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Abstract

This chapter introduces the interlace polynomial and the Tutte Martin

polynomials, describes their main properties, and describes their relations

with the Tutte polynomial and other polynomials.

1 Introduction

The interlace polynomial was discovered by Arratia, Bollobás, and Sorkin [5, 6]
by studying DNA sequencing methods. Its definition can be traced from 4-
regular graphs (or 2-in, 2-out digraphs), to circle graphs and finally to arbitrary
graphs (multiple edges are not allowed). We take the same route. In Section 2
we consider the theory of circuit partitions in 4-regular graphs as initiated by
the seminal paper of Kotzig [35], and consider the Martin polynomial [38] for
4-regular graphs (and 2-in, 2-out digraphs), which counts, for any k, the number
ak of circuit partitions of cardinality k. In Section 3 we associate a circle graph
to any Eulerian circuit of a 4-regular graph, and we invoke a theorem by Cohn-
Lempel-Traldi [24, 42] to recover ak from its circle graph. This leads naturally
to the definition of the interlace polynomial for arbitrary graphs.

We show that the interlace polynomial satisfies recursive relations involving
the graph operations of local complementation and local edge complementation
and we provide some evaluations of the interlace polynomial. It turns out that
various polynomials are closely related to interlace polynomial. For example,
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we discuss the “global” interlace polynomial of Aigner and van der Holst [3].
Also, in Section 4, we show its close relationship with the Tutte polynomial for
binary matroids.

Isotropic systems were introduced by Bouchet [10] to unify various properties
of circuit partitions in 4-regular graphs and properties of pairs of duals of binary
matroids. The Tutte-Martin polynomials for isotropic systems [13] were defined
about a decade before the introduction of the interlace polynomial, and once
the preliminary conference paper of the interlace polynomial appeared, various
authors quickly noticed that the interlace polynomial can be seen as a special
case of the restricted Tutte-Martin polynomial [3, 15]. In Section 5 we discuss
the Tutte-Martin polynomials and their relationship with interlace polynomials.

Sections 6 and 7 discuss other generalizations of the interlace polynomial,
and open problems are given in Section 8. Note that we do not respect chrono-
logical order in this chapter as we define the interlace polynomial before the
Tutte-Martin polynomial — the reason is that the former can be defined using
only elementary notions, while the latter relies on the more involved notion of
isotropic system.

2 4-Regular Graphs and the Martin Polynomial

In this section we consider 4-regular graphs, as well as the directed 2-in 2-out
variant. The polynomial we describe here was first defined recursively by Martin
[38], and Las Vergnas [36] later obtained the explicit formulation we use here.
Interestingly, this happened in the same order for the interlace polynomial, see
Section 3.3. A circuit partition of a graph (or digraph) G is a partition of the
edges of G into circuits.

The Martin polynomial of a (di)graph counts the number of circuits over all
circuit partitions of a graph. When tracing circuits in 2-in 2-out graphs, after
entering a vertex we can leave that vertex in two ways following either one of
the outgoing edges. In 4-regular graphs there are generally four edges at each
vertex, and we can choose three directions to continue a circuit. We want to
keep this property when a vertex is incident to a loop. Thus we have the premise
that an undirected loop may be entered from two sides. This leads to a slightly
more precise concept to cover the concept of circuit partition.

When discussing 2-in 2-out graphs and 4-regular graphs we allow both loops
and multiple edges, i.e., we actually consider multigraphs.

Definition 2.1. A transition at a vertex v is a partition in pairs of the half-
edges incident to v. For a digraph we require an orientation-consistent pairing.
A transition system (sometimes called a graph state) of G is the assignment of
a transition to each vertex of G.

Let T (G) be the set of transition systems of (di)graph G. For a transition
system T ∈ T (G), let k(T ) be the number of circuits in the circuit partition of
G induced by T . Moreover, let c(G) be the number of connected components
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Figure 1: Digraph ~G and three of sixteen possible transition systems.

of G. Finally, an Eulerian system of G is a set containing exactly one Eulerian
circuit for each connected component of G.

2.1 Directed case: 2-in 2-out graphs

Definition 2.2. Let ~G be a 2-in 2-out digraph. The Martin polynomial of ~G

is defined as m(~G; y) =
∑

T∈T (~G)(y − 1)k(T )−c(~G).

We remark that Definition 2.2 is commonly defined only for connected 2-in
2-out digraphs, i.e., the case c(~G) = 1. However, its generalization to arbitrary
2-in 2-out digraphs is straightforward.

Example 2.3. In Figure 1 we consider a 2-in 2-out graph ~G together with a rep-
resentation of three of its 16 transition systems. The induced circuit partitions
consist of 2, 2, and 1 circuits, respectively. Tallying the circuit count for all par-
titions we obtain m(~G; y) = 3(y−1)0+7(y−1)1+5(y−1)2+1(y−1)3 = y3+2y2;

e.g., there are three different Eulerian circuits for ~G.

We start with a number of evaluations of the Martin polynomial. For any
2-in 2-out digraph ~G, there is a unique circuit partition P in the corresponding
(undirected) graph G such that for each circuit C of P , the edges of C alternate

with respect to its direction given by ~G. The circuits of P are called anticircuits
and the number of anticircuits of ~G is denoted by a(~G).

Theorem 2.4 ([38, 36, 37]). Let ~G be a 2-in 2-out digraph and n = |V (~G)|.

• m(~G;−1) = (−1)n(−2)a(
~G)−1.

• m(~G; 0) = 0, when n > 0.

• m(~G; 1) is the number of Eulerian systems of ~G,

• m(~G; 2) = 2n,

• m(~G; 3) = k |m(~G;−1)| for an odd integer k.

The Martin polynomials may be computed using a recursive approach. The
vertex reduction at a transition t at a vertex v merges each of the edge pairs from
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m = y3 + 2y2

~G

1

2

3

4

m = y3

2

3

4

m = 2y2

2

3

4

m = y2

3

4

m = y

4 ∅

m = 1

× y

× y

× y

Figure 2: Computation of the Martin polynomial by vertex reduction, see Ex-
ample 2.6. With each graph ~F we give the polynomial m = m(~F , y).

t into one edge, and deletes v. Vertex reduction is not defined for transitions
that would obtain an edge not incident to any vertex (such as transitions that
pair both half-edges of a loop).

Recall that a cut vertex is a vertex v that by cutting/splitting v obtains a
graph with a larger number of connected components. In this way a looped
vertex is considered a cut vertex, the loop being one side of the cut.

Theorem 2.5 ([38]). Let ~G be a 2-in 2-out digraph.

• If v(~G) = 0, then m(~G; y) = 1.

• If v is a cut vertex, then m(~G; y) = ym(~G′; y), where ~G′ is the digraph
obtained by applying the vertex reduction at the transition at v that does
not increase the number of connected components.

• If v is a vertex without loops, then m(G; y) = m(~G′
v; y)+m(~G′′

v ; y), where
~G′
v and ~G′′

v are the two graphs obtained by applying the two vertex reduc-
tions at v.

For a cut vertex without loops, both of the last two cases of Theorem 2.5
apply, and give (of course) the same result. In this case one of the transitions
splits the graph and always has one circuit more than when the other transition
is taken. Hence m(~G′

v; y) = (y − 1)m(~G′′
v ; y).

Example 2.6. Let ~G be the (leftmost) digraph from Figure 1. We compute

m(~G; y) recursively, using Theorem 2.5, see Figure 2. We obtain m(~G; y) =

(y + 2)y2. By Theorem 2.4, ~G has m(~G; 1) = 3 Eulerian circuits. Finally, we

verify that m(~G; 2) = 24, while m(~G;−1) = 1 = (−1)4(−2)1−1 matching the

only anticircuit of ~G.
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Figure 3: Constructing the directed medial graph ~Gm. New vertices correspond
to edges in the original graph, new edges are counterclockwise around the orig-
inal vertices. The final result is given right, with the “shadow” of the original
vertices for reference.

Given a plane graph G, its directed medial graph ~Gm is constructed as
follows. For each edge of G, create a vertex for ~Gm. For each vertex v of G,
create a directed edge between any two vertices of ~Gm where the corresponding
edges in G are consecutive in the anti-clockwise ordering of the edges incident
to v, cf. Figure 3. The directed medial graph is 2-in 2-out.

The following result connects the Martin polynomial with the Tutte polyno-
mial.

Theorem 2.7 ([38]). Given a plane graph G, with its directed medial graph
~Gm, we have m(~Gm; y) = T (G; y, y).

It is instructive to have another look at Figure 3 to verify that deletion and
contraction of an edge correspond to the two vertex reductions at the vertex
corresponding to the edge in the medial graph. In fact the digraphs of Figure 2
can be seen as medial graphs of plane graphs. It can be observed that both
loops and bridges in G correspond to cut vertices in the medial graph ~Gm, for
which Theorem 2.5 holds.

We invite the reader to have a quick peek at Theorem 4.1, where a more
general version of this Tutte-Martin connection is given.

2.2 Undirected case: 4-regular graphs

Definition 2.8. Let G be a 4-regular graph. The Martin polynomial of G is
defined as M(G; y) =

∑

T∈T (G)(y − 2)k(T )−c(G).

The difference in definition between 2-in 2-out graphs and 4-regular graphs is
caused by the fact that the definitions of the Martin polynomials were originally
given in [38] in a recursive fashion, with the explicit closed formula appearing
only later in [36].

Theorem 2.9 ([38]). Let G be a 4-regular graph.

• If v(G) = 0, then M(G; y) = 1.
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• If v is a cut vertex, then M(G; y) = yM(G′; y), where G′ is the graph
obtained by applying a vertex reduction at a transition at v that does not
increase the number of connected components.

• If v is a vertex without loops, then M(G; y) = M(G′
v; y) + M(G′′

v ; y) +
M(G′′′

v ; y), where G′
v, G

′′
v , and G′′′

v are the graphs obtained by applying the
three vertex reductions at v.

For the undirected case we again have the formula M(G;x) = yM(G′;x),
even though we now add three polynomials (one of which results from a transi-
tion that will disconnect the sides of the graph at the cut). This is a consequence
of choosing y − 2 instead of y − 1 in Definition 2.8.

The distinction between two and three continuations will be a recurring
theme in this chapter, even in later, more abstract, situations where we no
longer recognize “directions”.

Example 2.10. We have M(G; y) = y2(y+6), where G is the undirected version

of ~G, from Example 2.6, Figure 2.

Theorem 2.11 ([38]). Let G be a 4-regular graph and n = |V (G)|.

• M(G; 0) = 0, when n > 0.

• M(G; 2) is the number of Eulerian systems of G,

• M(G; 3) = 3n.

2.3 Weighted polynomials

A transition weight function W is a mapping that assigns a weight W (t) to each
transition t at each vertex. The weight W (T ) of a transition system T is then
the product

∏

t∈T W (t) of the weights of all transitions t in T .

Definition 2.12 ([34]). Given a transition weight function W , the (weighted)
transition polynomial of 4-regular graph G is defined as

M(G,W ; y) =
∑

T∈T (G)

W (T ) yk(T )−c(G).

Jaeger [34] observes that the transition polynomial for 4-regular graphs cap-
tures both Martin polynomials and the Penrose polynomial. Setting all transi-
tion weights to 1 we have M(G,W ; y) = yM(G; y+2). For a 2-in 2-out digraph
~G, we can consider its underlying (undirected) graph G and assign weight 0
to transitions that join edges against the original orientation and 1 otherwise.
Then M(G,W ; y) = m(~G; y + 1). The Penrose polynomial [39] (see also [1])
is defined for a plane graph, and is based on the circuits of its medial graph.
Setting weight −1 for transitions connecting opposite half-edges, weight +1 for
transitions connecting the same side of the original edges of G, and weight 0
otherwise, we obtain the Penrose polynomial as a special case of M(G,W ; y)
[34].
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TCTAC CTACT TACTT

ACTTC

ACTTG

Figure 4: De Bruijn graph, section for a string
· · ·GTCTACTTG· · ·CTCTACTTC· · · with ℓ = 6 (left) with its contrac-
tion (right).

Of course, the transition polynomial may be defined for arbitrary Eulerian
(di)graphs G. Setting all transition weights of the transition polynomial to 1
and multiplying by yc(G), we obtain the circuit partition polynomial r(G; y) =
∑

T∈T (G) y
k(T ). The circuit partition polynomial has been studied in [9, 28, 29]

for arbitrary Eulerian (di)graphs G.

2.4 De Bruijn Graphs for DNA Sequencing

In sequencing by hybridization one tries to determine a long strand S of DNA
from its ℓ-spectrum, which is the multiset of all substrings of S of length ℓ, for
some constant ℓ. The substrings can be found by testing whether probes for all
sequences of length ℓ match the DNA (modern techniques are able to read DNA
segments of small length directly). The algorithm is based on constructing a
de Bruijn graph for S [25]. The edges of this graph are exactly the length ℓ

strings of the spectrum of S, while the vertices are the length ℓ−1 strings: edge
axb runs from ax to xb (where a and b are the first and last symbols). When S

contains one of more “interlaced repeats” the reconstruction is no longer unique:
the spectra of S1 = z1 x z2 y z3 x z4 y z5 and S2 = z1 x z4 y z3 x z2 y z5 are equal
(assuming x and y are segments of length at least ℓ). Arratia et al. [4] study
the number of possible reconstructions of spectra, and observe that it is useful
to work with a 2-in 2-out graph constructed from the de Bruijn graph (where
they assume no string has multiplicity larger than three). Every sequence of
vertices with parallel edges is contracted into a single vertex, see Figure 4, and
every sequence of vertices with single out-edges is contracted into a single edge.
For convenience, the initial and final vertices are identified. Circuits in this
“macroscopic graph” correspond to reconstructions of the spectrum.

2.5 Gene Gymnastics in Ciliates

The ancient group of ciliates consists of unicellular organisms with a remarkable
property: their DNA is stored in two types of nuclei. The germline micronucleus
(MIC) contains a scrambled copy of the genes in the macronucleus (MAC) which
is used for transcription. During conjugation the MIC is transformed into MAC
in a process called gene assembly. To give an example (taken from Prescott [40]),
the MIC version of the Actin I gene of Sterkiella nova can be represented as
the string I0 M3 I1 M4 I2 M6 I3 M5 I4 M7 I5 M9 I6 M2 I7 M1 I8 M8 I9, where the
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Figure 5: Actin I gene of Sterkiella nova. Schematic diagram, based on [40].

MAC version reads M1M2 . . .M8M9. Here the Mi are so-called macronuclear
destined sequences (MDSs for short) which are kept (but reordered) while the
internal eliminated sequences Ei (IESs for short) are excised and digested during
gene assembly.

The two versions of the gene can be naturally modeled as a 2-in 2-out graph,
where one set of transitions defines a single circuit forming the MIC, while
another set traces the MAC (with flanking IES’s) and excised circular molecules,
see Figure 5. Note that in the MAC some edges may be followed against their
orientation which is the case if an MDS is inverted in the MIC representation,
as M2 in Actin I above (indicated by the bar).

Burns et al. [23] propose the assembly polynomial to capture the intermediate
products in this gene rearrangement process.

3 Circle Graphs and the Interlace Polynomial

3.1 Preliminaries

Let us denote the rank and nullity of a matrix A by r(A) and n(A), respectively.
Moreover, for a V × W -matrix A indexed by finite sets V and W , we denote
for X ⊆ V and Y ⊆ W the X × Y -submatrix of A by A[X,Y ]. Also, we denote
A[X,X ] by A[X ].

With the exception of 2-in 2-out and 4-regular graphs, in this chapter we do
not allow multiple edges for graphs, but we do allow loops.

For a graph G we use A(G) to denote its adjacency matrix, which is viewed
as a V (G) × V (G) matrix over GF (2). For Y ⊆ V (G), we write G+ Y for the
graph that results from G after “toggling” loops at the vertices from Y . Thus, it
has adjacency matrix A(G)+ IY , where IY is the diagonal V (G)×V (G)-matrix
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Figure 6: Three ways to connect pairs of edges in a 4-regular graph relative to
an (oriented) Eulerian circuit: (a) following the circuit, (b) in an orientation-
consistent way, and (c) in an orientation-inconsistent way.

over GF (2) where for i ∈ V , the (i, i) entry is 1 if and only if i ∈ Y . In case
Y = {v} is a singleton, we also write G+ v for G+ Y . For X ⊆ V (G), we write
G[X ] to denote the graph with adjacency matrix A(G)[X ].

3.2 Circle graphs

A circle graph is the intersection graph of chords in a circle: represent each
chord by a vertex, and vertices are adjacent when their chords intersect. Given
a Eulerian circuit C, we imagine the vertices of C placed along a circle, and
connect the two occurrences by a chord. The corresponding circle graph is called
the interlace graph I(C) of C: two distinct vertices p, q are adjacent if they are
interlaced in C, i.e., vertices occurring in the order · · · p · · · q · · · p · · · q · · · on
C. For an Eulerian system C, its interlace graph I(C) is the graph having
the interlace graph for each Eulerian circuit of C as a connected component of
I(C). The connections between traversals of self-crossing plane curves and their
“interlacement” properties goes back to the work of Gauss, cf. [27].

Relative to a fixed Eulerian circuit C, the transitions at a vertex can be
unambiguously described. Fix an orientation of C. Then each transition either
follows C (it equals the one chosen by C), or it differs, and is either orientation
consistent or inconsistent (relative to the one chosen by C), cf. Figure 6. Hence
a transition system can be specified by giving C and a partition of V (G) into
three subsets.

It turns out that the number of circuits in a circuit partition can be expressed
as a nullity value related to the interlace graph.

Theorem 3.1 ([24, 42]). Let G be a 4-regular graph with Eulerian system C.
Let P be a circuit partition of E(G), where D1, D2, D3 are the sets of vertices
that follow C, are orientation consistent, or are orientation inconsistent (re-
spectively). Then |P | − c(G) = n((I(C) +D3) \D1).

We remark that Theorem 3.1 is in fact as special case of a more general
result which says that the dual of the circuit matroid of a graph called the
touch graph (we do not recall this graph here) is equal to the column matroid
of the matrix obtained from I(C) +D3 by replacing all columns of D1 by unit
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Figure 7: (a) An Eulerian circuit with (b) its chord diagram, and (c) its
interlace graph (d) Circuit partition and (e) application of Theorem 3.1.

columns [33, 44]. Theorem 3.1 only says that the nullities of both matroids are
equal.

Example 3.2. Let C = 2 1 3 1 2 3 4 4 be the sequence of vertices visited along an
Eulerian circuit. In Figure 7 we see the circuit (with edge orientations added
for reference) and its interlace graph I(C).

Now consider the circuit partition P which is described by D1 = {1}, D2 =
{3, 4}, and D3 = {2} relative to C. It is depicted in Figure 7 together with
the graph with adjacency matrix I(C) +D3 \D1, cf. Theorem 3.1. Its nullity
equals 1, hence P contains two circuits. Note that part of the largest circuit
runs against the original orientation of C, due to the orientation-inconsistent
transition at vertex 2.

3.3 Interlace polynomial

We are now ready to define the interlace polynomial.

Definition 3.3. Let G be a graph. Then the (single-variable) interlace polyno-
mial of G is

q(G; y) =
∑

X⊆V (G)

(y − 1)n(A(G)[X]).

The polynomial is sometimes known as the “vertex-nullity interlace polyno-
mial” to distinguish it from its two-variable cousin, see Section 3.7, and to stress
the fact that the summation is over sets of vertices of the graph (rather than
edges, like for the Tutte polynomial).

Because of Theorem 3.1, we have a direct connection between the interlace
polynomial and the Martin polynomial.

Theorem 3.4. Let ~G be a 2-in 2-out graph, and let C be an Eulerian system
for ~G. Then m(~G; y) = q(I(C); y).

Example 3.5. Consider the graph G as depicted in Figure 8. Then q(G; y) =
(y − 1)2 + 6(y − 1) + 9(y − 1)0 = y2 + 4y + 4. As an example, subset {a, d}
induces the 2× 2 zero-matrix, which has nullity 2 and contribution (y − 1)2.
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Figure 8: A graph.

We mention that explicit formulas have been obtained for the interlace poly-
nomials of empty graphs, complete graphs, stars, complete bipartite graphs, and
cycles [6].

Remark 3.6. We recall in Section 5 that the interlace polynomial can be seen
as a special case of the more involved Tutte-Martin polynomial for isotropic
systems. Many results regarding the interlace polynomial can be found in the
context of the Tutte-Martin polynomial in [13], published almost a decade before
the introduction of the interlace polynomial. However, since the notions of
interlace polynomial and Tutte-Martin polynomial are sufficiently different, we
here attribute results of the interlace polynomial to both [13] and the papers
who proved the results in the context of interlace polynomials.

3.4 Recursive relations

Let v be a vertex of a graph G = (V,E). The neighborhood of v in G, denoted
by NG(v), is the set {w ∈ V | {v, w} ∈ E,w 6= v}. The complement of G is the
graph G′ obtained by complementing the edge relation, i.e., for every e = {v, w}
with v, w ∈ V (v = w is allowed), e is an edge of G if and only if e is not an
edge of G′.

Let G be a graph and u a looped vertex of G, then the local complement of
G at u, denoted by G ∗ u, is the graph obtained from G by complementing the
subgraph induced by the neighborhood of u.

Remark 3.7. Of course, we could just as easily define local complement for
arbitrary vertices, but, as we will see, it turns out that it is convenient to
restrict applicability of this operation to looped vertices. Similarly, we define
the operation of edge local complement below only for edges having unlooped
vertices.

The closed neighborhood of a vertex v in G, denoted by N̄G(v), is the set
NG(v)∪{v}. Let e = {v, w} ∈ E(G) be an edge with v and w unlooped vertices,
and consider the partition of N̄G(v)∪ N̄G(w) into the sets V1 = N̄G(v)\ N̄G(w),
V2 = N̄G(w)\N̄G(v), and V3 = N̄G(v)∩N̄G(w). Then the edge local complement
of G at e, denoted by G ∗ e, is the graph obtained from G by “complementing”
the edges between distinct Vi’s. Thus, for every e′ = {x, y} with x ∈ Vi, y ∈ Vj ,
and i 6= j, we have that e′ is an edge of G if and only if e′ is not an edge of
G ∗ e. The operation of edge local complementation is illustrated in Figure 9.

11



V1 V2

V3

u
v

V1 V2

V3

u
v

Figure 9: Edge local complementation on an edge {u, v} in a graph. Note that
u and v are adjacent to all vertices in V3 — these edges are omitted in the
diagram. The operation does not affect edges adjacent to vertices outside the
sets V1, V2, V3, nor does it change any of the loops.

The next theorem shows that the interlace polynomial satisfies recursive rela-
tions that characterizes the interlace polynomial. In fact, the original definition
of [5] was given in this way.1

Theorem 3.8 ([6, 13]). Let G be a graph.

• If V (G) = ∅, then q(G; y) = 1.

• If v is an isolated (unlooped) vertex of G, then q(G; y) = y q(G \ v; y).

• If v is a looped vertex of G, then q(G; y) = q(G \ v; y) + q((G ∗ v) \ v; y).

• If e = {v, w} ∈ E(G) with v and w unlooped vertices, then q(G; y) =
q(G \ v; y) + q((G ∗ e) \ v; y).

We remark that Theorem 3.8 essentially generalizes Theorem 2.5, where the
latter corresponds to the case where G = I(C) is a circle graph. For example,
v is an isolated (unlooped) vertex of I(C) if and only if v is a cut vertex in the
underlying 2-in 2-out digraph. However, in Theorem 3.8 the different cases are
disjoint (i.e., for each vertex, exactly one of the latter three conditions hold).

Example 3.9. In Figure 10 we illustrate the recursive computation of the inter-
lace polynomial for the graph G from Figure 8, cf. Example 3.5. We obtain
(again) q(G; y) = y2 + 4y + 1. For simplicity, Figure 10 does not include the
computations on graphs with only isolated unlooped vertices.

3.5 Other properties

An important property of the interlace polynomial is that it is invariant under
both local complementation and edge local complementation. These are two

1To simplify various results, the definition of edge local complement presented here is
slightly different from the definition in [6] (the only difference is that identities of the vertices
of the edge e are swapped).
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Figure 10: Recursive computation of the interlace polynomial q(G; y). With
each graph F we give the polynomial q = q(F ; y).

Figure 11: Two trees with the same interlace polynomial.

special cases of the more general invariance under principal pivot transform, see
Theorem 6.2.

Theorem 3.10 ([7, 6]). Let G be a graph.

• If v is a looped vertex of G, then q(G; y) = q(G ∗ v; y).

• If e = {v, w} ∈ E(G) with v and w unlooped vertices, then q(G; y) =
q(G ∗ e; y).

Theorem 3.10 shows that graphs cannot be characterized by their interlace
polynomials. In fact, the trees of Figure 11 have the same interlace polynomial,
but are not in the same orbit under edge local complementation [3].

We now consider a number of evaluations of the interlace polynomial. A
perfect matching of a graph G is a set of edges P (loops are allowed) of G such
that every vertex of G is incident to exactly one edge of P . The next theorem is
shown by Aigner and van der Holst [3]. They only consider simple graphs, but
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it is easy to see that the evaluations of q(G; 1) and q(G; 2) carry over trivially to
graphs (with loops) and, using [13], it is observed in [22] that the evaluations of
q(G;−1) and q(G; 3) carry over to graphs as well. This is not true for q(G; 0).

Theorem 3.11 ([3, 13]). Let G be a graph and n = |V (G)|.

• q(G;−1) = (−1)n(−2)n(A(G)+I), where I is the V (G) × V (G) identity
matrix,

• q(G; 0) = 0 if n > 0 and G has no loops,

• q(G; 1) is equal to the number of induced subgraphs of G with an odd
number of perfect matchings (including the empty graph),

• q(G; 2) = 2n,

• q(G; 3) = k |q(G;−1)| for some odd integer k.

Evaluations and invariance properties of the interlace polynomial have also
been investigated for particular subclasses of graphs. In particular, interlace
polynomials for distance hereditary graphs have been investigated in [30].

3.6 The global interlace polynomial

Let us consider the following (unnamed) polynomial defined in [3]:

Definition 3.12. Let G be a graph. Then the global interlace polynomial of G
is

Q(G; y) =
∑

X⊆V (G)

∑

Y ⊆X

(y − 2)n((A(G+Y ))[X]).

The definition of the global interlace polynomial is motivated by Theo-
rem 3.1. Whereas the interlace polynomial q(G; y) for an interlace graph
G = I(C) only considers transitions that either follow C or are orientation
consistent, this global variant allows all three possibilities. In this way, q(G; y)
generalizes the Martin polynomial for 2-in 2-out digraphs, Theorem 3.4, whereas
Q(G; y) generalizes the Martin polynomial for 4-regular graphs.

Theorem 3.13. Let G be a 4-regular graph, and let C be an Eulerian system
for G. Then M(G; y) = Q(I(C); y).

The next result presents invariant results for the global interlace polynomial.

Theorem 3.14 ([3, 13]). Let G be a graph.

• If v is a vertex of G, then Q(G; y) = Q(G+ v; y).

• If v is a looped vertex of G, then Q(G; y) = Q(G ∗ v; y).

• If e = {v, w} ∈ E(G) with v and w unlooped vertices, then Q(G; y) =
Q(G ∗ e; y).

14



The next theorem shows that there are recursive relations that characterize
Q(G; y) (along with the equality Q(G; y) = Q(G+ v; y) for vertices v of G).

Theorem 3.15 ([3, 13]). Let G be a graph.

• If V (G) = ∅, then Q(G; y) = 1.

• If v is an isolated vertex of G, then Q(G; y) = y Q(G \ v; y).

• If e = {v, w} ∈ E(G) with v and w unlooped vertices, then
Q(G; y) = Q(G \ v; y) +Q((G ∗ e) \ v; y) +Q(((G+ v) ∗ v) \ v; y).

Since Q(G; y) is invariant under adding/removing loops, we assume in the
next result without loss of generality that G is simple (i.e., does not have any
loops).

Theorem 3.16 ([3, 13]). Let G be a simple graph and n = |V (G)|.

• Q(G; 0) = 0 if n > 0,

• Q(G; 2) is the number of graphs G′ (including the empty graph) such that
(1) removing all loops from G′ obtains an induced subgraph of G and (2)
G′ has an odd number of perfect matchings,

• Q(G; 3) = 3n,

• Q(G; 4) = 2neG, where eG is the number of induced Eulerian subgraphs of
G.

3.7 Generalized transition polynomial for graphs

For a finite set V , we define P3(V ) to be the set of triples (V1, V2, V3) where
the Vi’s are pairwise disjoint and V1 ∪ V2 ∪ V3 = V . Hence, (V1, V2, V3) is an
“ordered partition” of V (where Vi’s are allowed to be empty).

Similarly as done in [26, 43], we may define a common generalization of the
interlace polynomial and the global interlace polynomial.

Definition 3.17. Let G be a graph and W = (~a,~b,~c) with ~a, ~b, and ~c vectors
indexed by V (G). Then the generalized transition polynomial of G with respect
to W is

Q(G,W ; y) =
∑

(X1,X2,X3)∈P3(V (G))

aX1
bX2

cX3
yn(A(G[X2∪X3]+X3)),

where ~a (~b, ~c, resp.) has entries av (bv, cv, resp.) for all v ∈ V (G), aX1
=

∏

v∈X1
av, and similarly for bX2

and cX3
.

Up to a simple shift of the variable y the interlace polynomial q(G; y) and
the polynomial Q(G; y) are both specializations of Q(G,W ; y). Indeed, q(G; y)
corresponds to the case where av = bv = 1 and cv = 0 for all v ∈ V (G), and
Q(G; y) corresponds to the case where av = bv = cv = 1 for all v ∈ V (G).
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As before, via Theorem 3.1, circle graphs form the link between the weighted
transition polynomial of 4-regular graphs and the generalized transition polyno-
mial. The ordered partition (X1, X2, X3) serves as a description of the transition
system (relative to an Eulerian system).

The two-variable interlace polynomial [7] is defined by q(G;x, y) =
∑

X⊆V (x−1)r(A(G)[X])(y−1)n(A(G)[X]), which can be obtained from Q(G,W ; y)
by a change of variables and setting av = 1, bv = x, cv = 0 for all v ∈ V (G).

4 Interlace and Tutte polynomial

For a bipartite graph G with U and V partite sets of G, we call the triple
(U, V,E(G)) a (U, V )-bipartite graph.

We turn to (binary) matroids. Let B be a basis of a binary matroid M .
Then the fundamental graph G of M with respect to B is the (B,E(M) \ B)-
bipartite graph with {v, w} ∈ E(G) if and only if v ∈ B and w ∈ E(M) \B and
B \ {v} ∪ {w} is a basis of M .

The next result is a generalization of Theorem 2.7.

Theorem 4.1 ([3]). Let M be a binary matroid and G be the fundamental graph
of M with respect to some basis B. Then T (M ; y, y) = q(G; y).

In view of Theorem 4.1, Theorem 3.11, which holds for arbitrary graphs (not
only bipartite graphs), provides a generalization of the evaluations of T (M ; y, y)
for binary matroids M and y ∈ {−1, . . . , 3}. Indeed, it can be shown that the
dimension of the bicycle space of M is equal to n(A(G)+ I) where G is an arbi-
trary fundamental graph of M — this recovers the evaluation of T (M ;−1,−1)
from [41].

As observed by Bouchet [15], it is possible to extend Theorem 4.1 to the full
two-variable Tutte polynomial T (M ;x, y) for binary matroids if one is careful
to distinguish the two partite sets of the (bipartite) fundamental graph G of M .

We first define a graph polynomial much like the interlace polynomial, but
it is only defined for (U, V )-bipartite graphs.

Theorem 4.2 ([15]). Let G be a (U, V )-bipartite graph. There is a graph poly-
nomial q′(G;x, y) defined by the following relations.

• If V (G) = ∅, then q′(G;x, y) = 1.

• If v ∈ U is isolated in G, then q′(G;x, y) = x q′(G \ v;x, y).

• If v ∈ V is isolated in G, then q′(G;x, y) = y q′(G \ v;x, y).

• If v ∈ e ∈ E(G), then q′(G;x, y) = q′(G \ v;x, y) + q′((G ∗ e) \ v;x, y).

The next result generalizes Theorem 4.1.

Theorem 4.3 ([15]). Let M be a binary matroid. Then T (M ;x, y) =
q′(G;x, y), where G is the fundamental graph of M with respect to some ba-
sis B.
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5 Isotropic Systems and the Tutte-Martin Poly-

nomial

The notion of isotropic system is defined by Bouchet [10] to unify various prop-
erties of transition systems of 4-regular graphs and binary matroids. In [13]
two polynomials for isotropic systems are studied: the restricted Tutte-Martin
polynomial and the global Tutte-Martin polynomial. It is observed in [15] that
the interlace polynomial can be formulated as a specialization of the Tutte-
Martin polynomial. Many results of the previous sections of this chapter can be
straightforwardly obtained from the results of [13] once the interlace polynomial
is formulated as a specialization of the Tutte-Martin polynomial.

We define isotropic systems in a slightly nonstandard way, using terminology
from multimatroids [14] similar as done in [45]. Let U be a finite set and
Ω be a partition of U such that |ω| = 3 for all ω ∈ Ω. A subtransversal
(transversal, resp.) of Ω is a subset S ⊆ U such that |S ∩ ω| ≤ 1 (|S ∩ ω| = 1,
resp.) for all ω ∈ Ω. Let S(Ω) and T (Ω) be the sets of all subtransversals
and transversals, respectively. We regard S(Ω) as a vector space over GF (2)
isomorphic to (GF (2)2)Ω: every singleton {x} ⊆ ω ∈ Ω corresponds to a unique
x′ ∈ (GF (2)2)Ω with entries x′

ω′ = (0, 0) if ω′ 6= ω and entry x′
ω 6= (0, 0). The

elements of U generate in this way the whole of S(Ω). We equip S(Ω) with a
bilinear form B : S(Ω)×S(Ω) → GF (2): for S1, S2 ∈ S(Ω) we have B(S1, S2) =
1 if and only if there are an odd number of ω ∈ Ω with |ω ∩ (S1 ∪ S2)| = 2.

A subspace L of S(Ω) is called totally isotropic if all vectors of L are mutually
orthogonal, i.e., B(S1, S2) = 0 for all S1, S2 ∈ L.

Definition 5.1 ([10]). Let Ω be as above. Then I = (Ω,L) is an isotropic
system if L is totally isotropic subspace of S(Ω) of dimension |Ω|.

For an isotropic system I = (Ω,L) and T ∈ T (Ω), we define the nullity of
T in I, denoted by nI(T ), as dim({X ∈ L | X ⊆ T }).

Definition 5.2 ([13]). Let I = (Ω,L) be an isotropic system.

• The restricted Tutte-Martin polynomial of I with respect to T ∈ T (Ω) is
m(I, T ; y) =

∑

X∈T (ΩV ),X∩T=∅(y − 1)nI(X).

• The global Tutte-Martin polynomial of I is M(I; y) =
∑

X∈T (Ω)(y −

2)nI(X).

Of course, it is possible to, just as in Definition 3.17, define the obvious
weighted variants of the polynomials of Definition 5.2. Let us denote the
weighted variant of the global Tutte-Martin polynomial M(I; y) by M(I,W ; y).

We now associate an isotropic system with a graph. Let us identify the
elements of ker(E) for a X × Y -matrix E over GF (2) with subsets of Y in the
usual way. In other words, we identify ker(E) with the cycle space of the column
matroid of E. Let us denote, for Y ′ ⊆ Y , n(E[X,Y ′]) by nE(Y

′).
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Theorem 5.3 ([45]). Let G be a graph, let Ω be a partition of a set with |ω| = 3
for all ω ∈ Ω and |Ω| = |V (G)|, and let V1, V2, V3 ∈ T (Ω) be mutually disjoint.
Consider the matrix

E =
(
V1 V2 V3

I A(G) A(G) + I
)
.

Then IG = (Ω,LG) with LG = S(Ω) ∩ ker(E) is an isotropic system.
Moreover, for all X ∈ T (Ω),

nIG
(X) = nE(X) = n(A(G+X3[X2 ∪X3])),

where Xi = X ∩ Vi for all i ∈ {1, 2, 3}.

The graph G is called the fundamental graph or graphic presentation of IG
with respect to (V1, V2, V3) [11]. It turns out that for every isotropic system has
a fundamental graph. In fact, isotropic systems can essentially be viewed as an
alternative formulation of the null spaces ker(E) (or, equivalently, the column
matroids) of the matrices E as in Theorem 5.3, see [45].

As a consequence of Theorem 5.3 we have the following corollary which
establishes the close relationship between the Tutte-Martin polynomials and
the (global) interlace polynomial.

Corollary 5.4. Let G be a graph and IG the isotropic system from Theorem 5.3.
Then we have the following:

• m(IG, V3; y) = q(G; y), and

• M(IG; y) = Q(G; y).

Isotropic systems have three kinds of minors which correspond to the “com-
ponents” in the recursive relation of the global interlace polynomial of Theo-
rem 3.15.

6 The interlace polynomial for arbitrary square

matrices

The definition of interlace polynomial (Definition 3.3) can be straightforwardly
generalized to arbitrary square matrices as follows.

Definition 6.1. Let A be a V × V -matrix over some field. Then the interlace
polynomial of A is

q(A; y) =
∑

X⊆V

(y − 1)n(A[X]).

With this definition in place, for a graph G, we have q(G; y) = q(A(G); y),
cf. Definition 3.3.
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It turns out that the invariance result (Theorem 3.10) and the recursive
relation (Theorem 3.8) of the interlace polynomial can be generalized to this
general setting [20].

It was observed by Geelen [31] that the two operations of local complemen-
tation and edge local complementation can be seen as special cases of principal
pivot transform (or PPT for short) [47]. PPT is defined with respect to any
V ×V -matrix A over some field F and any X ⊆ V with the principal submatrix
A[X ] nonsingular:

if A =

(
X V \X

X P Q

V \X R S

)

, then A ∗X =

(
X V \X

X P−1 −P−1Q

V \X RP−1 S −RP−1Q

)

.

The matrix A ∗ X [V \ X ] = S − RP−1Q is well known and called the Schur
complement of A[X ] in A [49]. PPT is characterized by the following relation,
which shows that PPT can be seen as an operation that inverts A along the
entries indexed by X , i.e., PPT partially inverts A [46]:

A

(
x1

x2

)

=

(
y1
y2

)

if and only if A ∗X

(
y1
x2

)

=

(
x1

y2

)

. (6.1)

Let G be a graph. If v ∈ V (G) is a looped vertex, then the local complement
G∗v of G at v has adjacency matrix A(G)∗{v}. Also, if e = {v, w} ∈ E(G) with
v and w unlooped vertices, then the edge local complement G ∗ e of G at e has
adjacency matrix A(G) ∗ e. Conversely, if A(G) ∗X is defined, then A(G) ∗X is
the adjacency matrix of a graph G′ that can be obtained from G by a (possibly
empty) sequence of local complement and local edge complement operations
which together use each of the elements of X exactly once. In fact, any such
sequence of operations defined for G results in the same graphG′. Consequently,
PPT forms a common generalization of (sequences of) local complement and
edge local complement. For convenience, we write G ∗ X to denote the graph
with adjacency matrix A(G ∗X) = A(G) ∗X (which is defined when A(G)[X ]
is nonsingular).

For v ∈ V , we write A \ v to denote A[V \ {v}].

Theorem 6.2 ([20]). Let A be a V × V -matrix and X ⊆ V with A[X ] nonsin-
gular. Then q(A ∗X ; y) = q(A; y) and q(A; y) = q(A \ v; y) + q(A ∗X \ v; y) for
all v ∈ X.

A special case of Theorem 6.2, where A is skew-symmetric with only zero
diagonal entries and |X | = 2, was obtained in [32].

7 Polynomials for Delta-Matroids

We define interlace polynomials (and later weighted transition polynomials) for
set systems, which include ∆-matroids and in particular matroids (here de-
fined by their bases). Some results, in particular the recursive formulation for
the global interlace polynomial (Theorem 7.14) and some evaluations (Theo-
rem 7.15) only hold for ∆-matroids that have the additional property of being
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vf-safe (see Definition 7.10). The vf-safe ∆-matroids are essentially equivalent
to the so-called tight 3-matroids proposed by Bouchet, see [14, 22]. Also, the
class of isotropic systems (see Section 5) can be viewed as a subclass of the class
of tight 3-matroids.

7.1 Delta-matroids

A set system (with ground set V ) is a tuple M = (V,D) with D ⊆ 2V a family of
subsets. For simplicity we write X ∈ M to denote X ∈ D. Also, we often simply
write V to denote the ground set of the set system M under consideration. We
say that M is empty if D = ∅. A set system is called equicardinal if |X | = |Y |
for all X,Y ∈ M . We denote by dM = minY ∈M (|Y |) the cardinality of the
smallest set in M .

Let X ⊆ V . The twist (or pivot) of M on X , denoted M ∗ X , equals
(V,D ∗X) where D ∗X = {Y ∆X | Y ∈ M}.

The deletion of M by X , denoted M \X , equals (V,D′) where D′ = {Y ∈
D | Y ∩X = ∅}. If X = {u} is a singleton, we also write M ∗ u and M \ u for
M ∗X and M \X , respectively.

Notice that for a matroid M described by its bases (i.e., M = (V,B) where
B is the family of bases of M), we have that dM is equal to the rank r(M) of
M and M ∗ V is equal to the dual matroid M∗ of M .

A ∆-matroid [12] is a nonempty set system that satisfies the following
symmetric-difference variant of the basis exchange axiom for matroids:

Definition 7.1. A nonempty set system M is a ∆-matroid if and only if, for
each X,Y ∈ M and u ∈ X∆Y , there is an element v ∈ X∆Y (we allow u = v)
such that X∆{u, v} ∈ M .

Let M be a ∆-matroid over V and X ⊆ V . Then M ∗X is a ∆-matroid and
if M \X is nonempty, then M \X is a ∆-matroid.

A set system is a matroid (described by its bases) if and only if it is an
equicardinal ∆-matroid [12].

7.2 Representable delta-matroids and graphs

For a V × V -matrix A (over a field F) define the set system MA = (V,DA)
with DA = {X ⊆ V | detA[X ] 6= 0}. By convention detA[∅] = 1. Matrix A

is called skew-symmetric if AT = −A (i.e., ai,j = −aj,i for all i, j ∈ V ). Note
that we allow nonzero diagonal elements for skew-symmetric matrices over fields
with characteristic 2. For a skew-symmetric matrix A, the set system MA is a
∆-matroid [12].

A ∆-matroid M over V is representable over F if M = MA ∗ X for a
V × V -skew-symmetric A over F with X ⊆ V . A matroid turns out to be F-
representable (in this ∆-matroid sense) if and only if it is F-representable in the
usual matroid sense (as a column matroid) [12].

A (∆-)matroid is binary if representable over GF (2). Note that a graph G

is uniquely determined by its V (G)×V (G) adjacency matrix A(G). Since A(G)
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is a (skew-)symmetric matrix over GF (2), MA(G) is a binary ∆-matroid. We
write MG to denote MA(G).

Example 7.2. Let G be the graph from Example 3.5, see Figure 8. The
∆-matroid MA(G) consists of the subsets that induce nullity 0: MG =
({a, b, c, d}, {∅, {b}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}).

The following theorem ties graphs and PPT to delta-matroids and twist. For
notational convenience we write G ∗X to denote A(G) ∗X . Note that G ∗X is
defined if A(G)[X ] is nonsingular.

Theorem 7.3. Let G be a graph and X ⊆ V . Then the binary ∆-matroid MG

uniquely determines G (and the other way around). Moreover, MG∗X = MG∗X
(if the left-hand side is defined), and dMG∗X = n(G[X ]).

The statements of Theorem 7.3 are proved in [16], [12], and [21], respectively.

7.3 Interlace polynomial

We now define the interlace polynomial for set systems (and, in particular, ∆-
matroids) [22].

Definition 7.4. Let M be a set system over V . The interlace polynomial for
M is defined as

q(M ; y) =
∑

X⊆V

(y − 1)dM∗X .

By Theorem 7.3 we have q(G; y) = q(MG; y), so the interlace polynomial
for set systems generalizes the interlace polynomial for graphs. Moreover, it is
easy to see that q(M ∗X ; y) = q(M ; y) for all X ⊆ V .

Originally obtained for 4-regular graphs [34] and for binary matroids [2]
we now state the connection of a weighted interlace polynomial to the Tutte
polynomial for matroids in general.

Theorem 7.5 ([22]). Let M be a matroid over V (described by its bases). For
any values a, b,

∑

X⊆V a|V \X|b|X|ydM∗X = an(M)br(M)T (M ; 1 + a
b
y, 1+ b

a
y). In

particular q(M ; y) = T (M ; y, y).

An element v of the ground set of set system M is a loop in M if M ∗ v \ v
is empty and a coloop in M if M \ v is empty. Note that this straightfor-
wardly generalizes the corresponding notions of loop and coloop for matroids
M . Moreover, v is said to be nonsingular if v is neither a loop nor a coloop in
M .

Although the interlace polynomial is defined for arbitrary set systems, we
only obtain recursive formulations and evaluations if we restrict to ∆-matroids.

Theorem 7.6 ([22]). Let M be a ∆-matroid. If u ∈ V is nonsingular in M ,
then

q(M ; y) = q(M \ u; y) + q(M ∗ u \ u; y).

If every v ∈ V is singular in M , then q(M ; y) = yn with n = |V |.

21



( abcd, {∅, b, ab, ac, bc, cd, abc, bcd, abcd} )

( bcd, {∅, b, bc, cd, bcd} )

( cd, {∅, cd} )

( d, {∅} )

y

( d, {d} )

y

( cd, {∅, c, cd} )

( d, {∅} )

y

( d, {∅, d} )

y2

( bcd, {b, c, bc, bcd} )

( cd, {c} ) ( cd, {∅, c, cd} )

\ c ∗ c \ c\ c
∗ c \ c

\ b ∗ b \ b\ b
∗ b \ b

\ a ∗ a \ a

( ∅, {∅} )

1

( ∅, {∅, ∅} )

1

\ d ∗ d \ d

︸ ︷︷ ︸

y + 2

Figure 12: Recursive computation of q(M); the tree rooted ( cd, {∅, c, cd} )
occurs twice.

Example 7.7. Consider the ∆-matroid M = MG from Example 7.2 for the
graph in Figure 8. We recursively compute its interlace polynomial q(M ; y) =
y2 + 4y + 4, see Figure 12. Thus is the same result as in Example 3.5.

7.4 Loop complementation

The loop complementation of M on X , denoted M +X , equals (V,D′) where
Y ∈ D′ if and only if |{Z ∈ M | Y \X ⊆ Z ⊆ Y }| is odd [19]. The name of the
latter operation is motivated by its close connection to toggling loops in graphs.

Theorem 7.8. Let G be a graph and X ⊆ V (G). Then MG+X = MG +X.

Again, if X = {u} is a singleton, then we also write M + u for M +X . We
assume left associativity of set system operations.

Example 7.9. Consider the ∆-matroid M = MA(G) where G is the graph from
Figure 8, see Example 7.2. ThenM+c = ({a, b, c, d}, {∅, {b}, {c}, {a, b}, {a, c}, {c, d},
{b, c, d}, {a, b, c, d}}.

For u ∈ V , the operations ∗ u and + u are involutions and generate the
symmetric group S3 of permutations on three elements [19]. Moreover, twist
and loop complementation commute on different elements. In this way, twist
and loop complementation generate a group isomorphic to SV

3 that acts on set
systems over V .
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The dual pivot on X , denoted by ∗̄X , equals ∗̄X = ∗X +X ∗X = +X ∗
X +X . More explicitly, M ∗̄X is the set system (V,D′) where Y ∈ D′ if and
only if |{Z ∈ M | Y ⊆ Z ⊆ Y ∪X}| is odd.

It turns out that the class of ∆-matroids is not closed under loop comple-
mentation or dual pivot.

Definition 7.10. We say that a ∆-matroid M is vf-safe if applying any se-
quence of twist, dual pivot, loop complementation to M obtains a ∆-matroid.

It is shown that binary ∆-matroids are vf-safe [21]. Moreover, it is shown
in [18] that quaternary matroids (i.e., matroids representable over GF (4)) are
vf-safe.

7.5 Transition polynomial and global interlace polynomial

Definition 7.11. Let M be a set system. The (weighted) transition polynomial
for M is defined as

Q(M,W ; y) =
∑

(A,B,C)∈P3(V )

aAbBcC ydM∗B ∗̄ C ,

where W = (~a,~b,~c) and ~a (~b, ~c, resp.) is a vector indexed by V with entries av
(bv, cv, resp.) for all v ∈ V , aA =

∏

v∈A av, and similarly for bB and cC .

Note that the transition polynomial Q(M,W ; y) with weights au = a, bu =
b, cu = 0 for each u ∈ V is equal to the left-hand side of the equation in
Theorem 7.5.

The following result shows that Q(M,W ; y) generalizes the generalized tran-
sition polynomial Q(G,W ; y) for graphs of Definition 3.17.

Theorem 7.12 ([22]). Let G be a graph and W as in Definition 3.17. Then
Q(G,W ; y) = Q(MG,W ; y).

In particular, if we define the global interlace polynomial Q(M ; y) for a set
system M as Q(M,W1; y − 2) where all weights in W1 are equal to 1, then
Q(G; y) = Q(MG; y). The interlace polynomial q(M ; y) for set systems M is
equal to Q(M,W1; y − 1) with weights av = 1, bv = 1 and cv = 0 for all v.

The global interlace polynomial has the following very strong invariance
property.

Theorem 7.13. Let M be a set system over ground set V , and let M ′ be any
set system obtained from M by applying a sequence of twist, loop complement
and dual pivot operations. Then Q(M ′; y) = Q(M ; y).

We have a generic recursive relation for Q(M,W ; y) provided that M is a
vf-safe ∆-matroid. For v ∈ M we say that v is strongly nonsingular in M if
both v is nonsingular in M and M ∗̄ v \ v is nonempty.

Theorem 7.14 ([22]). Let M be a vf-safe ∆-matroid and let v ∈ V .
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1. If v is strongly nonsingular in M , then

Q(M,W ; y) = av Q(M\v,W ; y)+bv Q(M∗v\v,W ; y)+cv Q(M ∗̄ v\v,W ; y).

2. Assume v is not strongly nonsingular in M , and let { (z1,M1), (z2,M2),
(z3,M3) } = { (av,M \ v), (bv,M ∗ v \ v), (cv,M ∗̄ v \ v) }. If M1 is empty,
then M2 = M3 is nonempty and

Q(M,W ; y) = (z2 + z3 + z1y)Q(M2,W ; y).

Theorem 7.14 illustrates that vf-safe ∆-matroids have three natural types
of minors, in addition to deletion (equal to M \ v if M is not a coloop) and
contraction (equal to M ∗ v \ v if M is not a loop) there is a third minor
M ∗̄ v \ v.

Similar as for 4-regular graphs, the Penrose polynomial can also be defined
in this general setting as a special case of the transition polynomial [2, 18].

7.6 Evaluations

Using Theorem 7.5, some of the evaluations of points on the diagonal of the Tutte
polynomial can be generalized to set systems. We have trivially q(M ; 2) = 2|V |.
Moreover, Q(M ; 3) =

∑

X,Y⊆V,X∩Y=∅ 1 = 3|V |. Also, as X ∈ M if and only if
dM∗X = 0, we have that q(M ; 1) is equal to the number of sets in M .

A set system is called even if all its sets have the same parity. Obviously a
matroid (described by its bases) is even. Also, the ∆-matroid MG of a graph
G without loops is even.

Theorem 7.15 ([22, 13]). Let M be a ∆-matroid.

1. If M is even and |V | > 0, then q(M ; 0) = 0.

2. If M is vf-safe, then q(M ;−1) = (−1)|V |(−2)dM ∗̄ V .

3. If M is vf-safe with |V | > 0, then Q(M ; 0) = 0.

4. If M is binary, then q(M)(3) = k |q(M)(−1)| for some odd integer k.

In [18] it is shown that for quaternary matroids M , dM ∗̄V is equal to the
dimension bdM of the bicycle space of any representation of M , and thus we
retrieve, using Theorems 7.5 and 7.15, the result from [48] that T (M ;−1,−1) =
(−1)|E(M)|(−2)bdM . The case where M is binary was already shown in [41].

Example 7.16. The uniform matroid U2,5 is not binary, but it is quaternary
(i.e., representable over GF (4)) and therefore vf-safe. It is easy to verify that,
for a subset X of the ground set V , dU2,5∗X = ||X | − 2|. Hence q(U2,5; y) =
(y− 1)3+(5+1)(y− 1)2+(10+5)(y− 1)+10 = y3+3y2+6y. By definition an
element X is in M ∗̄V if and only if it is contained in an odd number of bases of
M . Straightforward combinatoric arguments show that U2,5 ∗̄V = U2,5. Indeed
q(U2,5;−1) = −4 = (−1)5(−2)2, cf. Theorem 7.15.
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section structure \ # of directions 2 3 3 weighted

2 2-in 2-out or 4-regular graph ~G, G m(~G; y) M(G; y) M(G,W ; y)
3 graph G q(G; y) Q(G; y) Q(G,W ; y)

4, 7 matroid M T (M ; y, y) - -
5 isotropic system I m(I, T ; y) M(I; y) M(I,W ; y)
6 square matrix A q(A; y) - -
7 (vf-safe) ∆-matroid M q(M ; y) Q(M ; y) Q(M,W ; y)

Table 1: Summary of the main polynomials considered in this chapter.

8 Discussion and Open Problems

Table 1 lists the main polynomials considered in this chapter. The three
right-most columns arrange the polynomials according to the number of “di-
rections” or minors in its recursive formulas. Notice that, apart from the rows
on T (M ; y, y) for matroids M and q(A, y) for square matrices A, the rows are
ordered in increasing level of generality. Moreover, the last column, concerning
3 directions with weights, generalizes the other two columns.

We mention that the notion of multimatroid, introduced by Bouchet [14],
generalizes the notion of ∆-matroid by allowing an arbitrary number of direc-
tions (instead of two, and, in the case of vf-safe ∆-matroids, three). It turns
out that the transition polynomial Q(M,W ; y) (and thus also its specializa-
tions) can be defined for arbitrary multimatroids. Moreover, many properties
of Q(M,W ; y), such as its recursive formulation and some evaluations, carry
over to this multimatroid polynomial [8, 22].

Many open problems and research directions remain. For example, in [28, 9]
the Martin polynomial m(G; y) is considered for arbitrary Eulerian (di)graphs
G. A natural question is to generalize this polynomial similar as done in this
chapter for the cases of 2-in 2-out and 4-regular graphs. A difficulty here is that
a vertex reduction may split a connected graph in more than two connected com-
ponents. This increases the “nullity” by more than one, which is impossible for
the standard elementary minors of contraction and deletion in (delta-)matroids.
Perhaps the generalization of the notion of delta-matroid called parity system
defined in [17] provides a clue for a suitable generalization to incorporate graphs
more general than 2-in 2-out and 4-regular graphs.

Another direction for further research is to generalize the full two-variable
Tutte polynomial to polynomials defined on more general structures than ma-
troids. While part of the (x, y)-plane is generalized through the interlace poly-
nomial of ∆-matroids through Theorem 7.5, it is an open question to generalize
the whole (x, y)-plane (i.e., the whole two-variable Tutte polynomial). Perhaps
Theorem 4.2 provides a lead to generalize the whole Tutte polynomial to more
general structures than matroids.
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