
Acta Informatica manuscript No.
(will be inserted by the editor)

Joost Engelfriet

The time complexity of typechecking
tree-walking tree transducers

the date of receipt and acceptance should be inserted later

Abstract Tree-walking tree transducers can be typechecked in double expo-
nential time. More generally, compositions of k tree-walking tree transducers
can be typechecked in (k + 1)-fold exponential time. Consequently k-pebble
tree transducers, which form a model of XML transformations and XML
queries, can be typechecked in (k + 2)-fold exponential time. The results
hold for both ranked and unranked trees.

1 Introduction

In [15] the k-pebble tree transducer was introduced by Milo, Suciu, and
Vianu as a formal model of XML document transformation languages and
XML query languages. Here we consider the (slight) reformulation of the
model as defined in [6]: the reading head (at a node of the input tree) is
not viewed as a pebble. In particular, the 0-pebble tree transducer will be
called tree-walking tree transducer (as the former name is rather strange for
a tree transducer that does not use any pebbles). As explained in [6], the
tree-walking tree transducer is closely related to the attribute grammar [13]
and can, in fact, be viewed as a notational variation of the attributed tree
transducer [7,8]; attribute grammars are a well-known compiler construction
tool (see, e.g., [1]).

A central problem in the verification of XML transformation programs
(and XML queries) is the typechecking problem: given such a program and
two document types, one for its input documents and one for its output doc-
uments, check whether or not all output documents conform to the output
type, assuming that only input documents are processed that conform to

Joost Engelfriet
LIACS, Leiden University
P.O.Box 9512, 2300 RA Leiden, The Netherlands
E-mail: engelfri@liacs.nl



2 Joost Engelfriet

the input type. Modelling XML documents as trees, we adopt (as in [15])
the regular tree languages as type formalism, and the regular tree grammars
as document type definitions (DTDs). Modelling XML transformation pro-
grams as tree transducers from a certain class C, the typechecking problem is
formalized as follows: given a transducer M from the class C and two regular
tree grammars that generate tree languages (i.e., types) Lin and Lout, check
whether or not τM (Lin) ⊆ Lout. Here τM denotes the tree transformation
realized by M ; in general τM is a binary relation, due to the nondetermin-
ism of M (which means that an input document may be translated into any
number of output documents). As shown in [15], the typechecking problem
is closely related to the inverse type inference problem: given a transducer M
from the class C and a regular tree grammar that generates a tree language
L′

out, construct a regular tree grammar generating the set L′

in of all input
trees for which at least one of the output trees conforms to the output type,
in other words L′

in = τ−1
M (L′

out), where τ−1
M is the inverse of the relation τM .

Assuming the inverse type inference problem to be solvable for the class C,
the typechecking problem for C can be decided by taking L′

out to be the
complement of Lout and then checking whether or not the intersection of Lin

and L′

in is empty (which is effective for regular tree languages).

It is shown in [15] that (a variation of) the inverse type inference prob-
lem for k-pebble tree transducers is solvable, and hence their typechecking
problem is decidable. Unfortunately, as also proved in [15], for varying k the
time complexity of the typechecking problem for k-pebble tree transducers
is extremely high: it is non-elementary, i.e., cannot be expressed by an it-
erated exponential function. The authors observe that “the main source of
complexity is the number of pebbles of the transducer”. In fact, it seems
that for fixed k the time complexity of the algorithm in [15] is (k + 4)-fold
iterated exponential. Here we remove two exponentials and show that the
problem can be decided in (k+2)-fold exponential time. This is based on the
decomposition of k-pebble tree transducers into a (k + 1)-fold composition
of tree-walking tree transducers, proved in [6], and the fact that the inverse
type inference problem for tree-walking tree transducers can be solved in
exponential time. The latter fact was proved by Bartha for attributed tree
transducers in [2], without mention of the time bound. To solve the inverse
type inference problem for a composition of transducers, one can just repeat
the inverse type inference algorithm for each of the transducers. Thus, for
(k + 1)-fold compositions of tree-walking tree transducers the inverse type
inference problem can be solved in (k + 1)-fold exponential time; the type-
checking problem takes one more exponential, due to the complementation
of the output type Lout.

The results hold both for ranked trees and for unranked forests. They
will first be shown for ranked trees, and in the last section (Section 7) for
unranked forests by a reduction to the case of ranked trees, using an idea of
Perst and Seidl in [17]. After some preliminaries in Section 2, we define the
tree-walking tree transducer in Section 3. We also define the k-pebble tree
transducer, of which the tree-walking tree transducer is the case k = 0; the
details of that definition are needed in Section 6 only. In Section 4 a basic
case of the inverse type inference problem for tree-walking tree transducers is



The time complexity of typechecking tree-walking tree transducers 3

considered: the case where the output type L′

out is unrestricted, i.e., consists
of all possible output trees, and thus L′

in is the domain of the transformation
τM . Section 5 contains the main results. As observed above, for the result on
pebble tree transducers we need their decomposition into tree-walking tree
transducers; this is sketched in Section 6, which can be skipped by the reader
familiar with [6].

The results of this paper were announced in [5].

2 Preliminaries

For m,n ∈ N (with N = {0, 1, 2, . . .}), [m,n] denotes the interval {k ∈ N |
m ≤ k ≤ n}; note that if m > n, then [m,n] = ∅. For a set A, P(A) denotes
the set of all subsets of A, and #(A) denotes its cardinality. For binary
relations R1 and R2, their composition is defined as R1 ◦ R2 = {(x, z) | ∃y :
(x, y) ∈ R1, (y, z) ∈ R2}.

In all sections except the last, all trees considered are ranked, as is the case
in [15,6] (the idea being that XML documents, which are basically unranked
forests, can be coded as binary trees in a well-known way). For a ranked
alphabet Σ we denote by rankΣ(σ) the rank of σ ∈ Σ, and by mxΣ the
maximum of all these ranks. The set of all (ranked) trees over Σ is denoted
TΣ. For a tree s ∈ TΣ, roots denotes its root, and for every node u of s, ui
denotes the ith child of u (if it has one) and u↑ denotes its parent (if it has
one). Every node u of s has a child number (which can be “read” by a tree
transducer): it equals j (with j ∈ [1,mxΣ ]) if u 6= roots and u = u↑ j (i.e.,
u is the jth child of its parent), and it equals 0 if u = roots. A descendant
of a node u of s is either u itself or a descendant of one of its children (and
in the latter case it is a proper descendant of u). If v is a descendant of u,
then u is an ancestor of v. A ranked alphabet Σ is binary (monadic) if all its
elements have rank 2 or 0 (rank 1 or 0, respectively); the elements of TΣ are
then called binary trees (monadic trees, respectively).

We assume the reader to be familiar with context-free grammars. They
will be used for two purposes: first, as a formal model of document types,
and second, to define the computations of tree-walking tree transducers (and
pebble tree transducers). In both cases we mainly consider a special type of
context-free grammar: the regular tree grammar.

For technical convenience we allow a context-free grammar to have a set
of initial nonterminals rather than just one. As usual, a context-free grammar
is specified as a tuple G = (N,T,R,S), where N is the nonterminal alphabet,
S ⊆ N the set of initial nonterminals, T the terminal alphabet (disjoint with
N), and R the finite set of productions, where each production is of the form
X → ζ with X ∈ N and ζ ∈ (N ∪ T )∗. The language generated by G is
L(G) = {w ∈ T ∗ | S ⇒∗ w for some S ∈ S}, where ⇒ is the usual derivation
relation. A context-free grammar is said to be forward deterministic if it has
exactly one initial nonterminal, and distinct productions have distinct left-
hand sides. Note that such a grammar generates at most one string; it will
be used to capture determinism of tree-walking tree transducers. A context-
free grammar is backward deterministic if distinct productions have distinct
right-hand sides.



4 Joost Engelfriet

As a formal model of DTD (Document Type Definition) we take the
regular tree grammar. A regular tree grammar is a context-free grammar
G = (N,T,R,S) such that (1) T = Σ ∪ P where Σ is a ranked alphabet
and P consists of the comma and the left and right parentheses, and (2)
every production is either of the form X0 → σ(X1, . . . , Xk) with Xi ∈ N
and σ ∈ Σ of rank k, or of the form X0 → X1 with Xi ∈ N . A regular
tree grammar generates trees over Σ, i.e., L(G) ⊆ TΣ. It will be specified as
G = (N,Σ,R,S) rather than G = (N,T,R,S). A regular tree grammar G
without chain rules, i.e., rules of the form X0 → X1, will also be viewed as a
recognizer of the tree language L(G). As such, it is called a (bottom-up or top-
down) finite-state tree automaton. Its nonterminals are then called states, its
initial nonterminals are called final or initial states in the bottom-up or top-
down case, respectively, and its productions are called transitions. A bottom-
up finite-state tree automaton is deterministic if it is backward deterministic
(as a context-free grammar); it is total if for every σ(X1, . . . , Xk) it has a
production with that right-hand side. A regular tree language is a set of trees
that can be generated by a regular tree grammar, or equivalently, recognized
by a (total deterministic) bottom-up finite-state tree automaton.

Whenever we discuss the time complexity of an algorithm, the under-
lying formal model is the multitape Turing machine (though it will never
be made explicit). Thus, when the algorithm has a tree grammar or tree
transducer X as input, X will be encoded as a string, in the usual way, to
be written on the input tape of the Turing machine, and the size of X is
the length of that string. However, we deviate in one way from the usual
encoding: we assume that for a ranked alphabet Σ, the rank of each sym-
bol is specified in unary notation rather than decimal notation; thus, the
size of Σ is k log k +

∑
σ∈Σ rankΣ(σ) with k = #(Σ), instead of the usual

k log k +
∑

σ∈Σ log(rankΣ(σ)). This is a reasonable assumption because, ex-
cept in trivial cases, each ranked symbol used in a tree grammar/transducer
occurs in a context where it has as many arguments as its rank. Since this
holds in particular for regular tree grammars, i.e., for type definitions, the
assumption is irrelevant in the case of typechecking. Note that the assump-
tion is vacuous when only binary alphabets Σ are considered; this is usual
when modelling XML documents (cf. [15]).

3 Tree-walking tree transducers

A tree-walking tree transducer is a finite state device that translates trees
into trees. The reading head of the transducer is a pointer to a node of the
input tree, which can be moved along the edges of the tree; in this way the
device “walks” on the input tree. In one move, depending on its current state
and on the label and child number of the current node, the transducer either
does not produce output, or produces one node of the output tree. In the
first case, it moves to a neighbor of the current node (or stays where it is),
and changes state. In the second case, the transducer spawns k independent
copies of itself, where k is the rank of the produced output node; each of the
copies changes state, independently. In the remaining computation, the ith



The time complexity of typechecking tree-walking tree transducers 5

copy will produce the ith subtree of the produced output node. Thus, the
output tree is generated in a top-down fashion.

Formally, a tree-walking tree transducer (in short, twtt) is a tuple M =
(Σ,∆,Q,Q0, R), where Σ and ∆ are ranked alphabets of input and output
symbols, respectively, Q is a finite set of states, Q0 ⊆ Q is the set of initial
states, and R is a finite set of rules. A rule is of the form 〈q, σ, j〉 → ζ with
q ∈ Q, σ ∈ Σ, j ∈ [0,mxΣ ], and ζ is of one of the forms

1. 〈q′, stay〉
2. 〈q′, up〉, provided j 6= 0
3. 〈q′, downi〉 with 1 ≤ i ≤ rankΣ(σ)
4. δ(〈q1, stay〉, . . . , 〈qk, stay〉)

with q′ ∈ Q, δ ∈ ∆, k = rank∆(δ), and q1, . . . , qk ∈ Q.
As discussed at the end of the previous section, the size of M is the

length of the string that encodes M in the usual way, with the (unusual)
convention that the ranks of input and output symbols are encoded in unary
notation. Note that, by this convention, if M has size n, then mxΣ ≤ n.
Instead of adopting this convention, we could have required the left-hand
side of each rule to contain the sequence (down1, . . . ,downm) of possible
down-instructions, where m is the rank of σ; this is usual in the case of top-
down tree transducers (and macro tree transducers), with downi denoted as
a variable xi.

The twtt M is deterministic if it has exactly one initial state, and distinct
rules have distinct left-hand sides. It is total if for every 〈q, σ, j〉 it has a rule
with that left-hand side.

For every input tree s ∈ TΣ we define a regular tree grammar GM,s.
As nonterminals it has all pairs 〈q, u〉 with q ∈ Q and u a node of s. The
initial nonterminals are all 〈q0, roots〉 with q0 ∈ Q0, and the terminal ranked
alphabet is ∆. If 〈q, σ, j〉 → ζ is a rule of M , then GM,s has a production
〈q, u〉 → ζ′ for every node u of s with label σ and child number j, where ζ′

equals

1. 〈q′, u〉
2. 〈q′, u↑〉
3. 〈q′, ui〉
4. δ(〈q1, u〉, . . . , 〈qk, u〉)

respectively (according to the possible forms of ζ mentioned above). Intu-
itively, the computations of M on input s are the (maximal) derivations of
the grammar GM,s. The translation realized by M , denoted τM , is defined as
τM = {(s, t) ∈ TΣ × T∆ | t ∈ L(GM,s)}. Note that if M is deterministic then
every GM,s is forward deterministic, and hence τM is a (partial) function.

For technical reasons we also need (in the proofs of Lemma 1 and Theo-
rem 1) certain subgrammars of GM,s. For a node u of input tree s ∈ TΣ we
define the regular tree grammar GM,s,u to be the same as GM,s except that
its set of productions consists of all productions of GM,s with left-hand side
〈q, v〉 where q ∈ Q and v is a descendant of u. Intuitively, the derivations
of GM,s,u that start with some 〈q, u〉, model the computations of M on the
subtree of s with root u. Note that the right-hand side of a production of
GM,s,u may contain a nonterminal 〈q′, u↑〉.



6 Joost Engelfriet

When disregarding the output of the twtt, we obtain the alternating tree-
walking automaton (see, e.g., [19, Definition 4.1]). Thus, the domains of the
twtt translations are the tree languages recognized by such automata. For-
mally, an alternating tree-walking automaton is a tuple M = (Σ,Q,Q0, R),
defined in exactly the same way as a twtt, except that the fourth form of
a right-hand side ζ is 〈q1, stay〉 · · · 〈qk, stay〉 with k ∈ N and q1, . . . , qk ∈ Q
(note that this makes the first form superfluous). The computations of M
are defined analogously to the twtt, but here GM,s is a context-free gram-
mar with empty terminal alphabet (and thus its sentential forms consist of
nonterminals only). In the fourth case, the right-hand side ζ′ of the pro-
duction of GM,s is 〈q1, u〉 · · · 〈qk, u〉. The tree language recognized by M is
L(M) = {s ∈ TΣ | ε ∈ L(GM,s)}, where ε is the empty string.

The k-pebble tree transducer [15] works in the same way as the twtt, but
additionally has k pebbles at its disposal, which it can use to temporarily
mark the nodes of the input tree. The pebbles are dropped and lifted in a
LIFO fashion: the pebble that was dropped last, must be lifted first (other-
wise, typechecking would not be decidable). The transducer can detect how
many pebbles are placed on the input tree and which of those are placed on
the current node; it can drop or lift pebbles at the current node only.

For completeness sake we now present the formal definition of the pebble
tree transducer (following its reformulation in [6]); the details will only be
needed in Section 6. For k ∈ N, a k-pebble tree transducer is a tuple M =
(Σ,∆,Q,Q0, R), where the components are as for the twtt, but the rules in
R are different. A rule is of the form 〈q, σ, j, b〉 → ζ with q, σ, and j as for
the twtt, b is a mapping b : [1, l] → {0, 1} for some l ∈ [0, k], and ζ is of one
of the forms 1–4 as for the twtt or of one of the forms

5. 〈q′, drop〉, provided l < k
6. 〈q′, lift〉, provided l ≥ 1 and b(l) = 1.

For s ∈ TΣ, the nonterminals of the regular tree grammar GM,s are all triples
〈q, u, π〉 where q and u are the same as for the twtt and π is a mapping
π : [1, l] → Ns for some l ∈ [0, k], with Ns denoting the set of nodes of s.
Intuitively, π is a stack of l pebbles, that are placed on nodes of the input tree,
the other k− l pebbles being unused; l is the top of the stack, i.e., π(l) is the
position of the pebble that was dropped last. The initial nonterminals are all
〈q0, roots, ∅〉 with q0 ∈ Q0 and ∅ is the empty mapping (which is the unique
mapping [1, 0] → Ns). If 〈q, σ, j, b〉 → ζ is a rule of M with b : [1, l] → {0, 1},
then GM,s has a production 〈q, u, π〉 → ζ′ for every node u of s with label σ
and child number j, and every π : [1, l] → Ns such that b(m) = 1 if and only
if π(m) = u (for all m ∈ [1, l]), and ζ′ equals

5. 〈q′, u, π ∪ {(l + 1, u)}〉
6. 〈q′, u, π \ {(l, u)}〉

respectively; in cases 1–4, ζ′ is obtained from the one of the twtt by adding π
to all nonterminals (because the pebbles are unchanged in these cases; note
that in the fourth case the pebble stack is copied). The translation realized
by M is defined as for the twtt.

Note that the 0-pebble tree transducer is just the twtt (disregarding the
b’s and π’s, which are all the empty mapping). Note also that by definition,



The time complexity of typechecking tree-walking tree transducers 7

for each input tree s, the set τM (s) is a regular tree language; moreover, since
there are O(nk) possible pebble stacks, where n is the size of s, the grammar
GM,s can be constructed from s in polynomial time, cf. Proposition 3.8 of
[15]: each pebble tree transducer has polynomial time data complexity.

The alternating k-pebble tree automaton (cf. [15, Definition 4.5]) is ob-
tained from the k-pebble tree transducer in the same way as the alternating
tree-walking automaton is obtained from the twtt, changing the fourth form
of the right-hand side of a rule. These automata recognize exactly the do-
mains of the k-pebble tree translations.

4 Domains

The main idea in the solution of the typechecking problem for k-pebble tree
transducers in [15] is that the domain of such a transducer is (effectively) a
regular tree language: a special case of the inverse type inference problem. In
this section we present, for k = 0, i.e., for the twtt, a more efficient algorithm
to construct a regular tree grammar for the domain.

As explained in Section 3.2 of [6], the deterministic twtt is closely re-
lated to the attribute grammar of [13]. An attribute grammar for which the
values of the attributes are trees, i.e., unevaluated expressions, is called an
attributed tree transducer (see [7,8]). The nondeterministic version of the
attributed tree transducer (introduced in [7]) is, as to be expected, closely
related to the nondeterministic twtt. It was shown by Bartha in [2] that the
domain of a nondeterministic attributed tree transducer is a regular tree lan-
guage. The algorithm to be presented in this section is essentially the one of
[2], but instead of the top-down tree automaton of [2] we construct a bottom-
up tree automaton which, in our opinion, is easier to understand. Also, of
course, we have to translate the attribute grammar terminology into the one
for twtts.

One of the main results on attribute grammars is the decidability of
the noncircularity problem in exponential time [13]. In fact, the problem is
complete in exponential time, and hence its time complexity is intrinsically
exponential [10] (see also [9,4,3]). Roughly speaking, an attribute grammar
G is noncircular if the corresponding twtt is always-halting. The algorithms
for noncircularity in [13,10] essentially construct a regular tree grammar G′

for the complement of the domain of G, i.e., for the set of all derivation trees
(of the underlying context-free grammar of G) on which G is circular, and
then test whether L(G′) = ∅.

Thus, the following result is not surprising, and the proof we present is a
simple variation of the algorithm of [13] (to be precise, of the correction to
[13] that appeared in 1971). An alternative proof, without the time bound,
was given in [11, Theorem 3.5] (taking into account that the domain of a de-
terministic twtt can be recognized by an alternating tree-walking automaton
with universal states only).

In what follows, by ‘exponential time’ we will mean deterministic time
2p(n) where p(n) is a polynomial in n (and n is the size of the problem
instance).



8 Joost Engelfriet

Lemma 1 For every deterministic twtt M a total deterministic bottom-up
finite-state tree automaton A can be constructed in exponential time such that
A recognizes the domain of τM .

Proof Let M = (Σ,∆,Q, {q0}, R). Without loss of generality we assume that
M is total (add a rule 〈q, σ, j〉 → 〈q, stay〉 when there is no rule with that
left-hand side; since j ≤ mxΣ ≤ n where n is the size of M , this adds at
most n3 rules).

The states of A are all mappings

d : (Q× [0,mxΣ ]) → (P(Q) ∪ {⊥})

such that, for each q ∈ Q, d(q, 0) is either ∅ or ⊥. The idea is that for any
tree s ∈ TΣ , A arrives at the root of s in the unique state d such that the
statement in the following paragraph holds.

For every q ∈ Q and j ∈ [0,mxΣ ], and for every tree s′ ∈ TΣ and every
node u of s′ with child number j such that s is the subtree of s′ with root
u: if there is a derivation 〈q, u〉 ⇒∗ t in GM,s′,u such that no production of
that grammar is applicable to t, then d(q, j) is the set of all states q′ ∈ Q
such that the nonterminal 〈q′, u↑〉 occurs in t (which means that d(q, j) = ∅
in the case where j = 0), and if there is no such derivation, then d(q, j) = ⊥.

More intuitively, since M is deterministic, it has a unique computation
on the subtree s starting in state q at the root u (with child number j). This
computation is either finite or infinite. If the computation is infinite then
d(q, j) = ⊥, whereas if it is finite then d(q, j) is the set of all states that
occur in the output tree t generated by the computation. Note that in the
finite case, since M is total, all nonterminals occurring in t are of the form
〈q′, u↑〉. Note also that the computation does not depend on s′, except for
the fact that the child number of u is j.

In accordance with the above idea, the final states of A are all d such that
d(q0, 0) = ∅, and the transitions of (the total deterministic) A are all d →
σ(d1, . . . , dk), with rankΣ(σ) = k, where the left-hand side d is determined
from the right-hand side as follows. Consider j ∈ [0,mxΣ ]. Now build a
directed graph Dj , called dependency graph, with the following vertices and
edges. The vertices are all 〈q, ϕ〉 with q ∈ Q and ϕ ∈ {up, stay} ∪ {downi |
i ∈ [1, k]}. For every rule 〈q, σ, j〉 → ζ of M , if 〈q′, ϕ〉 occurs in ζ then there
is an edge from 〈q, stay〉 to 〈q′, ϕ〉. For every i ∈ [1, k], if di(q, i) ∈ P(Q)
and q′ ∈ di(q, i) then there is an edge from 〈q, downi〉 to 〈q′, stay〉; moreover,
if di(q, i) = ⊥ then there is an edge from 〈q, downi〉 to itself. From this
dependency graph Dj , d(q, j) is defined for every q ∈ Q as follows: if there is
an infinite directed path through Dj starting at 〈q, stay〉 (i.e., if a cycle can
be reached from 〈q, stay〉), then d(q, j) = ⊥; otherwise, d(q, j) is the set of
all q′ such that there is a directed path in Dj from 〈q, stay〉 to 〈q′, up〉.

Intuitively, a vertex 〈q, stay〉 of Dj represents the twtt M in state q at
some node u (with label σ and child number j) currently processed by the
automaton A. Vertices 〈q, up〉 and 〈q, downi〉 represent M in state q at the
parent u↑ of u, and at the ith child ui of u, respectively. The edges of Dj

represent the computation steps of M from u to its parent, to itself, and
to its children (as given by the rules of M), plus the computations from its



The time complexity of typechecking tree-walking tree transducers 9

children to itself (as given by d1, . . . , dk, where, for the ith child, the second
argument of di is restricted to child number i). From this it should be clear
that A recognizes the domain of τM .

Let n be the size of M . Let m = mxΣ and let k = #(Q); note that
k,m ≤ n. The number of mappings d is at most δ = (2k + 1)k(m+1), which is

at most 2c1n3

for some constant c1. The number of transitions of A is at most
#(Σ)δm, which is at most 2c2n4

for some constant c2. The time to compute
each transition is polynomial in n, because it involves reachability between
vertices in a graph of polynomial size. Hence the total time to compute A is

at most 2cn4

for some constant c, i.e., exponential in the size of M . ⊓⊔

We now turn to the nondeterministic case. As observed before, for nonde-
terministic attributed tree transducers it was shown in [2] that their domains
are regular tree languages. Also, it was shown in [19, Corollary 5.3], and in
[15, Theorem 4.7], that alternating tree-walking automata recognize regular
tree languages (and recall that the domains of nondeterministic twtts are
recognized by such automata).

From the proof of Lemma 1 one would expect that for a nondeterministic
twtt M it would take double exponential time to compute a deterministic
bottom-up tree automaton A that recognizes its domain: for each state q
there are several computations on a given subtree, and thus each d(q, j)
would have to be a set of subsets of Q rather than just one subset of Q.
The proofs mentioned above are given without time bounds. The construc-
tion in [19] indeed takes double exponential time (one exponential in the
proof of [19, Theorem 5.2], and another exponential in the proof of [12, The-
orems 5.4 and 6.2]). The construction in [15] even takes triple exponential
time: The MSO formula constructed for the regular tree language is, roughly
speaking, of the form ∀S1 · · · ∀Sk ((∀x∀y ϕ) ⇒ ψ) which is equivalent to
¬∃S1 · · · ∃Sk ∀x∀y (ϕ⇒ ψ), where k is the number of states of the twtt and
ϕ, ψ are quantifier-free. Since ϕ ⇒ ψ refers to S1, . . . , Sk, the size of the
corresponding bottom-up tree automaton is exponential. The ∀x∀y and the
negation both involve the subset construction for bottom-up tree automata,
which takes exponential time.

Even allowing A to be nondeterministic, there is the problem that, in a
given computation, M can have several subcomputations that start in the
same state q at the same node u, but use different rules with left-hand side
〈q, σ, j〉 (where σ is the label of u and j its child number). However, as shown
in [2], this problem can be avoided, and hence exponential time suffices to
compute a nondeterministic automaton A. The main idea is embodied in the
next, elementary lemma.

Lemma 2 For every context-free grammar G = (N,T,R,S) with L(G) 6= ∅
there exists a forward deterministic context-free grammar G′ = (N,T,R′, {S})
with L(G′) 6= ∅, R′ ⊆ R, and S ∈ S.

Proof Consider a successful derivation tree t of G, with the root labelled S.
It suffices to show the existence of a successful derivation tree t′ of G with the
property that for every nonterminal X of G, the same production is applied
at each occurrence of X in t′: that production can be taken as the unique



10 Joost Engelfriet

production in R′ with left-hand side X . Consider a fixed nonterminal X .
We may assume that there are no occurrences of X at nodes u and v of t,
such that v is a proper descendant of u (if so, transform t by replacing the
subtree at node u by the one at node v, just as in the proof of the pumping
lemma for context-free grammars). But then all occurrences of X in t are
at independent nodes, and we can transform t by replacing the subtrees at
those nodes by one of them (picked arbitrarily). The resulting derivation tree
has the required property for nonterminal X . Now repeat this procedure for
each remaining nonterminal; clearly, it preserves the required property for all
previously processed nonterminals. ⊓⊔

Theorem 1 (cf. [2]) For every tree-walking tree transducer M a finite-state
tree automaton A can be constructed in exponential time such that A recog-
nizes the domain of τM .

Proof Let us say, informally, that a computation of M on an input tree s is
locally deterministic if for each state q and each node u of s, it applies the
same rule whenever it arrives in state q at node u. Formally, since such a com-
putation is a derivation of the regular tree grammar GM,s, we define it to be
locally deterministic if for each nonterminal 〈q, u〉 the same production is ap-
plied to all its occurrences in the derivation. It now follows immediately from
Lemma 2 that, to recognize the domain of τM , it suffices to consider locally
deterministic computations of M : s is in the domain of τM iff L(GM,s) 6= ∅,
and hence, by Lemma 2, there exists a locally deterministic computation
〈q0, roots〉 ⇒∗ t in GM,s for some q0 ∈ Q0 and some t ∈ T∆.

It should be clear that for locally deterministic computations the automa-
ton A can use the same states as in the proof of Lemma 1, with the same
interpretation (but, of course, restricting attention to subcomputations of a
given locally deterministic computation). The final states are also the same.
The only difference is that A now has to guess, at each node u, the unique
rule that is used by M (in the locally deterministic computation) at node u
for each state q. Thus, the left-hand side of a transition d→ σ(d1, . . . , dk) is
not any more determined uniquely by the right-hand side. Instead, there is
a left-hand side d for every possible subset R′ of R that contains exactly one
rule 〈q, σ, j〉 → ζ for every q ∈ Q and j ∈ [0,mxΣ ]. Only the rules of R′ are
incorporated in the dependency graphs from which d is computed.

Obviously, the time to compute the transitions of A is now at most

#(Σ)2#(R)δm. Since #(R) ≤ n, this is (still) at most 2cn4

for some con-
stant c. ⊓⊔

5 Inverse type inference and typechecking

As discussed in the Introduction, the inverse type inference problem is to
construct, for a tree transducer M and a regular tree grammar Gout, a reg-
ular tree grammar Gin such that L(Gin) = τ−1

M (L(Gout)). Note that our
definition differs from the one in [15], where it is required that L(Gin) = {s |
τM (s) ⊆ L(Gout)}; the reason is that our definition is more convenient when
considering compositions of tree transducers.



The time complexity of typechecking tree-walking tree transducers 11

The proof of the next lemma is a well-known technique in tree transducer
theory, also used in [15, Proposition 4.6].

Lemma 3 The inverse type inference problem is solvable for twtts in expo-
nential time.

Proof Clearly, τ−1
M (L(Gout)) equals the domain of τM ′ where M ′ is any twtt

such that τM ′ = {(s, t) ∈ τM | t ∈ L(Gout)}. Thus, it suffices to construct
such a twtt M ′ in polynomial time and use Theorem 1. This is an easy
product construction. Let M = (Σ,∆,Q,Q0, R) and Gout = (N,∆,Rout,S).
The set of states of M ′ is Q × N , and its set of initial states is Q0 × S.
Since the removal of chain rules from a context-free grammar takes polyno-
mial time, we may assume that Gout has no rules X0 → X1, i.e., that it is
a (top-down) finite-state tree automaton. For every rule 〈q, σ, j〉 → 〈q′, ϕ〉
in R and every nonterminal X ∈ N , the set of rules R′ of M ′ contains
the rule 〈(q,X), σ, j〉 → 〈(q′, X), ϕ〉. Moreover, for every rule 〈q, σ, j〉 →
δ(〈q1, stay〉, . . . , 〈qk, stay〉) in R and every rule X0 → δ(X1, . . . , Xk) in Rout,
R′ contains the rule 〈(q,X0), σ, j〉 → δ(〈(q1, X1), stay〉, . . . , 〈(qk, Xk), stay〉).

It should be clear that this M ′ satisfies the requirement, and that it can
be constructed from M and Gout in quadratic time. ⊓⊔

Due to the close connection between twtts and attribute grammars, it is
not difficult to show that the time complexity of the inverse type inference
problem for twtts is in fact intrinsically exponential, in the sense of [10], even
for deterministic twtts with a monadic output alphabet.

We now turn to the inverse type inference problem for compositions of
twtts. A sequence M = (M1, . . . ,Mk) of twtts is viewed as a tree transducer
that computes the translation τM = τM1

◦ · · · ◦ τMk
. Since the inverse of a

composition is the composition of the inverses, in the inverse order, it suffices
to iterate the inverse type inference for twtts.

We define a k-fold exponential function to be a function of the form 2g(n)

where g is a (k − 1)-fold exponential function; a 0-fold exponential function
is a polynomial.

Theorem 2 The inverse type inference problem is solvable for compositions
of k tree-walking tree transducers in k-fold exponential time.

We finally consider the typechecking problem. It asks, for a tree trans-
ducer M and two regular tree grammars Gin and Gout, whether or not
τM (L(Gin)) ⊆ L(Gout). This is solved using inverse type inference, as de-
scribed in [15] (and as discussed in the Introduction).

Theorem 3 Compositions of k tree-walking tree transducers can be type-
checked in (k + 1)-fold exponential time.

Proof Clearly, τM (L(Gin)) ⊆ L(Gout) if and only if L(Gin) ∩ τ−1
M (L′

out) =
∅, where L′

out is the complement of L(Gout). A regular tree grammar for
L′

in = τ−1
M (L′

out) can be constructed in (k + 1)-fold exponential time by
first constructing a regular tree grammar for L′

out in exponential time, and
then using Theorem 2. With the usual product construction a regular tree
grammar can then be obtained for L(Gin) ∩L

′

in in polynomial time. Finally,
emptiness can be tested in polynomial time. ⊓⊔



12 Joost Engelfriet

Note that one exponential can be taken off this result if we assume that
Gout is a total deterministic bottom-up finite-state tree automaton (because
then complementation takes constant time).

For pebble tree transducers Theorem 3 means the following. It is shown
in [6, Theorem 10] that every k-pebble tree transducer M can be simulated
by a composition of k + 1 twtts. It is easy to see from the proof that these
twtts can be constructed from M in polynomial time (for fixed k). For the
interested reader, and for completeness sake, we give the details of this result
in the next section.

Theorem 4 For fixed k, k-pebble tree transducers can be typechecked in
(k + 2)-fold exponential time. The inverse type inference problem is solvable
for k-pebble tree transducers in (k + 1)-fold exponential time.

As a corollary we can state the complexity of the emptiness problem
for alternating k-pebble tree automata. In fact, by adding trivial output to
an alternating k-pebble tree automaton, a nondeterministic k-pebble tree
transducer is obtained. Emptiness of the domain of this transducer can be
checked by inverse type inference.

Corollary 1 For fixed k, the emptiness problem for alternating k-pebble tree
automata can be solved in (k + 1)-fold exponential time.

It is shown by Samuelides and Segoufin in [18] that, for k ≥ 1, the
emptiness problem for (nondeterministic and deterministic) k-pebble tree
automata is complete in k-fold exponential time. By a straightforward vari-
ation of their proof of the lower bound, it can be shown that the emptiness
problem for alternating k-pebble tree automata is in fact (k + 1)-fold expo-
nential time hard. This implies that the inverse type inference problem for
k-pebble tree transducers is not solvable in k-fold exponential time. Thus,
for that problem, Theorem 4 is optimal (and hence, through the polynomial
simulation mentioned above, also Theorem 2 is optimal). Based on this, it is
likely that the typechecking result in Theorem 4 is also optimal.

6 Disposing of pebbles

The aim of this section is to prove the following result from [6, Lemma 9],
where it was stated without the time bound.

Theorem 5 Let k ≥ 1. For every k-pebble tree transducer M a twtt N and
a (k − 1)-pebble tree transducer M ′ can be constructed in polynomial time
such that τM = τN ◦ τM ′ .

Applying this theorem k times shows that, for fixed k, there is a poly-
nomial time algorithm that constructs for every k-pebble tree transducer M
a composition M ′ = (M1, . . . ,Mk+1) of twtts such that τM = τM ′ , see [6,
Theorem 10].

Let M = (Σ,∆,Q,Q0, R) be a k-pebble tree transducer. The construc-
tion of N and M ′ will be slightly different from the one in the proof of [6,



The time complexity of typechecking tree-walking tree transducers 13

Lemma 9], but the basic idea is the same. The simple idea of the proof is to
preprocess the input tree s ∈ TΣ in such a way that the dropping and lifting
of the first pebble can be simulated by walking into and out of specific areas
of the preprocessed input tree pp(s). This preprocessing is independent of
the given pebble tree transducer M . More precisely, pp(s) is obtained from
s by attaching to each node u of s, as an additional (last) subtree, a fresh
copy of s in which (the copy of) node u is marked; let us denote this subtree
by su. Thus, if s has n nodes, then pp(s) has n+ n2 nodes. The subtrees su

of pp(s) are the “specific areas” mentioned above. As long as there are no
pebbles on s, M ′ simulates M on the original nodes of s in pp(s). When M
drops its first pebble at node u, M ′ enters su and walks to the marked node.
As long as the first pebble is on the tree, M ′ stays in su, simulating M ; since
u is marked in su, M ′ needs only k−1 pebbles. When M lifts the first pebble
from u (and hence all pebbles are lifted), M ′ walks from the copy of u out
of su, back to the original node u.

Unfortunately, this preprocessing cannot be realized by a twtt (though
it can easily be realized by a 1-pebble tree transducer). For this reason we
“fold” su at the node u, such that (the marked copy of) u becomes the root
of su; let us denote the result by ŝu. Roughly, ŝu is obtained from su by
inverting the parent-child relationship between the ancestors of u (including
u). Adding appropriate information to the node labels of those ancestors,
allows M ′ to reconstruct the unfolded su, and to simulate M as before. Note
that, with this change of pp(s), dropping or lifting of the first pebble can be
simulated by M ′ in one computation step, because the marked copy of u is
the last child of the original u. Now a twtt can compute pp(s), as follows (cf.
also [15, Example 3.7]). It copies s to the output (adding primes to its labels),
but when it arrives at node u it additionally outputs ŝu in a side branch of
the computation. That is done by walking from u to roots and, for each node
v on that path (including u and roots), copying v to the output together
with those subtrees of v that do not have nodes in common with the path;
moreover, in the output, v has an additional (last) child that corresponds
to its parent in s. The subtree that has nodes in common with the path
(if v 6= u), is represented by the bottom symbol ⊥ of rank 0 (and so is the
“parent” of v = roots). Note that the nodes of s correspond one-to-one to
the non-bottom nodes of ŝu; in particular, the path in s from u to roots
corresponds to the path in ŝu from its root to the parent of its rightmost
leaf. The bottom nodes of ŝu will not be visited by M ′.

As an example, consider s = σ(δ(a, b), c) where σ, δ have rank 2 and
a, b, c rank 0. We will name the nodes of s by their labels. Then pp(s) =
σ′(δ′(a′(ŝa), b′(ŝb), ŝδ), c

′(ŝc), ŝσ) where

ŝa = a0,1(δ1,1(⊥, b, σ1,0(⊥, c,⊥))),
ŝb = b0,2(δ2,1(a,⊥, σ1,0(⊥, c,⊥))),
ŝδ = δ0,1(a, b, σ1,0(⊥, c,⊥)),
ŝc = c0,2(σ2,0(δ(a, b),⊥,⊥)), and
ŝσ = σ0,0(δ(a, b), c,⊥).

The subscripted node labels are on the rightmost paths of the ŝu’s; the sub-
scripts contain “reconstruction” information, to be explained below. As an-



14 Joost Engelfriet

other example, if s is the monadic tree a(bm(c(dn(e)))) of height m+ n+ 3,
and u is the c-labelled node, then ŝu = c0,1(t1, t2) with t1 = dn(e) and t2
is the binary tree b1,1(⊥, b1,1(⊥, . . . b1,1(⊥, a1,0(⊥,⊥)) · · · )) of height m + 2.
This shows more clearly that ŝu is obtained by “folding”.

We now formally define the deterministic twtt N that, for given ranked
alphabet Σ, realizes the preprocessing pp (called EncPeb in [6]). To simplify
the definition we allow rules of the form 〈q, σ, j〉 → δ(〈q1, ϕ1〉, . . . , 〈qm, ϕm〉)
where ϕj is stay, up, or downi (and m is the rank of δ). Such a rule should be
replaced by the rules 〈q, σ, j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) and 〈pj , σ, j〉 →
〈qj , ϕj〉 for all j ∈ [1,m], where p1, . . . , pm are new states. Obviously this
replacement can be done in quadratic time.

We introduce the rules of N one by one; in what follows σ ranges over
Σ, with m = rankΣ(σ), j ranges over [0,mxΣ ], and i over [1,m]. First, N
has a state t that always outputs ⊥: its rules are 〈t, σ, j〉 → ⊥. Second, N
has an “identity” state d that just copies the subtree of the current node to
the output, using all rules 〈d, σ, j〉 → σ(〈d, down1〉, . . . , 〈d, downm〉). Then,
N has initial state c that copies the input tree s to the output and at each
node u of s “calls” the state f that computes ŝu by “folding” su. The rules
for c are

〈c, σ, j〉 → σ′(〈c, down1〉, . . . , 〈c, downm〉, 〈f, stay〉).

Note that σ′ has rank m+ 1: the root of ŝu is attached to u as its last child.
The rules for f are

〈f, σ, j〉 → σ0,j(〈d, down1〉, . . . , 〈d, downm〉, ξj)

where ξj = 〈fj , up〉 for j 6= 0, and ξ0 = 〈t, stay〉. The “reconstruction”
subscripts of σ0,j mean the following: subscript 0 indicates that this node is
the root of some ŝu, and subscript j is the child number of u in s. Note that
σ0,j has rank m + 1: its last child corresponds to the parent of u in s. The
twtt N moves up along the path to the root using “folding” states fi, where
the i indicates that in the previous step N was at the ith child of the current
node. The rules for fi are

〈fi, σ, j〉 → σi,j(
〈d, down1〉, . . . , 〈d, downi−1〉,
〈t, stay〉,
〈d, downi+1〉, . . . , 〈d, downm〉,
ξj)

where ξj is as above. In σi,j , “reconstruction” subscript i means that the ith
child of this node is ⊥, and, as above, subscript j is the child number of the
node v in s to which this node (which is in some ŝu) corresponds. Just as σ′

and σ0,j , also σi,j has rank m+ 1: its last child corresponds to the parent of
v in s.

This ends the description of the twtt N . The output alphabet Γ of N
(which will also be the input alphabet ofM ′) is the union of Σ, {⊥}, {σ′ | σ ∈
Σ}, and {σi,j | σ ∈ Σ, i ∈ [0, rankΣ(σ)], j ∈ [0,mxΣ]}. Thus, N has O(n2)
output symbols, where n is the size of Σ (recall that, by the assumption at



The time complexity of typechecking tree-walking tree transducers 15

the end of Section 2, mxΣ ≤ n). So, since mxΓ = mxΣ + 1, the size of Γ is
polynomial in n. The set of states of N is {t, d, c, f} ∪ {fi | i ∈ [1,mxΣ ]},
with initial state c. Thus, it has O(n) states and O(n3) rules; moreover, each
of these rules is of size O(n log n). Hence, the size of N is polynomial in the
size of Σ, and it can be constructed in polynomial time.

We now turn to the description of M ′. It has input alphabet Γ , output
alphabet ∆, and the same states and initial states as M . Thus, it remains
to discuss its rules. Let 〈q, σ, j, b〉 → ζ be a rule of M with b : [1, l] → {0, 1}
for some l ∈ [0, k]; note that l is the number of pebbles that is placed on the
input tree. Let m = rankΣ(σ). We consider three cases.

First we consider the case where l = 0, and so b = ∅. Then M ′ has
the rule 〈q, σ′, j, b〉 → ζ′, where ζ′ is obtained from ζ by changing drop into
downm+1 (only if drop occurs in ζ, of course; otherwise ζ′ = ζ). Thus, instead
of dropping the first pebble, M ′ enters ŝu.

Now let l ≥ 1. We define b− to be the mapping b− : [1, l − 1] → {0, 1}
such that b−(m− 1) = b(m) for every m ∈ [2, l].

Second we consider the case where b(1) = 1, i.e., the first pebble is on
the current node. Then M ′ has all rules 〈q, σ0,j ,m + 1, b−〉 → ζ′ where ζ′

is obtained from ζ by changing up into downm+1, and, provided l = 1 (and
so b− = ∅), changing lift into up. Thus, in the latter case, instead of lifting
the first pebble, M ′ leaves ŝu. Note that the child number in pp(s) of a node
with label σ0,j is always m+ 1 (and the label of its parent is σ′).

Third, the case b(1) = 0. ThenM ′ has the rule 〈q, σ, j, b−〉 → ζ. Moreover,
for every i ∈ [1,m] (so i 6= 0) and every j′ ∈ [1,mxΓ ], it has the rule
〈q, σi,j , j

′, b−〉 → ζ′ where ζ′ is obtained from ζ by changing up into downm+1,
and downi into up.

This ends the description of the (k − 1)-pebble tree transducer M ′. It
should now be clear that τM ′ (pp(s)) = τM (s) for every s ∈ TΣ, and hence
τN ◦ τM ′ = τM . Each rule of M is turned into at most 1 + mxΣ(mxΣ + 1)
rules of M , of the same size as that rule (disregarding the logarithmic space
taken by the subscript of downm+1). Thus, M ′ can be computed from M in
polynomial time, which proves Theorem 5.

7 From ranked trees to unranked forests

For an (unranked) alphabet ∆, an (unranked) forest over ∆ is a string gen-
erated by the context-free grammar with productions F → ε (where ε is the
empty string, also called empty forest) and F → δ(F )F for every δ ∈ ∆. It is
easy to see that the set F∆ of forests over ∆ is closed under concatenation,
i.e., if f1, f2 are forests, then so is f1f2. Note that strings over ∆ can be
viewed as forests over ∆ in a natural way, by changing every δ into δ().

Any tree transducer formalism (for ranked trees) can also be used as a
forest transformation device, by coding forests as binary trees, in the usual
way. The encoding of the empty forest is enc(ε) = e, where e is a special
symbol of rank 0, and, recursively, the encoding enc(f) of a forest f = δ(f1)f2
is δ(enc(f1), enc(f2)), where each symbol δ ∈ ∆ is given rank 2. We will
denote the corresponding ranked alphabet ∆ ∪ {e} by ∆f

2. Thus, ‘enc’ is a
bijection between F∆ and T∆f

2

.



16 Joost Engelfriet

For tree-walking tree transducers (and, more generally, pebble tree trans-
ducers) this is perfectly fine for the input tree: walking on a forest f is
basically the same as walking on its encoding enc(f). For the output tree it
is fine too, but, since the output tree is generated in a top-down fashion, it is
natural to allow the right-hand sides of the rules to use forest concatenation
as a basic operation, as pointed out in [17] for macro tree transducers. This
is similar to the use of string concatenation by a context-free grammar, as
opposed to a right-linear grammar.

For an (unranked) alphabet ∆, let ∆f
1 be the ranked alphabet ∆∪{e,@}

where e has rank 0, @ has rank 2, and each δ ∈ ∆ has rank 1. Intuitively,
e stands for the empty forest (as before), @ stand for forest concatenation,
and each δ represents the forest operation f 7→ δ(f). This interpretation is
formalized by the “flattening” function from T∆f

1

to F∆ defined by: flat(e) =

ε, flat(@(t1, t2)) = flat(t1)flat(t2), and flat(δ(t)) = δ(flat(t)). Note that, as
opposed to ‘enc’, the function ‘flat’ is not injective.

A tree-walking forest transducer (abbreviated twft) is a twtt with output
alphabet ∆f

1 for some ∆. It outputs forests, obtained by flattening the output
trees. More formally, we define the tree-to-forest translation realized by a twft
M to be τ f

M = {(s, flat(t)) | (s, t) ∈ τM} = τM ◦ flat.
Note that the right-hand side of a rule of a twft is of one of the forms

〈q, ϕ〉, δ(〈q′, stay〉), @(〈q1, stay〉, 〈q2, stay〉), or e. When the last two are writ-
ten as 〈q1, stay〉〈q2, stay〉 and ε, respectively, the transducer indeed generates
forests, in the obvious way.

As suggested above, a twttM with output alphabet∆f
2 can also be viewed

as a tree-to-forest translation device (and will, in this case, still be called
twtt): it realizes the translation τM ◦ enc−1. Similar to the result in [17], the
twft has more expressive power than the twtt (as tree-to-forest translation
devices). This is easy to see: For a twtt, the height of the output tree is linearly
bounded by the size of the input tree; this is obvious, and well known for
attributed tree transducers, see [8, Lemma 5.40]. But it is straightforward to
construct a twft that, by repeated copying on its way downwards, translates
a monadic tree of size n into a string of length 2n; since the encoding of such
a string has height 2n, this tree-to-forest translation cannot be realized by a
twtt.

We now show that twfts can still be typechecked in 2-fold exponential
time, just as twtts. It is well known that regular forest types can be defined
naturally through their encoding: a set of forests is regular if and only if
the set of its encodings is a regular tree language (see, e.g., [16]). Thus, in
order to typecheck twfts, we will encode their output forests (if you can still
follow this). For an unranked alphabet ∆, let ‘app’ be the “application” tree
transformation from T∆f

1

to T∆f

2

defined by app(t) = enc(flat(t)), see [17]

where it is called ‘eval’, and [14] where it is called APP. So, typechecking
the translation τ f

M of a twft M amounts to typechecking the translation
τM ◦ app. It is not difficult to show that ‘app’ can be realized by a twtt, and
hence, by Theorem 3, τM ◦app can be typechecked in 3-fold exponential time.
However, as in [17], we can do one exponential better, due to the following
lemma (proved independently in [20, Theorem 4.5]). In the statement of this
lemma, we assume app to be represented by a “tree transducer” that just



The time complexity of typechecking tree-walking tree transducers 17

consists of the alphabet ∆; thus, the lemma states that there is an algorithm
that constructs in polynomial time, for an alphabet ∆ and a regular tree
grammar Gout with terminal alphabet ∆f

2, a regular tree grammar Gin such
that L(Gin) = app−1(L(Gout)).

Lemma 4 Inverse type inference is solvable for app in polynomial time.

Proof Let Gout = (N,∆f
2, R,S) be a regular tree grammar, without chain

productions. Thus, its productions are of the form X → δ(Y, Z) or X → e.
We construct a regular tree grammar Gin = ((N ×N) ∪ {S0}, ∆f

1, R
′, {S0})

with L(Gin) = app−1(L(Gout)), as follows. The nonterminals of Gin are pairs
of nonterminals of Gout, together with a new (initial) nonterminal S0. The
rules of Gin in R′ are

S0 → 〈S,E〉 with S ∈ S and E → e in R
〈X,Z〉 → @(〈X,Y 〉, 〈Y, Z〉) with X,Y, Z ∈ N
〈X,Z〉 → δ(〈Y,E〉) with X → δ(Y, Z), E → e in R
〈X,X〉 → e with X ∈ N.

Clearly, Gin can be constructed from Gout in polynomial time. For a tree t
over ∆f

2 and a nonterminal Y of Gout, let tY denote the tree obtained from
t by changing the label e of its rightmost leaf into Y . It can be shown that,
for every tree s over ∆f

1, 〈X,Y 〉 generates s in Gin if and only if X generates
app(s)Y in Gout, which shows that L(Gin) = app−1(L(Gout)). The proof of
the statement is by structural induction on s. The cases s = e and s = δ(s′)
are straightforward. In the case where s = @(s1, s2) one needs the fact that
app(@(s1, s2)) is obtained from app(s1) by replacing its rightmost leaf with
app(s2); and hence, app(@(s1, s2))Z is obtained from app(s1)Y by replacing
Y with app(s2)Z . ⊓⊔

From this lemma, Theorem 2, and the proof of Theorem 3, we immediately
obtain the following result.

Corollary 2 A composition of k − 1 tree-walking tree transducers and one
tree-walking forest transducer can be typechecked in (k + 1)-fold exponential
time.

Similarly, from the above lemma, the second statement of Theorem 4, and
the proof of Theorem 3, we obtain that Theorem 4 also holds for k-pebble
forest transducers. As for the twft, a k-pebble forest transducer is defined to
be a k-pebble tree transducer M with output alphabet ∆f

1 for some ∆; type-
checking its tree-to-forest translation τ f

M = τM ◦flat amounts to typechecking
τM ◦ app.

Corollary 3 For fixed k, k-pebble forest transducers can be typechecked in
(k + 2)-fold exponential time.

It should now be clear that, due to the generality of Lemma 4, a similar
result can be shown for any tree transducer formalism for which the complex-
ity of typechecking is known through the inverse type inference problem: the
complexity of typechecking the corresponding forest transducers differs by a
polynomial from the one for the tree transducers. For macro tree transducers
this is the result of [17].



18 Joost Engelfriet

Acknowledgements I thank the referees for their constructive comments. I am
grateful to Hendrik Jan Hoogeboom for his technical and moral support.

References

1. A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman; Compilers: Principles, Tech-
niques, and Tools, 2nd edition, Addison-Wesley, 2006

2. M. Bartha; An algebraic definition of attributed transformations, Acta Cyber-
netica 5 (1982), 409–421. Preliminary version in: Proc. FCT’81 (F. Gécseg,
ed.), Lecture Notes in Computer Science 117, Springer-Verlag, 1981, pp.51–60

3. J. Engelfriet; The complexity of the circularity problem for attribute grammars:
a note on a counterexample for a simpler construction, SIGACT News, Summer
1989, 57–59

4. J. Engelfriet, G. Filè; Passes and paths of attribute grammars, Information and
Control 49 (1981), 125–169

5. J. Engelfriet, H.J. Hoogeboom, B. Samwel; XML transformation by tree-
walking transducers with invisible pebbles, Proc. PODS’07 (L. Libkin, ed.),
ACM Press, 2007, pp.63–72

6. J. Engelfriet, S. Maneth; A comparison of pebble tree transducers with macro
tree transducers, Acta Informatica 39 (2003), 613–698

7. Z. Fülöp; On attributed tree transducers, Acta Cybernetica 5 (1981), 261–279
8. Z. Fülöp, H. Vogler; Syntax-Directed Semantics, Formal Models Based on Tree

Transducers, Monographs in Theoretical Computer Science, An EATCS Series,
Springer-Verlag, 1998

9. M. Jazayeri; A simpler construction for showing the intrinsically exponential
complexity of the circularity problem for attribute grammars, Journal of the
ACM 28 (1981), 715–720

10. M. Jazayeri, W. F. Ogden, W. C. Rounds; The intrinsically exponential com-
plexity of the circularity problem for attribute grammars, Communications of
the ACM 18 (1975), 697–706

11. T. Kamimura; Tree automata and attribute grammars, Information and Con-
trol 57 (1983), 1–20

12. T. Kamimura, G. Slutzki; Parallel and two-way automata on directed ordered
acyclic graphs, Information and Control 49 (1981), 10–51

13. D. E. Knuth; Semantics of context-free languages, Mathematical Systems The-
ory 2 (1968), 127–145. Correction: Mathematical Systems Theory 5 (1971),
95–96

14. S. Maneth, A. Berlea, T. Perst, H. Seidl; XML type checking with macro tree
transducers, Proc. PODS’05, ACM Press, 2005, pp.283–294

15. T. Milo, D. Suciu, V. Vianu; Typechecking for XML transformers, Journal of
Computer and System Sciences 66 (2003), 66–97

16. F. Neven; Automata, Logic, and XML, Proc. CSL’02 (J.C. Bradfield, ed.),
Lecture Notes in Computer Science 2471, Springer-Verlag, 2002, pp.2–26

17. T. Perst, H. Seidl; Macro forest transducers, Information Processing Letters 89
(2004), 141–149

18. M. Samuelides, L. Segoufin; Complexity of pebble tree-walking automata, Proc.
FCT’07 (E. Csuhaj-Varjú, Z. Ésik, eds.), Lecture Notes in Computer Science
4639, Springer-Verlag, 2007, pp.458–469

19. G. Slutzki; Alternating tree automata, Theoretical Computer Science 41
(1985), 305–318

20. T. Yashiro; Typechecking k-pebble tree transducers: practical efficiency, Bach-
elor Thesis, University of Tokyo, February 2006


