PEBBLES at STACS

Marseille Feb 06

Automata with **Nested Pebbles** capture

FO Logic with **Transitive Closure**

Joost Engelfriet Hendrik Jan Hoogeboom Leiden NL

two classic characterizations

strings: [non]deterministic logarithmic space

Immerman

Multi-Head Automata re (two-way)

$$\varphi^*(\underline{x},\underline{y})$$

our STACS paper

on strings, trees, grids, toruses, mazes, ...

First-Order Logic Multi-Head Automata + transitive closure + 'nested pebbles'

 $\varphi^*(\underline{x},\underline{y})$

arity k k heads

starting with trees, on single head First-Order Logic Multi-Head Automata + 'nested pebbles' + transitive closure unary $\phi^*(x,y)$ trees k=1arity k k heads

background

transitive closure
descriptive complexity

```
descriptive complexity strings, trees, n-dim grids, ...
```

- XML document transformation single head on (unranked) trees
- graph exploration

```
many heads on graphs 'robots' grids, toruses, mazes, ...
```

bottom-up tree automata

walking along the tree

cf. two-way finite state automaton

tree walking automaton

example: tree traversal

TW

walk along edges, moves based on

- state
- node label
- child number(= incoming edge)

single head on trees

Doner; Thatcher & Wright

'branching structure' of even length

'branching structure' of even length

adding nested pebbles

pebble: marks a node

- nested lifetimes LIFO
- fixed number for automaton
- can be distinguished

'regular' extension (for single head on trees)

'branching structure' of even length

single head on trees

main result

proof summary
manager style

(1) logic to nested pebbles

lab_a(x)
edg_i(x,y)

$$x \leq y$$

$$x = y$$

 $\neg \land \lor \\ \forall x \exists x$

$$\phi^*(x,y)$$

$$x \leq y$$

always halting free variables ~ fixed pebbles

$$\forall x \ \phi(x)$$

(1ctd) transitive closure

(2) nested pebbles to logic

ii computation ~ tc with states

Kleene: removing states finite aut to reg expr

(2ctd) dropping pebbles

$$\phi_{pq}^{n}(u,v) = \phi_{p'q'}^{(n-1)\#}(u,v)$$
replacing x_n by u

single head on trees

from trees to graphs

locally injective

grid, torus

nested pebbles to logic

$$X \leq Y$$

 $X = Y$

$$\neg \land \lor \\ \forall x \exists x$$

$$\phi^*(x,y)$$

$dPTW^k \subseteq FO+dTC^k$

for families of graphs (i.e. with fixed label alphabets)

walking the torus

graphs with a guide

$FO+dTC^k = dPTW^k$

for families of *searchable* graphs with a 'guide'

 $(\forall x) \ lab_0(x)$

unranked trees, grids, toruses, ...
2 pebbles

mazes

mazes

Blum & Kozen

two heads!

(not nested)

searching with many heads

$$FO+dTC^k = dPTW^k$$

for families of *k-searchable* graphs

additional instruction
move head to pebble

Cook & Rackoff 'Jumping Automata' mazes
not all graphs

finally: work to do ...

open for single head on trees:

- \bigcirc dPTW \subset PTW \subset REG
- \bigcirc F0+dTC \subset F0+posTC \subset F0+TC \subset MS0
- 🕜 pebble hierarchy
- type of pebbles physical vs. abstract
- 🕜 alternation

work to do ... until last week

Bojańczyk, Samuelides, Schwentick, Segoufin

- dPTW ⊆ PTW ⊂ REG
- \bigcirc F0+dTC \subseteq F0+posTC \subseteq F0+TC \subseteq MS0
- pebble hierarchy
- type of pebbles physical ⇔ abstract
- alternation

many heads? graphs?

