
1

Pushdown Automata?

Hendrik Jan Hoogeboom and Joost Engelfriet

Institute for Advanced Computer Science,
Universiteit Leiden, the Netherlands

1.1 Introduction

Recursive functions in a computer program can be modelled by suitable gram-
matical rules. As an example, cf. Figure 1.1, the recursive function Hanoi,
moving n disks from pin s to pin t using additional pin v can be represented
by productions like Hstv(n) → Hsvt(n−1) mst Hvts(n−1) and Hstv(0) → λ
—with terminal symbols mxy, x, y ∈ {s, t, v}. Of course, context-free gram-
mars do not have attributes to their nonterminals and we could abstract from
them by writing Hstv → HsvtmstHvts, Hstv → λ.

Such a recursive function will lead to a stack of recursive function calls
during execution of the program. Thus the lifo (‘last-in-first-out’) stack is
another face of recursion.

In this chapter we consider a machine model based on an abstraction of
this very natural data type, the pushdown automaton [23, 25]. Of course
this chapter should be read in conjunction with Chapter ?? on context-free
grammars, and Chapter ?? regarding finite state automata. In the abstract
world of formal languages the models of context-free grammar and pushdown
automaton are again two faces of the same phenomenon: recursion. In partic-
ular, this means the models are equivalent in their language defining power,
as shown in Theorem 6 below.

As expected, this chapter contains much of the main theory of pushdown
automata as treated in the various introductory books on formal language the-

? Fall 2003. Chapter 6 in: Formal Languages and Applications (C. Mart́ın-Vide,
V. Mitrana, G. Paun, eds.), Studies in Fuzziness and Soft Computing, v. 148,
Springer, Berlin, 117-138, 2004.

function Hanoi (n, s, t, v)
if (n > 0)
{ Hanoi (n − 1, s, v, t);

movedisk (s, t);
Hanoi (n − 1, v, t, s);

}

s v t

Fig. 1.1. Recursive solution to the Towers of Hanoi

2 Hendrik Jan Hoogeboom and Joost Engelfriet

ory, as [19, 15], or in the relevant handbook chapters [1] and [3]. We show in
Section 1.3 the equivalence between context-free grammars and pushdown au-
tomata, and apply this to the family CF of context-free languages: we present
as a consequence closure properties, normal forms, and a characterization of
CF in terms of Dyck languages, all having a natural interpretation in terms
of pushdown automata.

In Section 1.4 we study determinism for pushdown automata, just some
highlights of an otherwise extensive theory [15]. Of course, we are happy to
mention the decidability of the equivalence of deterministic pushdown au-
tomata, a result that was only recently obtained.

It is impossible to avoid overlap with the available introductory texts in the
area, but we have managed to find a niche of our own, studying the language
of pushdown stack contents during computations in Section 1.5. We apply the
results to build ‘predicting machines’ [18, Section 12.3], automata that use
knowledge about their stack contents to decide on the future steps in their
computations. This approach, also called ‘look-ahead on pushdowns’, allows
an elegant solution to several closure properties of (deterministic) context-
free languages as was made explicit in [8]. Moreover, it can be applied to
the theory of LL(k) and LR(k)-grammars. In Section 1.6 we show how to
build a deterministic pushdown automaton for a given LR(k)-grammar, in an
abstract fashion, avoiding the introduction of the usual, more ‘practical’, item
sets.

We close our presentation in Section 1.7 by a bird’s eye view on some of
the many machine models related to the pushdown automaton.

1.2 Basic Notions

A pushdown automaton, cf. Figure 1.2, is a finite state device equipped with
a one-way input tape and with a pushdown stack which is a lifo external
memory that can hold unbounded amounts of information; each individual
stack element contains finite information.

Definition 1. A pushdown automaton, pda for short, is a 7-tuple A =
(Q,∆, Γ, δ, qin , Ain , F) where Q is a finite set (of states), ∆ an alphabet
(of input symbols), Γ an alphabet (of stack symbols), δ a finite subset of
Q× (∆∪{λ})×Γ ×Q×Γ ∗, the transition relation, qin ∈ Q the initial state,
Ain ∈ Γ the initial stack symbol, and F ⊆ Q the set of final states.

A configuration (or instantaneous description) of a pda A is given by the
contents of the part of the input tape that has not been read, the current
state, and the current contents of the stack. Hence the set of configurations of
A is the set ∆∗ ×Q× Γ ∗. In denoting the stack as a string of stack symbols
we assume that the topmost symbol is written first.

An element (p, a,A, q, α) of δ is called an instruction (or transition) of A;
it is a λ-instruction if a is the empty string. An instruction (p, a,A, q, α) of

1 Pushdown Automata 3

a

input tape

· · · · · ·

δ

p

finite
control

stack

top
A

...

Fig. 1.2. Pushdown automaton

the pda —valid in state p, with a next on the input tape, and A as topmost
symbol of the stack (as in Figure 1.2 for a ∈ ∆)— specifies a change of
state from p into q, reading a from the input, popping A off the stack, and
pushing α onto it. When one wants to distinguish between the pre-conditions
of an instruction and its post-conditions, δ can be considered as a function
from Q × (∆ ∪ {λ}) × Γ to finite subsets of Q × Γ ∗, and one writes, e.g.,
(q, α) ∈ δ(p, a,A). Pushing a string α to the stack regardless of its current
topmost symbol has to be achieved by introducing a set of instructions, each
popping a symbol A ∈ Γ and pushing αA. In particular, when α = λ we have
a set of instructions that effectively ignores the stack by popping the topmost
symbol and pushing it back.

According to the intuitive semantics we have given above, δ defines a step
relation `A on the set of configurations:

(ax, p,Aγ) `A (x, q, αγ) iff (p, a,A, q, α) ∈ δ, x ∈ ∆∗, and γ ∈ Γ ∗.

As a consequence of the definitions, a pda cannot make any further steps on
an empty stack, as each instruction specifies a stack symbol to be removed.

A computation of the pda is a sequence of consecutive steps; the compu-
tation relation is the reflexive and transitive closure `∗A of the step relation.
There are two natural ways of defining the language of a pda, basing the ac-
ceptance condition either on internal memory (the states) or on the external
memory (the stack). A pda accepts its input if it has a computation starting in
the initial state with the initial stack symbol on the stack, completely reading
its input, and either (1) ending in a final state, or (2) ending with the empty
stack. In general, for a fixed pda, these languages are not equal. Note that in
the latter case the final states are irrelevant.

Definition 2. Let A = (Q,∆, Γ, δ, qin , Ain , F) be a pda.

1. The final state language of A is
L(A) = { x ∈ ∆∗ | (x, qin , Ain) `

∗
A (λ, q, γ) for some q ∈ F and γ ∈ Γ ∗ }.

2. The empty stack language of A is
N(A) = { x ∈ ∆∗ | (x, qin , Ain) `

∗
A (λ, q, λ) for some q ∈ Q }.

4 Hendrik Jan Hoogeboom and Joost Engelfriet

We stress that we only accept input if it has been completely read by
the pda, however, the pda cannot recognize the end of its input (and react
accordingly). This is especially important in the context of determinism (see
Section 1.4). We can remedy this by explicitly providing the input tape with
an end marker $, recognizing a language L$ rather than L.

We also stress that, due to the presence of λ-instructions, a pda can have
infinite computations. Thus, it is not obvious that the membership problem
‘x ∈ L(A)?’ is decidable. This will follow from Theorem 6.

Example 3. Consider the exchange language for the small euro coins, which
has the alphabet ∆ = {1, 2, 5,=}:

Lex = { x=y | x ∈ {1, 2}∗, y ∈ {5}∗, |x|1 + 2 · |x|2=5 · |y|5 },

where |z|a denotes the number of occurrences of a in z. For instance, the
language contains 12(122)311 = 5555. It is accepted using empty stack ac-
ceptance by the pda A with states Q = {i, 0, 1, 2, 3, 4}, initial state i, input
alphabet ∆, stack alphabet Γ = {Z,A}, initial stack symbol Z, and the fol-
lowing instructions:
pushing the value of 1 and 2 on the stack :

(i, 1, Z, i, AZ), (i, 1, A, i, AA), (i, 2, Z, i, AAZ), (i, 2, A, i, AAA);
reading the marker : (i,=, Z, 0, Z), (i,=, A, 0, A);
popping 5 cents from the stack :

(0, 5, A, 4, λ), and (k, λ,A, k − 1, λ) for k = 4, 3, 2, 1;
emptying the stack : (0, λ, Z, 0, λ).

While reading 1’s and 2’s the automaton pushes one or two A’s onto the
stack to represent the value of the input. We have to provide two instructions
for each of the two input symbols as the topmost stack symbol may be A
or Z (when no input has been read). When reading 5 a total of five A’s is
removed in a sequence of five consecutive pop instructions. The stack can only
be emptied when the value represented on the stack is zero (there are no A’s
left) and when we are in state 0 (we are finished processing the input symbol
5). Thus, N(A) = Lex. ut

Note that in our previous example the pda recognizes the moment when it
reaches the bottom of its stack. This is achieved by reserving a special symbol
Z that takes the bottom position of the stack, i.e., during the computation
the stack has the form Γ ∗

1 Z with Z /∈ Γ1.
This trick is also the main ingredient in the proof of the following result

stating that final state and empty stack acceptance are equivalent. By putting
a special marker at the bottom of the stack (in the first step of the compu-
tation) we can recognize the empty stack and jump to a final state (when
transforming empty stack acceptance into final state acceptance) and we can
avoid reaching the empty stack before the input has been accepted by final
state (when transforming final state acceptance into empty stack acceptance).

1 Pushdown Automata 5

Lemma 4. Given a pda A one can effectively construct a pda A′ such that
N(A) = L(A′), and vice versa.

Context-free grammars owe their name to the property that derivations
can be cut-and-pasted from one context into another. For pushdown automata,
the part of the input that is not consumed during a computation, as well as
the part of the stack that is not touched, can be omitted without effecting the
other components of the computation. This leads to a technical result that is
of basic use in composing pda computations.

Lemma 5. Let A = (Q,∆, Γ, δ, qin , Ain , F) be a pda. If (x, p, α) `∗A (λ, q, β)
then (xz, p, αγ) `∗A (z, q, βγ), for all p, q ∈ Q, all x, z ∈ ∆∗, and all α, β, γ ∈
Γ ∗. The reverse implication is also valid, provided every stack of the given
computation (except possibly the last) is of the form µγ with µ ∈ Γ ∗, µ 6= λ.

1.3 Context-Free Languages

Each context-free grammar generating a language can easily be transformed
into a pda recognizing the same language. Given the context-free grammar
G = (N,T, S, P) we define the single state pda A = ({q}, T,N ∪ T, δ, q, S,∅),
where δ contains the following instructions:

• (q, λ,A, q, α) for each A→ α ∈ P ‘expand’
• (q, a, a, q, λ) for each a ∈ T ‘match’

The computations of A correspond to the leftmost derivations ⇒∗
G,` of

G; the sequence of unprocessed nonterminals is stored on the stack (with
intermediate terminals). Formally, for x ∈ T ∗ and α ∈ (N∪T)∗, if (x, q, S) `∗A
(λ, q, α) then S ⇒∗

G,` xα. The reverse implication is valid for α ∈ N(N ∪T)∗∪
{λ}. This correspondence is easily proved by induction, using Lemma 5.

By taking here α = λ, we find that S ⇒∗
G,` x iff (x, q, S) `∗A (λ, q, λ), for

all x ∈ T ∗. This means that L(G) = N(A), as leftmost derivations suffice in
generating the language of a context-free grammar.

If the given context-free grammar G has only productions of the form
A → aα with a ∈ T ∪ {λ} and α ∈ N∗ —this is satisfied both by gram-
mars in Chomsky normal form and by those in Greibach normal form— then
the construction is even more direct, as we can combine an expand instruc-
tion with its successive match instruction. The pda, with stack alphabet N ,
is constructed by introducing for each production A → aα the instruction
(q, a,A, q, α).

This correspondence shows the equivalence of single state pda’s (under
empty stack acceptance) and context-free grammars. Keeping track of the
states during the derivations requires some additional effort. The full equiva-
lence of context-free grammars and pda’s is the central result in the theory of
context-free languages; it is attributed to Chomsky, Evey, and Schützenberger
[5, 11, 25].

6 Hendrik Jan Hoogeboom and Joost Engelfriet

A B3

B2

B1

B2

B3

p q1 q2 q3 q

Fig. 1.3. Computation of type [p, A, q]

Theorem 6. A language is recognized by a pda, either by final state or by
empty stack, iff it is context-free.

Proof. It suffices to demonstrate that every language recognized by a pda
using empty stack acceptance is context-free.

Let A = (Q,∆, Γ, δ, qin , Ain , F) be a pda. A computation (xz, p,Aγ) `∗A
(z, q, γ) of A is said to be of type [p,A, q] if the symbols from γ are not
replaced during the computation, i.e., each of the intermediate stacks is of
the form µγ with µ ∈ Γ ∗, µ 6= λ, cf. Lemma 5. Such a computation starts
in state p, ends in state q, and effectively removes the topmost A from the
stack. If the first instruction chosen is (p, a,A, q1, B1 · · ·Bn) then A is replaced
by B1 · · ·Bn, and these symbols in turn have to be removed from the stack,
one by one, before the computation of type [p,A, q] ends. This means that
the remainder of the [p,A, q] computation is composed of computations of
type [q1, B1, q2], [q2, B2, q3], . . . , [qn, Bn, q], respectively, where q2, . . . , qn are
intermediate states (cf. Figure 1.3 where n = 3).

Now we construct a context-free grammar G = (N,∆, S, P) such that
L(G) = N(A). The nonterminals represent the types of computations of the
pda: N = { [p,A, q] | p, q ∈ Q,A ∈ Γ } ∪ {S}. The productions simulate
the pda by recursively generating computations following the decomposition
sketched above. The first production nondeterministically guesses the last
state. The second production nondeterministically guesses the intermediate
states q2, . . . , qn.

1. S → [qin , Ain , q] for all q ∈ Q,
2. [p,A, q]→ a[q1, B1, q2][q2, B2, q3] · · · [qn, Bn, q]

when (p, a,A, q1, B1 · · ·Bn) in δ, for all q, q2, . . . , qn ∈ Q, n ≥ 1,
3. [p,A, q]→ a when (p, a,A, q, λ) in δ.

Formally, the construction can be proved correct by showing inductively
the underlying relation between computations and derivations: [p,A, q] ⇒∗

G

x iff there is a computation of type [p,A, q] reading x from the input, i.e.,
(x, p,A) `∗A (λ, q, λ). ut

1 Pushdown Automata 7

Grammars with storage. In fact, this result can be generalized to context-
free grammars with storage. As a simple example of such a type of storage, we
return to the Hanoi function in the Introduction, and we consider context-free
grammars where each nonterminal carries a natural number which is inherited
by its children in a derivation, after decrementing the value by one. The
axiom is initiated with an arbitrary number; on reaching zero only terminal
symbols can be produced. For instance, the grammar with productions S(n)→
S(n−1)S(n−1) for n ≥ 1, and S(0) → a generates the (non-context-free)
language { a2n

| n ∈ N }.
An excursion of a pda is a computation of the form (xz, p,Aγ) `+

A

(z, q, Bγ), where each intermediate stack is of the form µγ, |µ| ≥ 2. For a
bounded excursion pda we put a fixed upper bound k on the number of ex-
cursions starting from any stack element. We can implement this restriction
by assigning the number k to each newly introduced stack symbol, and decre-
menting it when the symbol is replaced, viz., instructions that push symbols
back on the stack are of the form (p, a, 〈A, i〉, q, 〈Bn, k〉 · · · 〈B2, k〉〈B1, i− 1〉),
for 1 ≤ i ≤ k.

Note that for every context-free grammar G = (N,T, S, P) there is a
bounded excursion (single state) pda A = ({q}, T, Γ, δ, q, Ain ,∅) such that
L(G) = N(A). The stack alphabet Γ consists of all ‘dotted productions’ of
G (also called ‘items’), i.e., all productions of G with a position marked in
their right-hand side: Γ = { [A → β • γ] | A → βγ in P }. The initial stack
symbol Ain is [S → • S], where we assume w.l.o.g. that S → S is in P . The
instructions of A in δ are of the form

• (q, λ, [A→ α •Bγ]), q, [B → • β][A→ αB • γ]) ‘expand’
• (q, a, [A→ α • aγ], q, [A→ αa • γ]) ‘match’
• (q, λ, [A→ α •], q, λ) ‘reduce’

Clearly, the upper bound on the number of excursions of A is the maximal
length of the right-hand sides of the productions of G.

With this terminology, context-free grammars with some storage type are
equivalent to bounded excursion pda with stack symbols carrying the same
storage, see [9, Theorem 6.3]. This generalizes a result of van Leeuwen that
the family E0L (from which the above example is taken) equals the languages
of so-called preset pushdown automata. If the storage type allows the identity
operation on storage (as in the next example) then the bounded excursion
restriction can be dropped [9, Corollary 5.21].

If the nonterminals of the context-free grammars themselves carry a push-
down stack, then we obtain the indexed grammars, see [19, Chapter 14.3].
These are equivalent to so-called nested stack automata, or following the gen-
eral result of [9] to pushdown-of-pushdowns automata. This process can be
iterated and leads to Maslov’s hierarchy of language families generated by k-
iterated indexed grammars and recognized by k-iterated pushdown automata,
which starts with REG, CF, and the indexed languages (for k = 0, 1, 2, respec-
tively); see, e.g., [7, 8].

8 Hendrik Jan Hoogeboom and Joost Engelfriet

Applications to CF. Pushdown automata are machines, and consequently
they can be ‘programmed’. For some problems this leads to intuitively simpler
solutions than building a context-free grammar for the same task. We present
two examples of closure properties of the family CF that can be proved quite
elegantly using pushdown automata. As a first example consider the closure
of CF under intersection with regular languages: given a pda and a finite state
automaton, one easily designs a new pushdown automaton that simulates both
machines in parallel on the same input. In its state the new pda keeps track
of the state of both machines, the stack mimics the stack of the given pda.
When simulating a λ-instruction of the given pda it does not change the state
of the finite state automaton.

Another closure application of the main equivalence we treat explicitly.

Lemma 7. CF is closed under inverse morphisms.

Proof. Let K ⊆ ∆∗ be a context-free language, and let h : Σ → ∆∗ be a mor-
phism. We show that the language h−1(K) ⊆ Σ∗ is context-free. According
to Theorem 6 we assume that K is given as the final state language of a pda
A = (Q,∆, Γ, δ, qin , Ain , F).

The newly constructed pda A′ for h−1(K) simulates, upon reading symbol
b ∈ Σ, the behaviour of A on the string h(b) ∈ ∆∗. The simulated input string
h(b) is temporarily stored in a buffer that is added to the state. During this
simulation A′ only follows λ-instructions, ‘reading’ the input of the original
automaton A from the internal buffer. Now let Buf = {w ∈ ∆∗ | w is a suffix
of h(b) for some b ∈ Σ}. The pda A′ is given as follows.
A′ = (Q × Buf, Σ, Γ, δ′, 〈qin , λ〉, Ain , F × {λ}), where δ′ contains the fol-

lowing instructions (for clarity we denote elements from Q × Buf as 〈q, w〉
rather than (q, w)):

- (input & filling buffer) For each b ∈ Σ, p ∈ Q, and A ∈ Γ we add
(〈p, λ〉, b, A, 〈p, h(b)〉, A) to δ′.

- (simulation of A) For each a ∈ ∆∪{λ} and v ∈ ∆∗ with av ∈ Buf we add
(〈p, av〉, λ, A, 〈q, v〉, α) to δ′ when (p, a,A, q, α) belongs to δ.

The pda A′ obtained in this way accepts L(A′) = h−1(K) and conse-
quently, as pda’s accept context-free languages, h−1(K) is context-free. ut

Theorem 8 below, and the discussion preceding it provide an alternative
view on this closure property.

Normal forms and extensions. We have seen in the beginning of this
section that context-free grammars in Greibach normal form can be disguised
as single state pushdown automata (under empty stack acceptance). Together
with Theorem 6 this shows that these single state automata constitute a
normal form for pda’s. More importantly, these automata are real-time, that
is they do not have any λ-instructions. Additionally we can require that each

1 Pushdown Automata 9

instruction pushes at most two symbols back on the stack, i.e., in (q, a,A, q, α)
we have |α| ≤ 2.

For final state acceptance we need two states in general, in order to avoid
accepting the prefixes of every string in the language.

Another normal form considers the number of stack symbols. An elemen-
tary construction shows that two symbols suffice. On the stack the element
Bi of Γ = {B1, B2, . . . , Bn} can be represented, e.g., by the string AiB over
the two symbol stack alphabet {A,B}.

An extension of the model can be obtained by allowing the pda to move
on the empty stack. As we have seen in connection with Lemma 4, this can
be simulated by our standard model by keeping a reserved symbol on the
bottom of the stack. A second extension is obtained by allowing the model
to push symbols without popping, or to pop several symbols at once, making
the general instruction of the form (p, a, β, q, α) with β, α ∈ Γ ∗. Again this is
easily simulated by the standard model.

A useful extension is to give the pda access to any relevant finite state
information concerning the stack contents (i.e, does the stack contents belong
to a given regular language) instead of just the topmost symbol. This fea-
ture, presented under the name predicting machines in [18, 19], is treated in
Section 1.5.

Chomsky-Schützenberger. There are several elementary characterizations
of CF as a family of languages related to the Dyck languages, i.e., languages
consisting of strings of matching brackets (see Section II.3 in [2]). We present
here one of these results, claiming it is directly related to the storage behaviour
of the pushdown automaton being the machine model for CF.

A transducer A = (Q,∆1,∆2, δ, qin , F) is a finite state automaton with
both input and output tape, with tape alphabet ∆1 and ∆2 respectively.
Transitions in δ are of the form 〈p, u, v, q〉, where p, q ∈ Q are states, u ∈ ∆∗

1,
and v ∈ ∆∗

2. With computations from initial state qin to final state in F as
usual, these machines define a rational relation τA ⊆ ∆∗

1 ×∆∗
2 rather than a

language. Many common operations, most notably intersection with a regular
language and (inverse) morphisms, are in fact rational relations. Moreover, the
family of rational transductions is closed under inverse and under composition.
A famous result of Nivat characterizes rational transductions τ as a precise
composition of these operations: τ(x) = g(h−1(x)∩R) for every x ∈ ∆∗

1, where
g is a morphism, h−1 is an inverse morphism, and R is a regular language.
There is a clear intuition behind this result: R is the regular language over δ
of sequences of transitions leading from initial to final state, and h and g are
the morphisms that select input and output, respectively: h(〈p, u, v, q〉) = u,
g(〈p, u, v, q〉) = v.

A pda A can actually be seen as a transducer mapping input symbols to
sequences of pushdown operations. Assuming stack alphabet Γ we interpret
Γ as a set of push operations, and we use a copy Γ̄ = {Ā | A ∈ Γ} to
denote pop operations. The pda instruction (p, a,A, q,Bn · · ·B1) can thus be

10 Hendrik Jan Hoogeboom and Joost Engelfriet

re-interpreted as the transducer transition 〈p, a, ĀB1 · · ·Bn, q〉, mapping input
a to output ĀB1 · · ·Bn (pushdown operations ‘pop A, push B1, . . . , push Bn’).
Now input x is accepted with empty stack by the pda A if the sequence of
pushdown operations produced by the transducer is a legal lifo sequence, or
equivalently, if transduction τA maps x to a string in DΓ , the Dyck language
over Γ ∪ Γ̄ , which is the context-free language generated by the productions
S → λ, S → SS, S → ASĀ, A ∈ Γ . Thus, N(A) = τ−1

A (DΓ).
Since we may assume that Γ = {A,B}, it follows from this, in accordance

with the general theory of Abstract Families of Languages (afl), that CF is
the full trio generated by D{A,B}, the Dyck language over two pairs of symbols;
in the notation of [14]:

Theorem 8. CF = M̂(D{A,B}), the smallest family that contains D{A,B} and
is closed under morphisms, inverse morphisms, and intersection with regular
languages (i.e., under rational relations).

This is closely related to the result attributed to Chomsky and Schützen-
berger that every context-free language is of the form g(DΓ ∩ R) for a mor-
phism g, alphabet Γ , and regular R; in fact, DΓ = h−1(D{A,B}), where h is
any injective morphism h : Γ → {A,B}∗, extended to Γ̄ in the obvious way.

1.4 Deterministic Pushdown Automata

From the practical point of view, as a model of recognizing or parsing lan-
guages, the general pda is not considered very useful due to its nondetermin-
ism. Like for finite state automata, determinism is a well-studied topic for
pushdown automata. Unlike the finite state case however, determinism is not
a normal form for pda’s.

In the presence of λ-instructions, the definition of determinism is some-
what involved. First we have to assure that the pda never has a choice between
executing a λ-instruction and reading its input. Second, when the input be-
haviour is fixed the machine should have at most one applicable instruction.

Definition 9. The pda A = (Q,∆, Γ, δ, qin , Ain , F) is deterministic if

• for each p ∈ Q, each a ∈ ∆, and each A ∈ Γ , δ does not contain both an
instruction (p, λ,A, q, α) and an instruction (p, a,A, q′, α′).

• for each p ∈ Q, each a ∈ ∆ ∪ {λ}, and each A ∈ Γ , there is at most one
instruction (p, a,A, q, α) in δ.

We like to stress that it is allowed to have both the instructions (p, λ,A, q, α)
and (p, a,A′, q′, α′) in δ for a 6= λ provided A 6= A′. That is, the choice be-
tween these two instructions is determined by the top of the stack in otherwise
equal configurations. The pda from Example 3 is deterministic.

Keep in mind that a pda can engage in a (possibly infinite) sequence
of λ-steps even after having read its input. In particular, this means that

1 Pushdown Automata 11

acceptance is not necessarily signalled by the first state after reading the last
symbol of the input.

Again, we can consider two ways of accepting languages by deterministic
pda: either by final state or by empty stack. Languages from the latter family
are prefix-free: they do not contain both a string and one of its proper pre-
fixes. As a consequence the family is incomparable with the family of regular
languages. The pda construction to convert empty stack acceptance into final
state acceptance (cf. Lemma 4) can be made to work in the deterministic case;
the converse construction can easily be adapted for prefix-free languages.

Lemma 10. A language is accepted by empty stack by a deterministic pda iff
it is prefix-free and accepted by final state by a deterministic pda.

Here we will study languages accepted by deterministic pda by final state,
known as deterministic context-free languages, a family denoted here by DCF.
The strict inclusion REG ⊂ DCF is obvious, as a deterministic finite state
automaton can be seen as a deterministic pda ignoring its stack, and a de-
terministic pda for the non-regular language { anban | n ≥ 1 } can easily be
constructed.

Intuitively, the deterministic context-free languages form a proper subfam-
ily of the context-free languages. In accepting the language of palindromes
Lpal = { x ∈ {a, b}∗ | x = xR }, where xR denotes the reverse of x, one needs
to guess the middle of the input string in order to stop pushing the input to
the stack and start popping, comparing the second half of the input with the
first half. However, this is far from a rigorous proof of this fact. We establish
the strict inclusion indirectly, by showing that CF and DCF do not share the
same closure properties (as opposed to using some kind of pumping property).

For a language L we define pre(L) = {xy | x ∈ L, xy ∈ L, y 6= λ}, in other
words, pre(L) is the subset of L of all strings having a proper prefix that also
belongs to L. Observe that CF is not closed under pre, as is witnessed by
the language Ld = { anban | n ≥ 1 } ∪ { anbamban | m,n ≥ 1 } for which
pre(Ld) = { anbamban | m ≥ n ≥ 1 }.

Lemma 11. DCF is closed under pre.

Proof. Let A = (Q,∆, Γ, δ, qin , Ain , F) be a deterministic pda. The new de-
terministic pda A′ = (Q′,∆, Γ, δ′, q′in , Ain , F

′) with L(A′) = pre(L(A)) simu-
lates A and additionally keeps track in its states whether or not A already has
accepted a (proper) prefix of the input. Let Q′ = Q× {1, 2, 3}. Intuitively A′

passes through three phases: in phase 1 A has not seen a final state, in phase 2
A has visited a final state, but has not yet read from the input after that visit,
and finally in phase 3 A has read a symbol from the input after visiting a final
state; A′ can only accept in this last phase. Accordingly, F ′ = F × {3}, and
q′in = 〈qin , 1〉 whenever qin 6∈ F and 〈qin , 2〉 when qin ∈ F . The instructions
of A′ are defined as follows:

• for (p, a,A, q, α) in δ and q 6∈ F , add (〈p, 1〉, a, A, 〈q, 1〉, α) to δ′,

12 Hendrik Jan Hoogeboom and Joost Engelfriet

• for (p, a,A, q, α) in δ and q ∈ F , add (〈p, 1〉, a, A, 〈q, 2〉, α) to δ′,
• for (p, λ,A, q, α) in δ, add (〈p, 2〉, λ, A, 〈q, 2〉, α) to δ′,
• for (p, a,A, q, α) in δ with a ∈ ∆, add (〈p, 2〉, a, A, 〈q, 3〉, α) to δ′, and
• for (p, a,A, q, α) ∈ δ, add (〈p, 3〉, a, A, 〈q, 3〉, α) to δ′.

ut

As an immediate consequence we have the strict inclusion DCF ⊂ CF, and
in fact it follows that the language Ld above is an element of the difference
CF− DCF. Additionally we see that DCF is not closed under union.

Without further discussion we state some basic (non)closure properties.
Note that these properties differ drastically from those for CF. By min(L) =
L−pre(L) we mean the set of all strings in L that do not have a proper prefix
in L; max(L) is the set of all strings in L that are not the prefix of a longer
string in L.

Theorem 12. DCF is closed under the language operations complementation,
inverse morphism, intersection with regular languages, right quotient with reg-
ular languages, pre, min, and max; it is not closed under union, intersection,
concatenation, Kleene star, (λ-free) morphism, and mirror image.

We just observe here that closure under min is obtained by removing all in-
structions (p, a,A, q, α) with p ∈ F , and that closure under inverse morphisms
and under intersection with a regular language is proved as in the nondeter-
ministic case. The latter closure property allows us to prove rigorously that
Lpal is not in DCF: otherwise, Ld = Lpal ∩ (a+ba+ ∪ a+ba+ba+) would also
be in DCF. We return to the proof of the remaining positive properties in the
next section.

Real-time. For deterministic automata, real-time, i.e., the absence of λ-
instructions is not a normal form. However, it is possible to obtain au-
tomata in which every λ-instruction pops without pushing, i.e., is of the form
(p, λ,A, q, λ). This is explained in [1].

Decidability. Partly as a consequence of the effective closure of DCF under
complementation, the decidability of several questions concerning context-
free languages changes when restricted to deterministic languages. Thus, the
questions of completeness ‘L(A) = ∆∗?’, and even equality to a given regular
language ‘L(A) = R?’, are easily solvable. Also regularity ‘is L(A) regular?’
is decidable, but its solution is difficult.

The questions on complementation and ambiguity —‘is the complement
of L(A) (deterministic) context-free?’ and ‘is L(A) inherently ambiguous?’—
are now trivially decidable, while undecidable for CF as a whole.

The equivalence problem ‘L(A1) = L(A2)?’ for deterministic pda’s has
been open for a long time. It has been solved rather recently by Sénizergues,
and consequently it is not mentioned in most of the textbooks listed in Chap-
ter ??. The problem is easily seen to be semi-decidable: given two (deter-
ministic) pda’s that are not equivalent a string proving this fact can be found

1 Pushdown Automata 13

by enumerating all strings and testing membership. The other half of the
problem, establishing a deduction system that produces all pairs of equivalent
deterministic pda’s was finally presented at ICALP’97. A more recent expo-
sition of the decidability is given in [26]. Many sub-cases of the equivalence
problem had been solved before, like the equivalence for simple context-free
languages, accepted by single state deterministic (real-time) pda’s. For an
exposition of the theory of simple languages see [15].

The decidability of the equivalence of k-iterated pda’s remains open.

1.5 Predicting Machines

In this section we study the behaviour of the pda with respect to the stack
rather than to the input. It leads to a powerful technique where the pda A
is able to make decisions on the continuation of its computation based on
whether any other given pda (usually closely related to A) is able to empty
the current stack of A. This works even when A is deterministic, while the
other pda is nondeterministic.

Let A = (Q,∆, Γ, δ, qin , Ain , F) be a pda. The store language of A is
defined as

SN(A) = { α ∈ Γ ∗ | (x, qin , α) `
∗
A (λ, q, λ) for some x ∈ ∆∗ and q ∈ Q },

i.e., consisting of stacks that can be completely popped when a suitable input
is given to the pda.

Note that the string B1B2 · · ·Bn belongs to the store language if the sym-
bols B1 to Bn can be consecutively popped from the stack. Hence, we are in
a situation similar to the construction of a context-free grammar for a given
pda. So, B1B2 · · ·Bn ∈ SN(A) iff there exist states q1, q2, . . . , qn, qn+1 such
that q1 = qin and for each 1 ≤ i ≤ n, (x, qi, Bi) `

∗
A (λ, qi+1, λ) for some

x ∈ ∆∗. This means that we can build a finite state automaton for SN(A)
using the states of A (initial state qin , all states final) and adding an edge
from state p to q with label B iff (x, p,B) `∗A (λ, q, λ) for some x ∈ ∆∗. This is
equivalent to requiring [p,B, q]⇒∗

G x, where [p,B, q] is a nonterminal of G as
introduced in the proof of Theorem 6. Note that this property of nonterminal
symbols (is the symbol productive, i.e., does it derive a terminal string?) is
decidable for context-free grammars.

Thus, we have a rather surprising result for store languages [12].

Lemma 13. For each pda A the language SN(A) is regular, and can be effec-
tively constructed from A.

This result has several extensions that are easily seen to follow. We may
additionally require (in the definition of SN(A)) that the string x read belongs
to R for a given regular R or that the last state q belongs to the set F of final
states. For these extensions consider a new pda that simulates both A and a

14 Hendrik Jan Hoogeboom and Joost Engelfriet

finite state automaton for R (accepting the intersection of their languages, cf.
Section 1.3), or a new pda that has a new bottom-of-stack symbol that can
be popped only in states in F .

Also, we may be interested in the reverse process, asking for stacks that
can be pushed during computations, rather than those that can be popped,
i.e., we may wish to use

SF(A) = { α ∈ Γ ∗ | (x, qin , Ain) `
∗
A (λ, q, α) for some x ∈ ∆∗ and q ∈ F }.

Basically this follows by considering the pda that simulates A in reverse,
interchanging pops and pushes.

A direct application of this result is to Büchi’s regular canonical systems
[4]. Such a system is similar to a type-0 (unrestricted) Chomsky grammar,
where the productions may only be applied to a prefix of the string. This
means that the derivation process is much like the lifo behaviour of the
pushdown stack. A production α → β applied to the prefix α of a string
can be simulated by a pda A on its stack in a sequence of steps, popping α
and pushing β. As a consequence, by taking only those stacks that appear in
between these simulation sequences, i.e., by using an appropriate F in SF(A),
the set of strings obtained by prefix rewriting starting from a given initial
string forms a regular language.

A second application is in the theory of pushdown automata itself. A pda
can make decisions on the continuation of its computation by inspecting the
topmost symbol of its stack. In some circumstances it is convenient to have
the possibility to inspect the stack in some stronger way, to answer questions
like: ‘with the present stack will the pda be able to read the next symbol, or
will it diverge into an infinite λ-computation?’; this question is particularly
important in connection with the closure of DCF under complementation.

As a consequence of Lemma 13, many relevant queries are actually of the
type ‘is α ∈ R?’, where α = Bn · · ·B2B1 is the current stack (for convenience
we have numbered the symbols bottom-up), and R is a fixed regular language.
We show that by adding suitable data to the stack it is possible to keep track
of this information while the stack grows and shrinks.

For fixed regular R as above, we consider a deterministic finite state au-
tomaton AR with state set QR for the reverse {xR | x ∈ R} of R. We extend
the stack alphabet Γ of the pda under consideration to Γ×QR, and we replace
the stack Bn · · ·B2B1 by 〈Bn, qn〉 · · · 〈B2, q2〉〈B1, q1〉, where qi is the state as-
sumed by AR on input B1B2 · · ·Bi, a prefix of the reverse of the stack. Of
course, α ∈ R iff qn is a final state, and this can be decided by inspecting the
top of the new stack. Obviously, after popping the stack the relevant state of
AR is again available, and push instructions can be adapted to contain the
new state information, i.e., the simulation of AR on the symbols pushed. Note
that this construction preserves determinism of the pda.

This technique can, for instance, be used to avoid infinite computations
and to signal acceptance by the first state after reading the input — typi-

1 Pushdown Automata 15

cal technical problems in considerations on deterministic pda’s [25]. Thus we
obtain the following normal form for deterministic pda’s.

Lemma 14. For each deterministic pda we can construct an equivalent de-
terministic pda that can read every input string and has no λ-instructions
entering final states.

Proof. We assume that the given pda A never empties its stack, cf. the dis-
cussion preceding Lemma 4. To obtain the second property, we adapt A as
follows. Just before executing a non-λ-instruction ρ = (p, a,A, q, α), first query
the stack to see whether after execution of ρ it is possible to reach a final state
using λ-instructions only (including the case when q is final). If not, ρ is ex-
ecuted. Otherwise, the new instruction (p, a,A, q̄, α) is executed, where q̄ is a
new final state with instructions (q̄, λ, B, q,B) for all B. The only final states
of the adapted pda are the barred ones.

It remains to show that the test on the stack contents is of the regular
type discussed above. We do this by indicating how to construct the pda Aρ,
for each non-λ-instruction ρ of A, for which the store language SN(Aρ) is the
regular language we are looking for.

Let Aρ be a copy of A with a new initial state s and a new instruction
(s, a,A, q, α). We remove all non-λ-instructions (except the one for s), and
we add λ-instructions to empty the stack for each final state. Obviously, Aρ

empties a given initial stack Aγ iff A reaches a final state using λ-instructions
only, starting in state q with initial stack αγ. This is the query we want to
make.

To obtain the first property, we may clearly assume that if A has no
instruction of the form (p, λ,A,−,−) then it has an instruction of the form
(p, a,A,−,−) for every input symbol a: just introduce a (non-final) ‘garbage’
state g that reads the remainder of the input. The only other reason that
A might not read its entire input is that it may get stuck in an infinite
computation with λ-instructions only. To avoid this, we always query the
stack whether it is possible to reach a non-λ-instruction, i.e., whether it is
possible to read another symbol from the tape. If not, we move to garbage
state g, as it is of no use to continue. ut

Predicting techniques like this (or look-ahead on pushdowns [8]) lead to the
closure of DCF under complementation. In fact, to construct a deterministic
pdaAc that accepts the complement of L(A), whereA = (Q,∆, Γ, δ, qin , Ain , F)
is in the normal form of Lemma 14, change every instruction (p, a,A, q, α) of
A with a ∈ ∆ and q /∈ F into the instructions (p, a,A, q̃, α) and (q̃, λ, B, q,B)
for all B ∈ Γ ; the state set and set of final states of Ac are Qc = Q ∪ Fc and
Fc = {q̃ | q /∈ F}.

Also, as originally shown in [18, 19], one can show the closure under right
quotient with a regular language R in a deterministic fashion by inspecting
the stack in each current state p, to see whether the pda has an accepting con-
tinuation for the current stack on input from R. The query language SN(A′)

16 Hendrik Jan Hoogeboom and Joost Engelfriet

is obtained from the pda A under consideration by changing the initial state
to p, intersecting its language with R, and emptying the stack in each final
state. Closure under max can be shown in a similar way.

Using Lemma 14 it is easy to show that if L ∈ DCF then L$ ∈ DCF, where
$ is a new symbol. The reverse implication holds by the closure of DCF under
right quotient with {$}. This shows that, in the model of the deterministic
pda, we may provide the input tape with an endmarker without changing the
expressive power of the model.

1.6 LR(k) Parsing

The expand-match construction from Section 1.3 yields a pda for an arbitrary
given context-free grammar G. We can use the resulting pda A as a recognizer
to verify that a given string x belongs to the language of G, or as a parser
of G once A is equipped with proper output facilities. As we have seen, A
simulates the leftmost derivations of G, following the nodes in the derivation
tree in pre-order. This is a top-down approach to recognition, starting with
the axiom S and choosing productions, working towards the terminal string
x. In general it is a nondeterministic process, which needs backtracking or
clever guesswork. For some families of grammars however, the productions
that have to be chosen in the derivation can be predicted on the basis of a
look-ahead on the input x, a fixed window of k symbols not yet read. This has
lead to the study of suitable classes of context-free grammars, most notably
the LL(k)-grammars.

Another approach for building recognizers works bottom-up, trying to re-
construct the derivation tree of x by reducing x to S, i.e., by applying the
productions backwards. This leads to the shift-reduce construction of a pda
for G, where we use an extended model for the pda, popping an arbitrary
number of symbols at a time, and starting with the empty stack. Moreover,
we now assume the top of the stack to the right.

• (q, a, λ, q, a) for each terminal a ‘shift’
• (q, λ, α, q, A) for each production A→ α ‘reduce’

Now these instructions correspond to rightmost derivations of the grammar,
reconstructed backwards. Formally, for x ∈ T ∗ and α, β ∈ (N ∪ T)∗, if
(x, q, α) `∗A (λ, q, β) then β ⇒∗

G,r αy. The reverse implication is valid for
α ∈ (N ∪ T)∗N ∪ {λ}, where according to the convention on the direction of
the stack, the last nonterminal of α is the topmost symbol of the stack.

Again, using look-ahead on the input, this can be made into a determin-
istic process for suitable classes of grammars. We present here a little theory
of LR(k)-grammars, following [18], which means we omit the customary con-
struction of ‘item sets’. Moreover, we use the results of Section 1.5.

1 Pushdown Automata 17

Let G = (N,T, S, P) be a context-free grammar. In order to simplify
notation we pad the end of the input string by a sequence of $’s, which is a
new symbol that we add to T . Let k ∈ N be a fixed natural number.

Formally, G is an LR(k) grammar if

• S$k ⇒∗
G,r αAx1x2 ⇒G,r αβx1x2, and

• S$k ⇒∗
G,r γBx⇒G,r αβx1x3

imply that α = γ, A = B, and x = x1x3, for all A,B ∈ N , x1, x2, x3, x ∈ T ∗

with |x1| = k, α, β, γ ∈ (N ∪ T)∗, and A→ β ∈ P .
Intuitively this means that if αβ is on the stack of the shift-reduce pda A

for G and the first k remaining symbols on the input tape (the look-ahead)
form x1, then A necessarily has to reduce the production A → β. Thus, the
instruction that A has to execute next is uniquely determined. But how can
A determine that instruction? Answer: by querying its stack.

Motivated by the definition above, for a production A→ β and a terminal
string x1 of length k let R(A → β, x1) consist of all situations in which a
reduction from β back to A can occur in G with look-ahead x1; more precisely,
R(A → β, x1) contains the strings of the form αβx1 for which there exists a
derivation S$k ⇒∗

G,r αAx1x2 ⇒G,r αβx1x2 for some x2 ∈ T ∗.
Our first claim is that these sets are regular, which makes recognition of

reduction sites feasible as a finite state process.

Lemma 15. R(A→ β, x1) is a regular set, effectively constructible from G.

Proof. Rightmost derivations are turned into leftmost derivations by consid-
ering all sentential forms in reverse, while also reversing every right-hand side
of productions in the grammar. These leftmost derivations can be executed
by a pda A, nonterminals represented on its stack, using the expand-match
construction. However, A should also keep the k most recently matched ter-
minals in its state and check that they equal x1 when A halts (which is just
after expanding A → β). Thus, by Lemma 13 for the variant SF(A), these
stacks form a regular language. ut

It is a straightforward exercise to characterize the LR(k) property in terms
of these sets: if R(A→ β, x1) and R(A′ → β′, x′1) contain strings, one a prefix
of the other, then this must imply that these strings are equal, and moreover
that the productions A → β and A′ → β′ are equal. As this can easily
be tested effectively, we have the immediate corollary that, for given k, the
LR(k) property is decidable for context-free grammars.

Finally, we build the deterministic recognizer-parser for a given LR(k)
grammar. The approach is somewhat abstract, as we assume the regular lan-
guages R(A → β, x1) to be represented by their finite state automata. In
practice these automata have to be found explicitly. Usually their states are
represented by so-called item sets, each item consisting of a dotted produc-
tion together with a look-ahead string of length k. Then the stack contains the
usual nonterminal symbols but interleaved with item sets to give information

18 Hendrik Jan Hoogeboom and Joost Engelfriet

on which reduction to choose. This is a solution equivalent to the one based
on the notion of predicting machines which we use here.

Lemma 16. If G is an LR(k) grammar, then L(G) ∈ DCF.

Proof. For convenience we again reverse the stack, and write its top to the
right. Given an LR(k) grammar G, we construct a deterministic pda A for
L(G)$k. The result for L(G) follows from the closure of DCF under quotient
with regular languages. The pda A is similar to the shift-reduce pda for G,
but stores the look-ahead symbols on its stack.

First, A shifts k symbols from the input to its stack. Then it repeats the
following steps.

If there exists a production A → β and a look-ahead x1 of length k such
that the top of the stack is of the form βx1, and the stack itself belongs to
R(A→ β, x1), then the reduction defined by the production is applicable, and
the topmost βx1 is replaced by Ax1. Note that by Section 1.5 we may assume
that A can test this property of its stack. By the LR(k) property, at most one
production can be reduced.

Otherwise, if no reductions are applicable, then another input symbol is
shifted to the stack. The pda accepts when its stack assumes the value S$k,
i.e., when it has completely reduced the input. ut

Since the standard construction that converts a pda into a context-free
grammar can be shown to yield LR(1) grammars for deterministic pda’s (un-
der some additional precautions), we obtain the following grammatical char-
acterization of DCF [20].

Theorem 17. A context-free language is deterministic iff it has an LR(1)
grammar iff it has an LR(k) grammar for some k ≥ 1.

1.7 Related Models

There are really many machine models having a data type similar to the
pushdown stack. Some of these were motivated by the need to find subfamilies
of pda’s for which the equivalence is decidable, others were introduced as they
capture specific time or space complexity classes. We mention a few topics that
come to our mind.

Simple grammars. A context-free grammar is simple if it is in Greibach
normal form, and there are no two productions A → aα and A → aβ with
terminal symbol a and α 6= β. Via a standard construction we have given
before, these grammars correspond to single state, deterministic, and real-time
pda’s. But in fact the real-time property can be dropped, cf. [15, Section 11.9].

Two stacks. Finite state devices equipped with two stacks are easily seen to
have Turing power. Both stacks together can act as a working tape, and the

1 Pushdown Automata 19

machine can move both ways on that tape shifting the contents of one stack
to the other by popping and pushing.

Counter automata. When we restrict the stack to strings of the form A∗Z,
i.e., a fixed bottom symbol and one other symbol, we obtain the counter
automaton, cf. Example 3. The stack effectively represents a natural number
(N) which can be incremented, decremented, and tested for zero.

As such an automaton can put a sign in its finite state, while keeping
track of the moments where the stack ‘changes sign’ this can be seen to be
equivalent to having a data type which holds an integer (Z) which again can
be incremented, decremented, and tested for zero.

With a single counter, the counter languages form a proper subset of CF,
as Lpal cannot be accepted in this restricted pushdown mode, see [2, Sec-
tion VII.4]. Automata having two of these counters can, by a clever trick,
code and operate on strings, and are again equivalent to Turing machines.
See [19, Theorem 7.9] for further details.

Blind and partially blind counters. A counter is blind if it cannot be
tested for zero [13]. The counter keeps an integer value that can be incremented
and decremented. It is tested only once for zero, at the end of the computation
as part of the (empty stack) acceptance condition.

The family of languages accepted by blind multicounter automata, i.e.,
automata equipped with several blind counters, is incomparable with CF.
Let Σk be the alphabet {a1, b1, . . . , ak, bk}. Define Bk = {x ∈ Σ∗

k | |x|ai
=

|x|bi
for each 1 ≤ i ≤ k}. Observe that Bk models the possible legal operation

sequences on the blind counter storage, interpreting ai and bi as increments
and decrements of the i-th counter. Of course, Bk can be recognized by an
automaton with k blind counters, while it can be shown that it cannot be
recognized by a pda (for k > 1) or by a blind (k − 1)-counter automaton.
In fact, in the vein of Theorem 8, the family of languages accepted by blind
k-counter automata equals the full trio generated by Bk.

A counter is partially blind if it is blind and holds a natural number; on
decrementing zero the machine blocks as the operation is undefined. Partially
blind multicounters form the natural data type for modelling Petri nets.

Valence grammars. Valence grammars associate with each production of
a context-free grammar a vector of k integers, and consider only those deriva-
tions for which these valences of the productions used add to the zero vector.
An equivalent machine model for these grammars consists of a pda equipped
with k additional blind counters. Consequently, their language family is char-
acterized as the full trio generated by the shuffle of D{A,B} and Bk, from
which closure properties follow. Greibach normal form (for grammars) and
real-time normal form (for automata) can be shown to hold. See [17] for an
afl approach and further references.

20 Hendrik Jan Hoogeboom and Joost Engelfriet

Finite turn pda’s. A pda is finite turn if there is a fixed bound on the
number of times the machine switches from pushing to popping. Like for
bounded excursions (Section 1.3) such a bound can be implemented in the
machine itself. The restriction to a single turn leads to the linear languages,
whereas finite turn pda’s are equivalent to ultralinear context-free grammars,
as explained in [15, Section 5.7]. A context-free grammar G = (N,T, S, P)
is ultra linear if there is a partition of the nonterminals N = N0 ∪ · · · ∪ Nn

and each production for A ∈ Ni is either of the form A → α with α ∈
(T ∪ N0 ∪ · · · ∪ Ni−1)

∗ —A introduces only nonterminals of lower ‘levels’ of
the partition— or of the form A → uBv with u, v ∈ T ∗ and B ∈ Ni —the
only nonterminal introduced by A is from the same ‘level’.

Alternation. A nondeterministic automaton is successful if it has a com-
putation that reads the input and reaches an accepting configuration. Thus,
along the computation, for each configuration there exists a step eventually
leading to success. A dual mode —all steps starting in a configuration lead to
acceptance— is added in alternating automata; states, and hence configura-
tions, can be existential (nondeterministic) or universal. The alternating pda’s
accept the family

⋃
c>0 DTIME(cn) of languages recognizable in exponential

deterministic time [22]. Note that alternating finite automata just accept reg-
ular languages.

Two-way pda’s. Considering the input tape as a two-way device, we obtain
the two-way pushdown automaton; it is customary to mark both ends of the
input tape, so that the two-way pda detects the end (and begin) of the input.
These machines can scan their input twice, or in the reverse direction, etcetera,
making it possible to recognize non-context-free languages like { anbncn |
n ≥ 1 } (easy) and { ww | w ∈ {a, b}∗ } (try it). Hence, just as for alternation,
the two-way extension is more powerful than the standard pda, unlike the case
for finite automata where both variants define the regular languages.

Languages of the deterministic two-way pda can be recognized in linear
time, which has led to the discovery of the pattern matching algorithm of
Knuth-Morris-Pratt, as the pattern matching language { v#uvw | u, v, w ∈
{a, b}∗ } can be recognized by such an automaton. See Section 7 in [21] for a
historical account.

Finally, multi-head pda’s, either deterministic or non-deterministic (!),
characterize the family P of languages recognizable in deterministic polyno-
mial time. An introduction to automata theoretic complexity is given in [19,
Chapter 14], while more results are collected in [27, Sections 13 and 20.2].
Multi-head k-iterated pda’s characterize the deterministic (k−1)-iterated ex-
ponential time complexity classes [7].

Stack automata. A stack automaton is a pda with the additional capability
to inspect its stack. It may move up and down the stack, in read-only mode,
i.e., without changing its contents. This makes the stack automaton more

1 Pushdown Automata 21

powerful than the pda. The family of languages recognized by stack automata
lies properly between CF and the indexed languages. Stack automata that do
not read input during inspection of the stack are equivalent to pda’s.

A nested stack automaton has the possibility to start a new stack ‘be-
tween’ the cells of the old stack. This new stack has to be completely removed
before the automaton can move up in the original stack. These automata are
equivalent to pushdown-of-pushdowns automata, i.e., to indexed grammars.
More generally, k-iterated nested stack automata correspond to 2k-iterated
pda’s.

Again, variants of the corresponding two-way and multi-head automata
characterize complexity classes; see the references mentioned above. Let us
mention that the families accepted by the nondeterministic two-way stack (or

nested stack) and nonerasing stack automata coincide with
⋃

c>0 DTIME(cn
2

)
and NSPACE(n2), respectively (where a stack automaton is nonerasing if it
never pops a symbol). The nondeterministic multi-head k-iterated stack (or
nested stack) and nonerasing stack automata define deterministic (2k − 1)-
iterated exponential time and (k − 1)-iterated exponential space.

Final Pop. In a recent edition of the conference Developments in Language
Theory [10] we find (at least) three contributions that feature pda’s and vari-
ants. Restarting automata are finite state automata that model reduction
techniques from linguistics. In [24] an overview of the theory is given. Cer-
tain subclasses of restarting automata recognize DCF, and have connections to
LR(0) grammars. Distributed pushdown automata systems consisting of sev-
eral pda’s that work in turn on the input string placed on a common one-way
input tape are introduced in [6]. Finally, in [16] flip-pushdown automata are
studied, pda’s that may ‘flip’ their stack, bringing the bottom up. Even after
forty years the pushdown automaton still proves to be a versatile tool!

References

1. J.-M. Autebert, J. Berstel, L. Boasson. Context-Free Languages and Push-
down Automata. In: Handbook of Formal Languages, Vol. 1 (G. Rozenberg,
A. Salomaa, eds.) Springer, Berlin, 1997.

2. J. Berstel. Transductions and Context-Free Languages. Teubner Studi-
enbücher, Stuttgart, 1979.

3. J. Berstel, L. Boasson. Context-Free Languages. In: Handbook of Theoretical

Computer Science, Vol. B: Formal Models and Semantics (J. van Leeuwen,
ed.) Elsevier, Amsterdam, 1990.

4. J.R. Büchi. Regular Canonical Systems. Arch. Math. Logik Grundlagen-
forschung, 6 (1964) 91–111.

5. N. Chomsky. Context Free Grammars and Pushdown Storage. Quarterly
Progress Report, Vol. 65, MIT Research Laboratory in Electronics, Cam-
bridge, MA, 1962.

22 Hendrik Jan Hoogeboom and Joost Engelfriet

6. E. Csuhaj-Varjú, V. Mitrana, G. Vaszil. Distributed Pushdown Automata
Systems: Computational Power. In: [10], pages 218–229.

7. J. Engelfriet. Iterated Stack Automata. Information and Computation, 95
(1991) 21–75.

8. J. Engelfriet, H. Vogler. Look-Ahead on Pushdowns. Information and Com-
putation, 73 (1987) 245–279.

9. J. Engelfriet, H. Vogler. Pushdown Machines for the Macro Tree Transducer.
Theoretical Computer Science, 42 (1986) 251–368.

10. Z. Ésik, Z. Fülöp (Eds.). Developments in Language Theory, 7th International
Conference, DLT 2003, Proceedings. Lecture Notes in Computer Science, Vol.
2710, Springer 2003.

11. J. Evey. Application of Pushdown Store Machines. Proceedings of the 1963
Fall Joint Computer Conference, Montreal, AFIPS Press, 1963.

12. S. Greibach. A Note on Pushdown Store Automata and Regular Systems.
Proceedings of the American Mathematical Society, 18 (1967) 263–268.

13. S. Greibach. Remarks on Blind and Partially Blind One-way Multicounter
Machines. Theoretical Computer Science, 7 (1978) 311–324.

14. S. Ginsburg. Algebraic and Automata-theoretic Properties of Formal Lan-

guages. Fundamental Studies in Computer Science, Vol. 2, North-Holland,
1975.

15. M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Mass., 1978.

16. Markus Holzer, Martin Kutrib. Flip-Pushdown Automata: Nondeterminism
is Better than Determinism. In: [10], pages 361–372.

17. H.J. Hoogeboom. Context-Free Valence Grammars – Revisited. In: Develop-
ments in Language Theory, DLT 2001 (W. Kuich, G. Rozenberg, A. Salomaa,
eds.), Lecture Notes in Computer Science, Vol. 2295, 293-303, 2002.

18. J. Hopcroft, J. Ullman. Formal Languages and their Relation to Automata.
Addison-Wessley, Reading, Mass., 1969.

19. J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Reading, MA: Addison-Wesley, 1979.
20. D.E. Knuth. On the Translation of Languages from Left to Right. Information

and Control, 8 (1965) 607–639.
21. D.E. Knuth, J.H. Morris, V.R. Pratt. Fast Pattern Matching in Strings. SIAM

Journal on Computing, 6 (1977) 323–360.
22. R.E. Ladner, R.J. Lipton, L.J. Stockmeyer. Alternating Pushdown and Stack

Automata. SIAM Journal on Computing 13 (1984) 135–155.
23. A.G. Oettinger. Automatic Syntactic Analysis and the Pushdown Store.

Proceedings of Symposia on Applied Mathematics, Vol. 12, Providence, RI,
American Mathematical Society, 1961.

24. F. Otto. Restarting Automata and Their Relations to the Chomsky Hierar-
chy. In: [10], pages 55–74.

25. M. Schützenberger. On Context Free Languages and Pushdown Automata.
Information and Control, 6 (1963) 246–264.

26. G. Sénizergues. L(A) = L(B)? A Simplified Decidability Proof. Theoretical
Computer Science, 281 (2002) 555–608.

27. K. Wagner, G. Wechsung. Computational Complexity. Reidel, Dordrecht,
1986.

