s}, {r , s},
{p, q, r}, {p, q, s},
{p, r , s}, {q, r , s}}

{∅, {q}, {p, q},
{p, r}, {p, s}, {r , s},
{p, q, r}, {p, q, s},
{q, r , s}, {p, q, r , s}}

+p

+p

M(·) M(·)

V = {p, q, r , s}.
MG + p = MG ⊕ {{p}, {p, q}, {p, r , s}, {p, q, r , s}}.
Indeed, MG+p = MG + p.
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Interplay Loop Complementation and Pivot

Theorem (Commutation on different elements)

Let M be a set system and u, v ∈ V with u 6= v. Then

M ∗ u ∗ v = M ∗ v ∗ u, M + u + v = M + v + u, and

M + u ∗ v = M ∗ v + u.

Proof is by considering both pivot and loop complementation as
special cases of a more general operation (called vertex flip), and
proving that vertex flips commute on different elements.

Theorem (S3 on single elements)

Let M be a set system and u ∈ V . Then

M ∗ u + u ∗ u = M + u ∗ u + u.

Proof is by showing that +u and ∗u generate the group S3 of
permutations on three elements.
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Interplay Loop Complementation and Pivot for Graphs

Define for X = {u1, . . . , un}, M + X = M + u1 · · ·+ un (in
any order). Similarly for M ∗ X .

We have: 1) [S3] M + X ∗ X + X = M ∗ X + X ∗ X , and
2) [commutative] for Y ∩ X = ∅, M + X ∗ Y = M ∗ Y + X .
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Interplay Loop Complementation and Pivot for Graphs

Define for X = {u1, . . . , un}, M + X = M + u1 · · ·+ un (in
any order). Similarly for M ∗ X .

We have: 1) [S3] M + X ∗ X + X = M ∗ X + X ∗ X , and
2) [commutative] for Y ∩ X = ∅, M + X ∗ Y = M ∗ Y + X .

Identities must hold for graphs as well. However, G ∗X is only
defined when X ∈ MG .

For graph G , G + X ∗ X + X = G ∗ X + X ∗ X when both
sides are defined. Turns out: right-hand side defined, implies
left-hand side defined.
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Consequences for Simple Graphs

Remember:

Theorem (Bouchet,1988)

Let G be a simple graph with edge {u, v}. We have

G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v.

In this case, ∗u ∗ v ∗ u is edge complementation (for simple
graphs)

Theorem

Let F be a graph with edge {u, v} with no loops for u and v. We

have

F ∗ {u, v} = F + u ∗ u + u ∗ v ∗ u + u = F + v ∗ v + v ∗ u ∗ v + v.

So “modulo loops”, “F ∗{u, v} = F ∗u ∗ v ∗u = F ∗ v ∗u ∗ v”.
Hence alternative proof of result for simple graphs.
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Proof

Theorem

Let F be a graph with edge {u, v} with no loops for u and v. We

have

F ∗ {u, v} = F + u ∗ u + u ∗ v ∗ u + u = F + v ∗ v + v ∗ u ∗ v + v.

Proof.

MF ∗{u, v}+u∗u∗v+u∗u+u = MF ∗u∗v+u∗u∗v+u∗u+u =
MF ∗ u + u ∗ u + u ∗ u + u ∗ v ∗ v = MF . Both sides are
applicable by the figure.

u v

u v

u v

u v

u v

u v

+{u}

∗{u, v}

∗{u}

+{u}

+{u}

∗{u}
∗{v}
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New Results for Simple Graphs

Theorem

Let G be a simple graph, and let u, v ,w ∈ V (G ) be such that the

subgraph of G induced by {u, v ,w} is a complete graph. Then

G (∗{u} ∗ {v} ∗ {w})2 = G ∗ {v}.

Theorem

Let G be a simple graph, and let ϕ be a sequence of local

complementation operations applicable to G. Then

Gϕ ≈ G + X ∗ Y for some X ,Y ⊆ V with X ⊆ Y .
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Discussion

Interplay pivot and loop complementation is S3 on identical
vertices.
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Interplay pivot and loop complementation is S3 on identical
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Bridges gap between simple graphs and graphs with loops.
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Discussion

Interplay pivot and loop complementation is S3 on identical
vertices.

Bridges gap between simple graphs and graphs with loops.

Nature of classic result G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v for simple
graphs explained.
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Discussion

Interplay pivot and loop complementation is S3 on identical
vertices.

Bridges gap between simple graphs and graphs with loops.

Nature of classic result G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v for simple
graphs explained.

Characterization of sequences of local complementation on
simple graphs.
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Discussion

Interplay pivot and loop complementation is S3 on identical
vertices.

Bridges gap between simple graphs and graphs with loops.

Nature of classic result G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v for simple
graphs explained.

Characterization of sequences of local complementation on
simple graphs.

Framework setting is set systems in general.
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