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ABSTRACT
The pebble tree automaton and the pebble tree transducer
are enhanced by additionally allowing an unbounded num-
ber of ‘invisible’ pebbles (as opposed to the usual ‘visible’
ones). The resulting pebble tree automata recognize the reg-
ular tree languages (i.e., can validate all generalized DTD’s)
and hence can find all matches of MSO definable n-ary pat-
terns. Moreover, when viewed as a navigational device, they
lead to an XPath-like formalism that has a path expression
for every MSO definable binary pattern. The resulting peb-
ble tree transducers can apply arbitrary MSO definable tests
to (the observable part of) their configurations, they (still)
have a decidable typechecking problem, and they can model
the recursion mechanism of XSLT. The time complexity of
the typechecking problem for conjunctive queries that use
MSO definable binary patterns can often be reduced through
the use of invisible pebbles.

Categories and Subject Descriptors: F.4.3 [Mathemat-
ical logic and formal languages]: Formal Languages; H.2.3
[Database Management]: Languages.

General Terms: Theory, Languages.

Keywords: XML, Tree Transducer, Pebble.

1. INTRODUCTION
Pebble tree transducers, as introduced by Milo, Suciu, and

Vianu [22], are a formal model of XML transformation for
which typechecking is decidable. We enhance the power of
the pebble tree transducer by allowing an unbounded num-
ber of (coloured) pebbles, still with nested life times, i.e.,
organized as a stack. However, apart from a bounded num-
ber, the pebbles are ‘invisible’, which means that they can
be observed by the transducer only when they are on top
of the stack (and thus the number of observable pebbles is
bounded at each moment in time). We will call v-ptt the
pebble tree transducer of [22] (or rather, the one in [11]: an
obvious definitional variant), and vi-ptt the enhanced peb-
ble tree transducer. Moreover, i-ptt refers to the vi-ptt
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that does not use visible pebbles, and tt to the one that
does not use any pebbles.

The navigational part of a v-ptt, i.e., the behaviour of the
transducer when no output is produced, is the pebble tree
automaton (v-pta), introduced in [9], where it was shown
to recognize regular tree languages only. Recently, in [5],
the important result was proved that not all regular tree
languages can be recognized by the v-pta, and thus [8, 28]
the navigational power of the v-ptt is below Monadic Sec-
ond Order (mso) logic, which is undesirable for a formal
model of XML transformation (see, e.g., [24]). One of the
reasons for introducing invisible pebbles is that the vi-pta,
and the i-pta, recognize exactly the regular tree languages
(Theorem 10). Thus, vi-pta can validate arbitrary general-
ized DTD’s, and can match arbitrary mso definable n-ary
patterns (using visible pebbles to find all candidate matches
as in [22], and using invisible pebbles to check the mso re-
quirements). We note that the i-pta is a straightforward
generalization of the ‘two-way backtracking pushdown tree
automaton’ of Slutzki [27].

It is easy to show that every regular tree language can be
recognized by an i-pta, just simulating a bottom-up finite
tree automaton. The proof that all vi-pta tree languages are
regular, is based on a decomposition of the vi-ptt into tt’s
(Theorem 4), similar to the one for v-ptt in [11]. Since the
inverse type inference problem is solvable for tt’s (where a
‘type’ is a regular tree language), this shows that the domain
of a vi-ptt is regular, and so even the alternating vi-pta

tree languages are regular. Hence, the typechecking problem
is decidable for vi-ptt, by the same arguments as used in
[22] for v-ptt. More precisely, we prove (Theorem 8, based
on Theorem 5) that a vi-ptt with k visible pebbles can be
typechecked in (k + 3)-fold exponential time. It implies a
(k+2)-fold exponential time upper bound for v-ptt with k
pebbles, because the k-th pebble, which is always on top of
the stack, may as well be taken invisible. This seems to im-
prove the bound in [22] by two exponentials. Of course, for
varying k the complexity is still non-elementary, but, as ob-
served in [23], “non-elementary algorithms on tree automata
have previously been seen to be feasible in practice”.

As the navigational part of vi-ptt, the vi-pta in fact de-
fines a binary pattern on trees, i.e., a binary relation between
two nodes of a tree: the position of the reading head of the
vi-ptt before and after navigation. We prove that also as a
navigational device the vi-pta and the i-pta have the same
power as mso logic: they define exactly the mso definable
binary patterns (Theorem 13). This improves the result in
[10] (where binary patterns are called ‘trips’), because the



i-pta is a more natural automaton than the one considered
in [10].

One of the research goals of Marx and his colleagues (see
[20, 14, 7] and the entertaining [21]) is to combine Core
XPath of [15] which models the navigational part of XPath
1.0, with regular path expressions [1] (or caterpillar expres-
sions [6]) which naturally correspond to tree-walking au-
tomata. An important feature of XPath is the ‘predicate’:
it allows to test the context node for the existence of at
least one other node that matches a given path expression.
Thus, the path expression α1[β]/α2 takes an α1-walk from
the context node to the new context node v, checks whether
there exists a β-walk from v to some other node, and then
takes an α2-walk from v to the match node. For tree au-
tomata this corresponds to the notion of ‘look-ahead’ (cf.
[12, Definition 6.5]). We prove (Theorem 14) that an i-pta

A can use another i-pta B as look-ahead test, i.e., A can test
whether or not B has a successful computation when started
in the current configuration of A (and similarly for vi-pta

and vi-ptt). Due to this feature, we can use Kleene’s clas-
sical construction to translate the i-pta into an XPath-like
algebraic formalism, which we call Pebble XPath, with the
same expressive power as mso logic for defining binary pat-
terns (Theorem 16). In fact, Pebble XPath is the extension
of Regular XPath [20, 7] with a stack of invisible pebbles;
visible pebbles can easily be added too. It is conjectured in
[7] that Regular XPath is not mso complete.

We prove that vi-ptt can perform mso tests on the ob-
servable part of their configuration, i.e., they can check
whether or not the observable pebbles on the input tree
(i.e., the visible ones, plus the top pebble on the stack) sat-
isfy certain mso requirements with respect to the current
position of the reading head (Theorem 17). If all the ob-
servable pebbles are visible this is obvious (drop a pebble,
simulate an i-pta that recognizes the corresponding regu-
lar tree language, and return to the pebble), but if the top
pebble is invisible that does not work and a look-ahead test
must be used.

To explain another reason for introducing invisible pebbles
we consider XQuery-like conjunctive queries of the form

for x1, . . . , xn where ϕ1 ∧ · · · ∧ ϕm return t,

where x1, . . . , xn are variables, each ϕk is an mso formula
with two free variables xi and xj , and t is an output tree
with variables at the leaves. Using an mso test, such pattern
matching queries can be evaluated by a vi-ptt with n − 2
visible pebbles, even if the where-clause contains an arbi-
trary mso formula. In many cases, however, a much smaller
number of visible pebbles suffices (Proposition 18). This
is an enormous advantage when typechecking the query, as
for the time complexity every visible pebble counts (viz. it
counts as an exponential). For instance if j = i+1 for every
ϕk, then no visible pebbles are needed, i.e., the query can be
evaluated by an i-ptt: we use invisible pebbles p1, . . . , pn

on the stack (in that order), representing the variables, and
move them through the input tree in document order, in a
nested fashion; just before dropping pebble pi+1, each for-
mula ϕk(xi, xi+1) can be verified by an MSO test on the
observable configuration (which consists of the top pebble
pi and the reading head position).

The pebble tree transducer transforms ranked trees. How-
ever, an XML document is not ranked; it is a forest: a se-
quence of unranked trees. To model XML transformation

by ptt’s, forests are encoded as binary trees in the usual
way. For the input, it does not make much of a difference
whether the ptt walks on a binary tree or a forest. How-
ever, as opposed to what is suggested in [22], for the output
it does make a difference, as pointed out in [25] for macro
tree transducers. For that reason we also consider pebble
forest transducers (abbreviated with pft instead of ptt)
that walk on encoded forests, but construct forests directly,
using forest concatenation as basic operation. As in [25],
pft are more powerful than ptt, but the complexity of the
typechecking problem is the same, i.e., vi-pft with k visi-
ble pebbles can be typechecked in (k + 3)-fold exponential
time (Theorem 22). In fact, pft have all the properties
mentioned before for ptt.

The document transformation languages dtl and tl were
introduced in [19] and [18], respectively, as a formal model
of the recursion mechanism in the template rules of XSLT,
with mso logic rather than XPath to specify matching and
selection. Documents are modelled as forests. The language
dtl has no variables or parameters, and its only instruc-
tion is apply-templates. tl is the extension of dtl with
accumulating parameters, i.e., the parameters of XSLT 1.0
whose values are ‘result tree fragments’ (and on which no op-
erations are allowed). We prove that tl and i-pft have the
same expressive power (Theorem 21). Thus, in its forest ver-
sion, our new model the vi-pft can be viewed as the natural
combination of the pebble tree transducer of [22] (v-ptt)
and the tl program of [18] (i-pft). Note that v-ptt and
tl have incomparable expressive power. As claimed by [18],
tl certainly can “describe many real-world XML transfor-
mations” (such as, all vi-pft transformations of linear size
increase). However, the visible pebbles are still a requisite
for the XQuery-like queries discussed above, and we con-
jecture that not all such queries can be programmed in tl.
As shown in [3] (for a subset of mso), these queries can be
programmed in XSLT 1.0 using parameters that have input
nodes as values; however, with such parameters even v-ptt

with nonnested pebbles can be simulated, and typechecking
is no longer decidable. In XSLT 2.0 all (computable) queries
can be programmed [17].

2. AUTOMATA & TRANSDUCERS
Let Σ be an alphabet. Unranked trees and forests over

Σ are recursively defined: if σ ∈ Σ and t1, . . . , tk are un-
ranked trees, then (t1, . . . , tk), or t1 · · · tk, is a forest, and
σ(t1, . . . , tk) is an unranked tree. As usual trees are viewed
as directed labelled graphs. The root of the tree is labelled
by σ and has child number 0; it has edges to the roots of
subtrees t1, . . . , tk, which have child number 1 to k.

A ranked alphabet Σ has an associated mapping rankΣ :
Σ → N. The maximal rank of symbols in Σ is denoted mΣ.
By Σ(k) we denote the symbols of rank k in Σ. Ranked trees
over Σ are recursively defined as above with the requirement
that k = rankΣ(σ).

Automata. A tree-walking automaton with nested peb-
bles (pebble tree automaton for short, abbreviated pta) is a
finite state device that walks from node to node over its in-
put tree following the edges in either direction. Additionally
it has a supply of pebbles that can be used to mark the nodes
of the tree. The automaton may drop a pebble on the node
currently visited by the reading head, but it may only lift
any pebble from a node if it was the last one dropped dur-



ing the computation. Thus, the life times of the pebbles on
the tree are nested. Here we consider two types of pebbles.
First there are a finite number of ‘classical’ pebbles, which
we here call visible. Each of these has a distinct colour, and
at most one visible pebble of each colour can be present on
the tree. Second there is a set of invisible pebbles. Again,
these pebbles have a finite number of colours (distinct from
those of the visible pebbles), but for each colour there is an
unlimited supply of pebbles that can be present on the tree.
Visible pebbles can be observed by the automaton at any
moment when it visits a node where they were dropped. As
for invisible pebbles, it can only observe such a pebble when
it was the last one dropped.

The possible actions of the automaton are determined by
its state, the label of the current node, the child number of
the node, and the set of observable pebbles on the current
node, that is, visible pebbles and an invisible pebble when
it was the last pebble dropped on the tree.

The pta is specified as a tuple A = (Σ, Q,Q0, C, Cv, Ci, R),
where Σ is a ranked alphabet of input symbols, Q is a finite
set of states, Q0 ⊆ Q is the set of initial states, Cv and Ci are
the finite sets of visible and invisible colours, C = Cv ∪ Ci,
Cv∩Ci = ∅, and R is a finite set of rules. Each rule is of the
form 〈q, σ, b, j〉 → ζ with q ∈ Q, σ ∈ Σ, b ⊆ C, 0 ≤ j ≤ mΣ,
and ζ is one of the forms: 〈halt〉, 〈q′, stay〉, 〈q′, up〉 pro-
vided j 6= 0, 〈q′, downi〉 with 1 ≤ i ≤ rankΣ(σ), 〈q′, dropc〉,
and 〈q′, lift〉, with q′ ∈ Q and c ∈ C.

The configuration 〈u, q, π〉 of a pta A on ranked tree t over
Σ is given by the position u of the head on t, the state q of A,
and the stack π containing the positions and colours of the
pebbles on the tree in the order they were dropped. An ini-
tial configuration equals 〈root, q0, λ〉 where ‘root’ is the root
of t, q0 ∈ Q0, and λ is the empty stack. A rule 〈q, σ, b, j〉 → ζ
can only be applied in a configuration 〈u, q, π〉 with state q,
in a node u with label σ and child number j, and with the
set b of the colours of the observable pebbles dropped on the
node. More precisely, b consists of all c ∈ Cv such that (u, c)
occurs in π, plus c ∈ Ci if (u, c) is the topmost element of
π. When ζ= 〈halt〉 no new configuration is defined and the
automaton halts. In the other cases we obtain a new config-
uration 〈u′, q′, π′〉. For the move instructions ζ= 〈q′, stay〉,
ζ = 〈q′, up〉, and ζ = 〈q′, downi〉 the pebble stack does not
change. The new state equals q′ and the new node u′ equals
u, is the parent of u, or is the i-th child of u, respectively.
For the pebble instructions ζ = 〈q′, dropc〉, and ζ = 〈q′, lift〉
again the new state is q′, but the node does not change.
In the first case A drops a pebble on the current node, thus
the node-colour pair (u, c) is pushed onto the pebble stack π,
unless c is a visible colour and the stack already contains a
pebble of that colour (so the rule cannot be applied). In the
second case A picks a pebble from the current node, only
allowed if the topmost element of the pebble stack is the
pair (u, c) for some colour c, which is subsequently popped
from the stack; otherwise this rule cannot be applied. We
will also allow instructions like 〈q′, lift; up〉 with the obvious
meaning (first lift the pebble, then move up).

The tree language accepted by pta A consists of all ranked
trees t over Σ such that A has a halting computation on t
which starts in an initial configuration. Note that pebbles
may remain in the final configuration. Unlike the pta from
[22], our automata do not branch (i.e., are not alternating).

We use vki-pta to denote pta with k visible pebbles, i.e.,
#Cv = k, and an unbounded number of invisible pebbles,

and VkI-PTA to denote the tree languages they accept. For
k = 0, automata that only use invisible pebbles, we also
use the notation i-pta, and for automata that only use k
visible pebbles we use vk-pta. Moreover, ta is used for
tree-walking automata without pebbles, i.e., v0-pta. The
lower case d is added for languages when we only consider
deterministic automata, which have a unique initial state
and at most one applicable instruction in each configuration.
Thus we have VkI-dPTA and variants.

Transducers. A tree-walking tree transducer with nested
pebbles (abbreviated ptt) is a pta that (recursively) pro-
duces an output tree over a ranked alphabet ∆. Instead of
the halting instruction ζ = 〈halt〉, it has output instructions
of the form ζ = δ( 〈q1, stay〉, . . . , 〈qk, stay〉 ) with δ ∈ ∆, and
q1, . . . , qk ∈ Q, where k is the rank of δ. Intuitively, in an
applicable configuration (see above) a ptt M outputs δ,
and for each child 〈qi, stay〉 spawns a new process, a copy of
itself started in state qi at the current node, retaining the
same stack of pebbles; thus, the stack is copied k times. As
a shortcut we may replace a 〈qi, stay〉 by a move instruction
or a pebble instruction, with obvious semantics.

The set of trees computed by M in configuration γ =
〈u, q, π〉 is recursively defined. For each move instruction
or pebble instruction that changes the configuration into
〈u′, q′, π′〉 the trees computed in the latter configuration are
included in those computed in γ. Additionally, for each ap-
plicable output instruction ζ = δ( 〈q1, stay〉, . . . , 〈qk, stay〉 ),
we add the trees with root δ, having as k subtrees those com-
puted in the configurations 〈u, qi, π〉. We use τM to denote
the transduction defined by transducer M.

Similar to the notation VkI-PTA for tree languages, we
use the notation VkI-PTT for the transductions defined by
tree-walking tree transducers with k visible nested pebbles,
and an unbounded number of invisible pebbles, as well as
the obvious variants Vk-PTT, and I-PTT. Additionally TT

denotes the family of transductions realized by tree-walking
tree transducers without pebbles, i.e., V0-PTT. Again, lower
case d is added for deterministic automata.

Example 1. We want to generate itineraries for a trip
along the Trans-Siberian Railway, starting in Moscow and
ending in Vladivostok, and optionally visiting some cities
along the way. An XML document lists all the stops:

<stop name="Moscow" large="1" initial="1">

...

<stop name="Birobidzhan" large="0">

...

<stop name="Vladivostok" large="1" final="1" />

...

</stop>

...

</stop>

The initial and final stops are marked, and for every stop
the large attribute indicates whether or not the stop is in
a large city. We want to generate a list

<result>it-1

<result>it-2 ...

<result>it-n

<endofresults />

</result> ...

</result>

</result>



where it-1,it-2,...,it-n are all itineraries (i.e., lists of
stops) that satisfy the constraint that one does not visit
a small city twice in a row. A deterministic i-ptt M is
able to perform this XML transformation by systematically
enumerating all possible lists of stops, marking each stop
in the list (except the initial and final stop) by a pebble.
Since the pebbles are invisible, M constructs a possible list
of stops on the pebble stack in reverse, so that the stops will
appear in the output tree in the correct order.

Since in this example the tags are ranked, there is no
need for a binary encoding of the XML documents. The
input alphabet Σ consists of all <stop at> where at is a
possible value of the attributes. The rank of <stop at>

is 0 if final="1" and 1 otherwise. The output alphabet
consists of Σ, the binary tag r = <result>, and the tag
e = <endofresults> of rank 0. The set of pebble colours is
Ci = {0, 1}. The attribute initial will not be used by M,
as it can recognize the root by its child number 0. In the
rules below the variables range over the following values:
σ0 ∈ Σ(0), σ1 ∈ Σ(1), j, c ∈ {0, 1}, and, for i ∈ {0, 1},
λi ∈ {<stop at> ∈ Σ | large="i"}.
The i-ptt M first walks from Moscow to Vladivostok:

〈qstart, σ1,∅, j〉 → 〈qstart, down1〉
〈qstart, σ0,∅, 1〉 → 〈q1, up〉

State qc remembers whether the most recently marked city
is small or large; when a new city is marked with a pebble,
it gets the colour c. In states q0 and q1 as many cities are
marked as possible (in the second rule, c = 1 or i = 1):

〈q0, λ0,∅, 1〉 → 〈q0, up〉
〈qc, λi,∅, 1〉 → 〈qi, dropc; up〉
〈qc, λ1,∅, 0〉 → r(〈qout, stay〉, 〈qnext, down1〉)

In state qout an itinerary is generated as output, while state
qnext continues the search for itineraries by unmarking the
most recently marked city:

〈qout, σ1,∅, 0〉 → σ1(〈qout, down1〉)
〈qout, σ1,∅, 1〉 → 〈qout, down1〉
〈qout, σ1, {c}, 1〉 → σ1(〈qout, lift; down1〉)
〈qout, σ0,∅, 1〉 → σ0

〈qnext, σ1,∅, 1〉 → 〈qnext, down1〉
〈qnext, σ1, {c}, 1〉 → 〈qc, lift; up〉
〈qnext, σ0,∅, 1〉 → e

Note that this XML transformation cannot be realized by
a v-ptt, because the height of the output tree is, in gen-
eral, exponential in the size of the input tree, whereas it is
polynomial for v-ptt.

3. DECOMPOSITION
In this section we decompose ptt into a sequence of tt,

i.e., transducers without pebbles. This is useful as it will give
us information on the domains of ptt, Theorem 10, and on
the complexity of typechecking problems, see Theorem 8.

It is possible to reduce the number of visible pebbles used,
by preprocessing the input tree. This was shown in [11,
Lemma 9] for transducers with only visible pebbles. The
basic idea of that proof can be extended to include invisible
pebbles.

Let t with root r be a tree over the ranked alphabet Σ, and
let x be a node of t. We construct a new tree t↑x which equals
t except that we make x the root of the tree, inverting all the
edges on the path from the (old) root r to x. Thus, when x 6=
r, node x obtains a new child, the node that used to be its
parent, and becomes the root. The old root r looses a child
that now will be its parent. For every other node an edge

is redirected from one of the children to the parent of the
node, similarly as in the tree traversal algorithm sometimes
known as ‘link inversion’. All nodes on this path are marked
(adding information to the label) to reflect this change. In
particular both the old root r and the new one x can be
distinguished by their labels. Note that in this construction
each node keeps the same neighbours, although the direction
of some connections change. As these changes are local, and
clearly marked in the tree, it is easy to see that for any tree-
walking transducer M one can construct a new transducer
M′ that has the same behaviour as M, when started on t↑x

rather than t, for all t over Σ.
Note that t↑x occurs as “a complex rotation of the input

tree” in [22, Example 3.7], albeit for leaves x only.

Lemma 2. For k ≥ 1, VkI-PTT ⊆ dTT ◦Vk−1I-PTT, and
VkI-dPTT ⊆ dTT ◦ Vk−1I-dPTT.

Proof. The computation of a ptt M with k visible peb-
bles on tree t is simulated by a ptt M′ with k − 1 visible
pebbles on tree t′. The new tree t′ is obtained from t by
adding, for each node x of t an edge to the root of a fresh
copy t↑x of input tree t. It is explained in [11] that this
transformation can be computed without pebbles, by a de-
terministic tt.

As long as M does not use its visible pebbles, the simulat-
ing transducer M′ copies M’s moves in the original tree t,
the ‘top level’ of t′. When the first visible pebble is dropped
on a node x, this is simulated by moving down from x to
copy t↑x (and storing the colour of the pebble in the finite
state). The computation is now continued as in t, but in
copy t↑x, for all the pebbles now dropped and lifted, until
the first visible pebble is picked up again (at node x). At
that moment the simulation moves up to top level t and
continues.

Moving down to t↑x means that the pebble at x is visible
to the transducer M′, not as a pebble but as a marked node:
the root of t↑x. Moving down also means that the topmost
invisible pebble that was placed on t becomes unobservable:
not because it is hidden by a new pebble (we do not use that
pebble in the simulation) but by moving out of t.

The tree t′ that is used in the previous proof consists of
two levels of copies of the original input tree t; on the first
level a straightforward copy of t (used until the first visible
pebble is dropped) and a second level of copies t↑x (used to
‘store’ the first visible pebble dropped). It is tempting to
add another level, meant as a way to store the next visible
pebble dropped. The problem with this is that it would
make the first visible pebble effectively unobservable when
the next one is dropped.

The idea can be used for invisible pebbles, for arbitrary
many levels.

Lemma 3. I-PTT ⊆ TT ◦ TT, and I-dPTT ⊆ TT ◦ dTT.

Proof. The computation of a ptt M with invisible peb-
bles on tree t is simulated by a tt M′ (without pebbles)
on tree t′. The input tree t is preprocessed in a nondeter-
ministic way by a tt N to obtain t′. In each node x of t
the transducer N nondeterministically decides whether to
spawn a process that, for each pebble colour c, copies t into
t↑x
c , connecting x to the root of the new subtree. This is

a recursive process: in each node in each copy of t it can
be decided to start another new copy. In the copies t↑x

c the



new root (the node corresponding to x) is clearly marked to
represent colour c.

In this way a ‘tree of trees’ is constructed. The root of each
copy t↑x

c indicates an invisible pebble of colour c placed at
node x in the original tree t. In each copy only one pebble
is observable, the one placed at the new root, exactly as
the last pebble dropped in the original computation. In
the simulation, moving down or up along the tree of trees
corresponds to dropping and lifting invisible pebbles.

In general there is no bound on the depth of the stack
of pebbles during a computation of M. The preprocessor
N nondeterministically constructs t′. If t′ is not sufficiently
deep, the simulating transducer M′ aborts the computation.
Conversely, for every computation of M a tree t′ of sufficient
depth can be constructed nonderministically from t. Thus,
τM = τN ◦ τM′ .

The nondeterminism of the ‘preprocessing’ transducer N
in the previous proof is rather limited. The general form of
the constructed tree is completely determined by the input
tree, only the depth of the construction is nondeterministi-
cally chosen. At the same time it remains nondeterministic
even when we start with a deterministic ptt with invisible
pebbles: I-dPTT ⊆ TT ◦ dTT. However, we can obtain a de-
terministic transduction if the number of invisible pebbles
used by the transducer is bounded (over all input trees), cf.
the M.Sc. Thesis of the third author [26].

Combining the previous two results we can inductively de-
compose tree tranducers with (visible and invisible) pebbles
into tree transducers without pebbles.

Theorem 4. For k ≥ 0, VkI-PTT ⊆ TT
k+2.

Observe that Vk-PTT ⊆ Vk−1I-PTT as the topmost peb-
ble can be replaced by an invisible one, thus Vk-PTT ⊆
TT

k+1, which was proved in [11], but also for the determin-
istic case.

If we start with a deterministic tree transduction, we can
show that the inclusions of Lemma 3 also hold in the other
direction.

4. TYPECHECKING
The domain of a tree-walking tree transducer without peb-

bles can be accepted by an alternating ta. Existential states
in the alternation correspond to the nondeterminism of the
tt, universal states correspond to the recursive way in which
output trees are generated. It was shown in [27, Corol-
lary 5.3] and [22, Theorem 4.7] that alternating ta accept
the regular tree languages.

Alternatively, it is explained in Section 3.2 of [11] that (de-
terministic) tt are closely related to attributed tree trans-
ducers. Similarly, the nondeterministic tt correspond to the
nondeterministic version of the attributed tree transducer.
Hence we may transfer a result of [2] to domains of tt. An
analysis of the proof gives a useful complexity bound, which
improves the constructions of [27] (double exponential) and
of [22] (triple exponential).

Theorem 5. For every tt M a regular tree grammar G
can be constructed in exponential time such that G generates
the domain of τM.

The inverse type inference problem is to construct, for a
tree transducer M and a regular tree grammar Gout, a reg-
ular tree grammar Gin such that L(Gin) = τ−1

M (L(Gout)).

Note that our definition differs from the one in [22], where
it is required that L(Gin) = { s | τM(s) ⊆ L(Gout) }; the
reason is that our definition is more convenient when con-
sidering compositions of tree transducers.

Lemma 6. The inverse type inference problem is solvable
for tt’s in exponential time.

Proof. Given a regular tree grammar Gout and a tree
transducer M by a standard direct product construction
another tt M′ can be constructed in polynomial time such
that it equals M except that it only generates trees in
L(Gout). Thus the domain of τM′ equals τ−1

M (L(Gout)) and
by Theorem 5 a regular tree grammar Gin for it can be con-
structed in exponential time.

We define a k-fold exponential function to be a function of
the form 2g(n) where g is a (k−1)-fold exponential function;
a 0-fold exponential function is a polynomial.

Corollary 7. The inverse type inference problem is solv-
able for a composition of k tt’s in k-fold exponential time.

We finally turn to the typechecking problem. It asks, for a
tree transducer M and two regular tree grammars Gin and
Gout, whether or not τM(L(Gin)) ⊆ L(Gout). This is solved
using inverse type inference, as described in [22].

Theorem 8. For fixed k ≥ 0, we can typecheck
(1) TT

k in (k+1)-fold exponential time,
(2) Vk-PTT in (k+2)-fold exponential time,
(3) VkI-PTT in (k+3)-fold exponential time.

Proof. It suffices to prove (1) and refer for (3) to Theo-
rem 4, of which the construction takes polynomial time (for
fixed k). For (2) we use that Vk-PTT ⊆ Vk−1I-PTT.

Clearly, τM(L(Gin)) ⊆ L(Gout) if and only if L(Gin) ∩
τ−1
M (Rout) = ∅, where Rout is the complement of L(Gout).

A regular tree grammar for Rin = τ−1
M (Rout) can be con-

structed in (k+1)-fold exponential time by first construct-
ing a regular tree grammar for Rout in exponential time, and
then using Corollary 7. Emptiness of L(Gin)∩Rin can then
be tested in polynomial time as usual.

The main conclusion from Theorem 8 is that the com-
plexity of typechecking basically depends on the number of
visible pebbles used. Thus we can improve the complexity of
the problem by changing visible pebbles into invisible ones
as much as possible, see Section 8.

5. TREES, TESTS AND TRIPS
For ‘classical’ tree-walking automata with a bounded num-

ber of visible pebbles only, it was shown in [9, Section 5] that
these automata accept regular tree languages only (but not
all of them [5]). One of the main reasons for introducing an
unbounded number of (invisible) pebbles is that they can be
used to recognize all regular tree languages, unlike v-pta.

Lemma 9. REGT ⊆ I-dPTA.

Proof. As the regular tree languages are recognized by
deterministic bottom-up tree automata, it suffices to explain
how the computation of such an automaton A can be sim-
ulated by a deterministic pta with invisible pebbles. The
computation of A on the input tree can be reconstructed
by a post-order evaluation of the tree. The state of A on



a subtree is stored using an invisible pebble at the root of
the subtree. The colour of the pebble represents the state.
Each time a node is processed the pta picks up the peb-
bles from its children, from right to left. Now the pta can
compute the state assumed by A in the node based on the
states of the children, and puts that info at the node using
an invisible pebble of suitable colour. It then proceeds to
the next sibling, or to the parent if the present node was
the rightmost child. The post-order evaluation ensures that
pebbles are used in a nested fashion.

Adding an infinite supply of invisible pebbles on the other
hand does not lead out of the regular tree languages. It is
possible to give a proof of this fact, e.g., by reducing vki-

pta to the backtracking pushdown tree automata of [27], but
here we deduce it from one of our decomposition results.

Theorem 10. For each k ≥ 0, VkI-PTA = REGT.

Proof. In the proof of Lemma 6 we argued that for τ ∈
TT and R ∈ REGT again τ−1(R) is in REGT. By iteration
this holds for sequences of tt’s too.

A pta A is easily turned into a ptt M that outputs single
node tree halt() for trees accepted by A. By Theorem 4 the
transduction τM is a composition of tt transductions, the
domain τ−1

M ( halt() ) of which is regular.

Note that an infinite supply of visible pebbles could be
used to mark a’s and b’s alternatingly and thus accept the
nonregular language anbn (and similarly anbncn).

Patterns. Let Σ be a ranked alphabet and k ≥ 0.
A k-ary pattern over Σ is a set T ⊆ { (t, u1, . . . , uk) |
ui node of tree t over Σ }. For k = 0 this is a tree language,
for k = 1 it is a site (trees with a distinguished position),
for k = 2 it is a trip [10] (or a binary tree-node relation [4]).

We introduce a new ranked alphabet Σ×{0, 1}k, the rank
of (σ, `) equals that of σ in Σ. For a tree t over Σ and k
nodes u1, . . . , uk we define mark(t, u1, . . . , uk) to be the tree
that is obtained by adding to the label of each node u in t a
vector ` ∈ {0, 1}k such that the i-th component of ` equals
1 iff the node u equals ui. The k-ary pattern T is regular if
its marked representation mark(T ) ∈ REGT.

An mso formula ϕ(x1, . . . , xk) over Σ with k free variables
defines the k-ary pattern T (ϕ) = { (t, u1, . . . , uk) | t |=
ϕ(u1, . . . , uk) }. It follows from the result of [8, 28] that a
pattern is mso definable iff it is regular.

With the help of an unbounded supply of invisible pebbles
tree-walking automata can recognize regular tree languages,
Lemma 9. Likewise vki-pta can match arbitrary mso defin-
able k-ary patterns ϕ. When k visible pebbles are dropped
on a sequence of k nodes, the invisible pebbles can be used to
evaluate the tree, and test whether it belongs to the regular
tree language mark(T (ϕ)). In Section 8 we will reconsider
pattern matching.

Ignoring the visible pebbles, it is also possible to consider
the position of the head, and test whether the configuration
belongs to a given regular ‘marked’ tree language. We say
that a family of pta can perform mso head tests if, for a
regular site T over Σ, an automaton can test whether or not
(t, h) ∈ T , where t is the input tree and h the position of the
head at the moment of the test. Obviously, as v-pta cannot
recognize all regular tree languages, they cannot perform
mso head tests either: for any regular tree language T the
set { (t, r) | t ∈ T and r is the root of t } is a regular site.

Lemma 11. For each k ≥ 0, vki-pta can perform mso

head tests. The same holds for vki-dpta.

Proof. Let AT be a deterministic bottom-up tree au-
tomaton recognizing the regular tree language mark(T ) over
Σ×{0, 1}, representing the site T , trees with a single marked
node. We show how to test whether or not the input tree
with current head position h is accepted by AT using invis-
ible pebbles, in a computation starting and ending at h.

The postorder evaluation of Lemma 9 does not work here
without precautions. If we mark node h with an invisible
pebble the pebble becomes unobservable during the eval-
uation. In this way we cannot take the special ‘marked’
position of h into account.

Instead, first evaluate the subtree rooted at h, and sub-
sequently the subtrees rooted at the siblings of h (with the
same pebble stack). When the root u of a subtree is marked
by an invisible pebble (as the starting point of the evalua-
tion) that pebble becomes observable exactly when the pos-
torder evaluation reaches the starting point and has lifted
all the pebbles from the children for the evaluation. In this
way it is always clear when the marked node is visited.

Using these evaluations the evaluation of the parent of h
can be determined. Place an invisible pebble on the parent
of h, and repeat the above process to find the evaluation of
its parent. Repeating this process, eventually we reach the
root of the tree, and know the outcome of the test. Then
return to the original position h picking up the pebbles left
on the path from that position to the root.

This result can easily be extended, using the same proof
technique: pta can test their visible configuration, the posi-
tion of the head together with the positions and colours of
the visible pebbles. Later we will show that pta can even
test their observable configuration, i.e., the visible configu-
ration plus the topmost pebble (Theorem 17).

We again introduce a new ranked alphabet Σ × 2C , the
rank of (σ, b) equals that of σ in Σ. A tree over Σ × 2C is a
‘coloured tree’. For each pebble stack π on a tree t over Σ
we define two coloured trees: The visible configuration tree
vis(t, π) is obtained by adding to the label of each node u in t
the set b ⊆ C such that b contains c iff (u, c) occurs in π and
c ∈ Cv. Similarly for obs(t, π), the observable configuration
tree, b contains c iff (u, c) occurs in π and c is observable
(i.e., c ∈ Cv or (u, c) is the top element of π). Note that as
long as a pta does not change its pebble stack by a dropc

or lift instruction, it behaves just as a ta on obs(t, π).
We say that a family of pta can perform mso tests on the

visible configuration if, for a regular site T over Σ × 2C , an
automaton can test whether or not (vis(t, π), h) ∈ T , where
t is the input tree, π the pebble stack and h the position of
the head. Similarly for the observable configuration. Note
that for a regular site T over Σ × 2C , mark(T ) is a regular
tree language over Σ × 2C × {0, 1}.

Lemma 12. For each k ≥ 0, vki-pta and vki-dpta can
perform mso tests on the visible configuration.

We now turn to the pta as navigational device: we say
that pta A computes the trip T , if T consists of all triples
(t, u, v) such that A, on tree t, started in node u without
pebbles on the tree, walks to node v, and halts, again with-
out pebbles on the tree. A trip T is functional if, for every
t, { (u, v) | (t, u, v) ∈ T } is a function. Note that the trip
computed by a deterministic pta is functional.



The following characterization of the mso definable trips
is more elegant than the one in [10], which uses so-called
marble/pebble automata, a restricted kind of v1i-pta.

Theorem 13. The trips computed by vki-pta, for any
k ≥ 0, are exactly the mso definable trips. Similarly for
vki-dpta and functional trips.

Proof. Consider a trip T computed by vki-pta A: for
any (t, u, v) ∈ T , starting in a node u of input tree t, A
walks to node v and halts. Then mark(T ) can be recognized
by another vki-pta as follows. First it searches for the node
mark of starting node u, then it simulates A, and when
halted, verifies node v is reached. By Theorem 10 this tree
language is regular and hence T is mso definable.

In [4] it is shown that the mso definable trips (tree-node
relations) can be computed by tree-walking automata with
mso head tests. By Lemma 11 they can be computed by
pta with invisible pebbles.

6. LOOK-AHEAD TESTS
We say that a family F of vi-pta can perform look-ahead

tests if an automaton A in F can test whether or not another
vi-pta B (not necessarily in F ) has a successful computation
when started in one of its initial states in the current con-
figuration (i.e., position of the head and stack of pebbles).
We require that CA

v ⊆ CB
v and CA

i ⊆ CB
i .

Theorem 14. For k ≥ 0, vki-pta can perform look-ahead
tests.

Proof. Let A be a vki-pta that wants to perform a look-
ahead test by calling another vi-pta B. When no pebbles are
dropped, the test whether B, started in the current position
h, successfully halts, is an mso head test. Indeed, { (t, h) |
B halts when started in h } is a regular site, as it is the
domain of the vi-pta B′ that starts in the root, looks for
the marked node h, then simulates B. Domains are regular
by Theorem 10; A can perform mso head tests by Lemma 11.

In general, when A has simulated B on its own stack, A
must be able to recover this stack to continue its own com-
putation. For this reason the computations of B starting at
the topmost pebble will be precomputed. With each pebble
dropped by A we store the set of states S for which B has a
successful computation when started in that state at the po-
sition u of the topmost stack element (and with the current
stack)1. Now a successful computation of B can be safely
simulated, consisting of a part where B uses its own pebbles
on top of the stack inherited from A, possibly followed by
a part where B inspects the stack, starting by a visit to u.
We discuss how that state set is determined, and how it is
used (by A) to perform the look-ahead test. For the first
pebble c dropped, the set S can be determined using an mso

head test: construct B′ as above except it now drops c at
the marked node before simulating B.

We now assume that the pebble stack is nonempty, distin-
guishing whether the topmost pebble is visible or invisible.

With a visible topmost pebble, containing this state in-
formation, the look-ahead test can be performed as fol-
lows. Consider the observable configuration tree obs(t, π) =
vis(t, π) with the current node h marked, see Lemma 12.
The vi-pta B′ searches for u and drops an invisible pebble

1Actually, the state information for the visible pebbles is
stored in the finite control.

⊥ on it, then proceeds to h, starts simulating B, and halts
when B observes pebble ⊥ at position u in a state from S,
or when B halts never observing ⊥ (meaning pebbles are
still on top of ⊥ when visiting u). The domain of B′ forms
a regular site T over Σ × 2C , and A can perform an mso

test for T on its observable configuration (because that is
its visible configuration).

The same reasoning shows that the state set for the next
pebble c dropped can be computed: again B′ first drops the
pebble c before starting the simulation.

Now we turn to the case where the topmost pebble at
position u is invisible. As before it is necessary to check
whether automaton B started in node h will reach u in a
given state (or will halt before visiting u), both for perform-
ing the look-ahead test and for computing the new set S
for the next pebble dropped. As before this is an mso test
on the observable configuration, but now such a test cannot
be performed by A: when dropping a pebble on the current
node h the topmost pebble becomes unobservable!

Our solution is that A uses additional invisible pebbles
to cover the (shortest) path from topmost pebble at u to
current position h. These pebbles will be called beads to
distinguish them from A’s original pebbles. Again each bead
carries state information on successful computations of B
when started at the position of the bead with the current
original stack.

The path of beads is updated as follows. If we backtrack
on the path of u to h, i.e., we move to a position where a
bead is present, we just lift the last bead. (The automaton
can test from which direction the path of beads enters h
by removing the bead from h, remembering its colour, and
inspecting the parent and siblings of h for the presence of a
bead, and finally returning to h dropping the bead again.)
If we move away from u, we compute new bead information.
The last bead is on one of the neighbours of h, say the
parent. Consider the following automaton B′, that works
on vis(t, π) with h marked. It searches for h, and drops
invisible pebble ⊥ on the parent of h, returning to h. Then
the simulation of B starts. The automaton B′ halts when B
finds ⊥ in one of the states associated to the topmost bead,
or when the simulation of B halts without observing ⊥. The
crucial point here is that when B visits the topmost pebble
of the current original stack, it must once have passed the
parent of h without additional pebbles on its stack (because,
in the proof of Lemma 3, the shortest path from h to u in
t′ equals the shortest path from h to u in t).

Again, the domain of B′ forms a regular site T over Σ×2C ,
but now the corresponding mso test can be performed by
A on its visible configuration (cf. Lemma 12), because the
state information can first be read from the last bead which
is at the parent of h. Hence, the state information for the
new bead can be computed by A.

Finally, performing a look-ahead test when the topmost
pebble is invisible, just means testing whether one of the
initial states of B is among the states in the last bead.

In fact it can be shown that vki-pta even can perform it-
erated look-ahead tests, that is, they can simulate automata
that in turn use look-ahead. This does not directly follow
from the above theorem. In the proof A starts with an
empty pebble stack and is allowed to prepare it for B look-
ahead. When B calls another pta C, it starts on the stack
inherited from A and has no opportunity to insert the nec-
essary information for C. The solution is simple. When A1



JlabσKf = { (u, π) | u has label σ }
JisleafKf = { (u, π) | u is a leaf }

JpebblecKf = { (u, π(u, c)) | u, π arbitrary }
J〈α〉Kf = { (u, π) | ∃(v, π′) : ((u, π), (v, π′)) ∈ JαKf }
J¬ϕKf = { (u, π) | (u, π) /∈ JϕKf }

JchildKf = { ((u, π), (v, π)) | v is a child of u }
JrightKf = { ((u, π), (v, π)) | v is the next sibling of u }

JdropcKf = { ((u, π), (u, π(u, c))) | u, π arbitrary }
JliftKf = { ((u, π(u, c)), (u, π)) | u, π, c arbitrary }
J?ϕKf = { ((u, π), (u, π)) | (u, π) ∈ JϕKf }

Jα ∪ βKf = JαKf ∪ JβKf

Jα/βKf = JαKf ◦ JβKf

Jα∗Kf = JαK∗f

Table 1: Semantics of Pebble XPath

calls A2, which calls A3, which . . . calls An, then all au-
tomata A1, . . . ,An−1 prepare their stack by adding state
information for An. This leads to automata A′

1, . . . ,A
′
n−1,

and the result follows by induction.

Corollary 15. For k ≥ 0, vki-pta can perform iterated
look-ahead tests.

Although this result does not seem practically useful, it
will become important when we propose a query language
based on pebbles in the next section.

7. DOCUMENT NAVIGATION
We define Pebble XPath, an extension of Regular XPath

[20] with pebbles. The Pebble XPath expressions are recur-
sively defined as follows. In the definitions c ∈ C ranges
over (invisible) pebble colours, and σ ∈ Σ ranges over node
labels. We define node expressions ϕ and path expressions
α (with elementary expressions ϕ0 and α0). The latter de-
scribe walks through a given forest.

ϕ0 ::= labσ | isleaf | isroot | isfirst | islast | pebblec

α0 ::= child | parent | right | left | dropc | lift

ϕ ::= ϕ0 | 〈α〉 | ¬ϕ | ϕ ∧ ϕ
α ::= α0 | ?ϕ | α ∪ α | α/α | α∗

Like we have done for pta, the semantics of Pebble XPath
is given as the transition relation from one configuration
(current node and stack of pebbles) to another. For every
forest f , JϕKf is a subset of con(f) for every node expression
ϕ while JαKf is a binary relation over con(f) for every path
expression α. Here con(f) equals the set N(f)×(N(f)×C)∗,
where N(f) is the set of nodes of f .

The essential definitions are given in Table 1. Note that
several of the elementary node expressions can be defined in
terms of the elementary path expressions: isleaf ≡ ¬〈child〉,
isroot ≡ ¬〈parent〉, isfirst ≡ ¬〈left〉, islast ≡ ¬〈right〉.

A binary pattern T is Pebble XPath definable if there is a
path expression α such that T = { (f, u, v) | ((u, λ), (v, λ)) ∈
JαKf }.

Without ϕ ::= 〈α〉 we will call the language Pebble CAT,
caterpillar expressions extended with pebbles. As every Peb-
ble CAT expression can be seen as a program for an i-pta

(on encoded forests), the equivalence of regular expressions
and finite state automata by Kleene shows that the binary

relations defined by Pebble CAT expressions are those com-
puted by i-pta (cf. [4] for a similar result). By Theorem 13
these are the mso definable trips. Note that ?〈α〉 and ?¬〈α〉
correspond to look-ahead tests on the present configuration
using (the i-pta defined by) the path expression α. By
Corollary 15 this does not extend the power of the i-pta

language.

Theorem 16. A binary pattern is Pebble XPath definable
iff it is mso definable.

As such our expressions have the desirable property of
being a Core (and even Regular) XPath extension that is
complete for mso definable binary patterns. Other such ex-
tensions were considered in [14] (TMNF caterpillar expres-
sions) and [7] (µRegular XPath). Pebble CAT is similar to
PCAT of [14] which has the same expressive power as v-pta

(and thus less than mso by [5]). In PCAT the nesting of
pebbles is defined syntactically rather than semantically.

We do not know whether Theorem 16 still holds when
α ::= α ∩ α (intersection) and/or α ::= α\α (except) are
added to Pebble XPath.

8. MSO TESTS AND PATTERN MATCHING
As a prelude to the discussion on pattern matching we

specify, this time, the mso tests on the observable configu-
ration by mso formulas over Σ×2C . Rather than predicates
labα(x) for all α ∈ Σ×2C , we assume such formulas to have
predicates labσ(x) for all σ ∈ Σ, and pebc(x) for all c ∈ C,
meaning for a node u with label (σ′, b) that σ′ = σ and that
c ∈ b, respectively. For an observable configuration tree
obs(t, π) they mean, of course, that u has label σ in t and
that u holds an observable c-coloured pebble, respectively.
We show pta can perform mso tests on the observable con-
figuration, i.e., they can evaluate mso formulas ϕ(x) on the
observable configuration tree obs(t, π) with the variable x
assigned to the position of the reading head. Additionally,
they can perform mso jumps: the next position of the head
can be specified by a formula ϕ(x, y) on obs(t, π), where the
head moves from x to y.

Theorem 17. For k ≥ 0, vki-pta can perform mso tests
and mso jumps on the observable configuration.

Proof. A pta A can use a sequence of look-ahead tests
(Theorem 14) to determine whether or not the pebble stack
is nonempty, and, if so, what is the colour d of the topmost
pebble. By Lemma 12 we may assume that d ∈ Ci.

Now let ϕ(x) be an mso formula on the observable config-
uration tree obs(t, π), and let ψ(x, z) be the mso formula ob-
tained from ϕ(x) by changing every atomic formula pebd(y)
into y = z, and every pebc(y) with c ∈ Ci \ {d} into false.
Then ϕ(x) is equivalent to ∃z (ψ(x, z) ∧ pebd(z)). Since
ψ(x, z) defines a trip over Σ × 2Cv , it can be computed by
an i-pta on vis(t, π), by Theorem 13. Thus, the existence
of such a trip from the position x of the reading head to
the position z of the topmost pebble can be computed by a
vki-pta B on the current stack, by first simulating the i-pta

and then verifying that pebble d is on node z (note that the
pebble stack of the i-pta is empty at the end of the trip).
Hence, B can be used as a look-ahead test, cf. Theorem 14.

An mso jump ϕ(x, y) is a regular trip on obs(t, π) from x
to y. Hence by the result of [4] (cf. the proof of Theorem 13)
it can be performed by a ta with mso tests on the observable
configuration.



We note that Theorems 14 and 17 also hold for determin-
istic vki-pta, and that analogous results hold for vki-ptt.

Pattern Matching. One of the basic tree transforma-
tions in the context of XML is pattern matching. The trans-
ducer must find all sequences of nodes satisfying a certain de-
scription and generate the subtrees rooted at these nodes, for
each match. In order to find all n-tuples of nodes matching
the n-ary pattern defined by the mso formula ϕ(x1, . . . , xn),
a ptt enumerates all n-tuples using n−2 visible pebbles, one
invisible pebble on top, and the head. For each such tuple
it performs the mso test ϕ on the observable configuration
(Theorem 17).

As discussed in the Introduction, the for . . . where con-
struct in XQuery often induces less general patterns. There
the pattern is defined by a graph, and the test is a conjunc-
tion (or even a Boolean combination) of binary tests ϕ(x, y)
for each edge (x, y) of the graph, cf. [16].

Consider such a pattern Π. Let GΠ = (V,E) be the undi-
rected graph induced by the pattern. The set V contains the
node variables involved, and E consists of the pairs (x, y) for
which a test ϕ(x, y) is included in Π.

Usually the variables of Π are specified in a specific order
λ = (x1, . . . , xn), and the matches must be listed in the lex-
icographic order induced by λ. Pattern matching Π can be
done by a vi-ptt as follows. Pebbles (with distinct colours)
p1, . . . , pn are used to represent x1, . . . , xn, dropping them
in that order. When the head is at a candidate for posi-
tion xj all mso tests ϕ(xi, xj) for i < j are performed. For
each match, the subtree rooted at xi is generated, by a sep-
arate process for each i; that is straightforward, even when
pi is invisible: lift pebbles pn, . . . , pi+1 one by one, and then
access pi.

As the complexity of typechecking the transducer depends
critically on the number of visible pebbles used we wish to
minimize that number, and use as many invisible pebbles
as possible for matching. To do the tests at node xj all
pebbles pi for which (xi, xj) ∈ E and i < j should be ob-
servable. Hence all such pebbles under the topmost pebble
must be visible. These are the pebbles corresponding to the
set vis(λ) = { xi | there exists (xi, xj) ∈ E with i+1 < j }.

If the order λ is irrelevant we may want to determine an
optimal order. Let us call a subset W ⊆ V visible for Π if
the subgraph of GΠ induced by V −W is acyclic and has
only vertices of degree at most 2. Note that every vis(λ) is
visible.

Proposition 18. Pattern matching Π can be done by a
deterministic vki-ptt where k = #W for a visible set W
for Π.

Proof. Define the order λ on V as follows. First list the
visible vertices W in any order. Then list the remaining
vertices linearly ordered following the components in the
subgraph induced by V −W . Clearly vis(λ) ⊆W .

It suffices to take as visible nodes those of degree ≥ 3 in
the pattern graph (plus one node in each connected compo-
nent that is a cycle). But often one can choose a smaller
set. As an example, a ladder with 3n + 4 nodes as in the
picture needs only n visible pebbles rather than 2n.

Note that if W = ∅, then pattern matching can be done
by an i-ptt. Note also that, for x, y ∈ W , if T (ϕ(x, y))
is functional then all other edges incident with y can be
redirected to x, and y can be dropped from W .

9. DOCUMENT TRANSFORMATION
The Document Transformation Language dtl introduced

in [19] transforms unranked forests. To be able to compare
the power of this model to our ptt, one either can encode
unranked forests as (binary) trees, or one may adapt the
ptt in such a way they generate unranked forests. Here we
follow the last course, as in [25].

In our framework a ptt can be used to output unranked
forests replacing the output rules for ranked nodes by a fa-
cility to generate unranked nodes and unbounded sequences
of trees. The new rules are of the form 〈q, σ, b, j〉 → ζ with
ζ = δ( 〈q′, stay〉 ) introducing a new node with label δ and
generating a forest from state q′, or ζ = 〈q1, stay〉 〈q2, stay〉
concatenating two forests, or ζ = ε generating the empty
forest. Thus we obtain the pebble forest transducer (pft).

A program in the dtl framework uses template rules of
the form 〈q, ϕ(x)〉 → f , where f is a forest over ∆, the leaves
of which can additionally be labelled with a selector of the
form 〈q′, ψ(x, y)〉, ϕ and ψ are mso formulas over Σ, with
one and two free variables respectively. Such a rule can be
applied in state q at a node x that matches ϕ, i.e., satisfies
ϕ(x). Then the transducer outputs forest f , where each
selector 〈q′, ψ(x, y)〉 is recursively computed as the result of
a sequence of copies of the transducer, started in state q′ in
each of the nodes y that satisfy ψ(x, y), the nodes taken in
depth-first order (‘document order’). Note that the ψ are
also used to ‘jump’ to another position in the tree.

Let DTL denote the forest transformations defined by dtl.
For the comparison to pft we assume the input of the dtl

program to be a ranked tree.

Lemma 19. DTL ⊆ I-PFT.

Proof. We construct an i-pft M that uses invisible peb-
bles of a single colour, and never retrieves its pebbles (except
when performing mso tests).

The new transducer M simulates a dtl rule 〈q, ϕ(x)〉 → f
in state q at node u by first checking whether ϕ(u) holds,
cf. Theorem 17. The ∆-labelled nodes of the right-hand
side f can be copied to the output. For each leaf in f la-
belled by the selector 〈q′, ψ(x, y)〉, a copy of M is started
that stores q′ and ψ in its finite control, and executes a sub-
routine that finds all nodes v in the tree for which ψ(u, v)
holds. It first drops a pebble on the current node u and
then performs a depth-first traversal of the tree, starting at
the root, checking in each node v whether ψ holds (for the
last pebble dropped and the position of the head, cf. again
Theorem 17). If true, then the copy of M spawns two con-
catenated processes, the left branch restarts in state q′ and
the right branch continues the depth-first search. When the
search ends, M outputs ε.

It can, in fact, be shown that when output forests are
encoded as binary trees, DTL ⊆ I-PTT.

In [18] the language dtl was extended to tl where the
states have parameters that hold unevaluated forests, similar
to macro tree transducers with outside-in parameter evalu-
ation. The rules of tl programs are of the form

〈q, ϕ(x)〉(z1, . . . , zn) → f



where z1, . . . , zn are the parameters, the arity n depending
on q. The right-hand side f is a forest of actions built using
symbols from ∆, the parameters zi as symbols of rank 0, and
selectors 〈q′, ψ(x, y)〉(f1, . . . , fm) of rank m. Thus, selectors
can be nested.

Example 20. The transformation from Example 1 can
be computed by a deterministic tl program P with the fol-
lowing rules, where the variables i, σi, c, and λi range over
the same values as in Example 1 (with, in the 4th rule, c = 1
or i = 1); also, root(x) and leaf(x) test whether node x is
the root or the leaf, labσ(x) tests whether x has label σ, and
y/x expresses that y is the parent of x.

〈qstart, root(x)〉 → 〈qstart, leaf(y)〉
〈qstart, leaf(x) ∧ labσ0

(x)〉 → 〈q1, y/x〉(σ0, e)
〈q0,¬root(x) ∧ labλ0

(x)〉(z1, z2) → 〈q0, y/x〉(z1, z2)
〈qc,¬root(x) ∧ labλi

(x)〉(z1, z2)
→ 〈qi, y/x〉(〈qcopy, y = x〉(z1), 〈qc, y/x〉(z1, z2))

〈qc, root(x)〉(z1, z2) → r(〈qcopy, y = x〉(z1), z2)
〈qcopy, labσ1

(x)〉(z1) → σ1(z1)
An XSLT 1.0 program corresponding to P can easily be
written, with parameters of type ‘result tree fragment’.

Theorem 21. TL = I-PFT.

Proof. (⊆) The construction extends the one of the proof
of Lemma 19. For convenience we ignore tests, both in tl

and i-pft. The main idea is to use states and pebble colours
to store expressions (forests of actions) that are to be eval-
uated on the tree; the pebbles store the parameters.

To simulate, in state q, a rule 〈q, ϕ(x)〉(z1, . . . , zn) → f , go
into state [f ]. If the state is of the form [tf ], for a tree t and a
forest f , the transducer uses rule [tf ] → 〈[t], stay〉 〈[f ], stay〉,
branching the computation. If it is of the form [δ(f)], the
rule is [δ(f)] → δ(〈[f ], stay〉), and if it is of the form [ε], the
rule is [ε] → ε.

If the state is of the form [〈q′, ψ(x, y)〉(f1, . . . , fm)], then
a pebble ([f1], . . . , [fm]) is dropped on the current node u
to represent the parameters, and the transducer starts a
copy in state q′ in every node v that satisfies ψ(u, v), see
the construction in the proof of Lemma 19. If the state
is of the form [zi] for some parameter zi, this means the
parameter has to be evaluated. The transducer searches for
the top pebble ([f1], . . . , [fm]), pops it, and changes state to
[fi] ready to evaluate it.

(⊇) The proof is too technical to present here. We observe
that the equality TL = I-PFT is a variant of the well-known
fact that macro grammars are equivalent to indexed gram-
mars [13], see also [12, Theorem 5.24].

Following an idea of [25] we can transfer our typechecking
results for tree transducers to forest transducers.

Theorem 22. For fixed k ≥ 0, we can typecheck VkI-PFT

in (k+3)-fold exponential time.

For k = 0 this provides an alternative proof of the main
result of [18]. In general, decomposition into tt’s leads to
more efficient typechecking than decomposition into macro
tree transducers, because (cf. Lemma 6) inverse type infer-
ence of mtt’s takes double exponential time, unless the num-
ber of parameters is bounded and the output type is fixed
[25]. We can typecheck tl in 4-fold exponential time, assum-
ing the mso tests are represented by deterministic bottom-
up tree automata.
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