
Chapter 1

Sequence Alignment

See also Chapter 3 of [12], Sequence Comparison and Database Search.

1.1 Introduction

The similarity (or rather dissimilarity) between two strings can be measured in
the number of operations needed to transform one into the other. There are
three basic operations we consider here: changing one character into another,
inserting a character, or deleting a character. In the context of molecular biology
these operations correspond to mutations (point mutations or insertions and
deletions) in the genome.

When we assume that no two operations take place at the same position (like
changing a character, then removing it) the operations used to transfer one
string into another can be represented by an alignment of the two strings. Cor-
responding symbols are written in columns, marking positions where a symbol
was deleted or inserted with a dash in the proper position.

1.1 Example. We have recreated an example of alignment given at wikipedia.
It consists of sequences AAB24882 and AAB24881, and was generated using the
ClustalW2 tool at the European Bioinformatics Institute, where all settings were
left as default. The symbol * in the bottom row indicates that the two sequences
are equal at that position, whereas : and . indicate decreasing similarity of the
amino acids at that position.

AAB24882 TYHMCQFHCRYVNNHSGEKLYECNERSKAFSCPSHLQCHKRRQIGEKTHEHNQCGKAFPT 60

AAB24881 --------------------YECNQCGKAFAQHSSLKCHYRTHIGEKPYECNQCGKAFSK 40

****: .***: * *:** * :****.:* *******..

AAB24882 PSHLQYHERTHTGEKPYECHQCGQAFKKCSLLQRHKRTHTGEKPYE-CNQCGKAFAQ- 116

AAB24881 HSHLQCHKRTHTGEKPYECNQCGKAFSQHGLLQRHKRTHTGEKPYMNVINMVKPLHNS 98

**** *:***********:***:**.: .*************** : *.: :
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Formally an alignment of strings x and y over alphabet Σ is a sequence of
letter vectors,

(

x1

y1

)(

x2

y2

)

. . .
(

xℓ

yℓ

)

, with xi, yi ∈ Σ ∪ {ε} and
(

xi

yi

)

6=
(

ε

ε

)

such that

x = x1x2 . . . xℓ and y = y1y2 . . . yℓ. Note that ℓ ≤ |x| + |y|. Usually the empty
string ε is represented by a dash −.

Given two sequences x and y it is an algorithmic task to determine the alignment
where the number of operations involved has been minimal, counting the number
of positions in the alignment where the two rows have unequal content. This
value is called the edit distance of x and y.

In general one considers a weighted version of this problem by adding a scoring
system. This in general consists of a similarity matrix σ (or substitution matrix)
specifying a value σ(a, b) for all a, b in the alphabet (representing the cost of
changing a into b) and gap-penalty σ(a,−) and σ(−, b) for deleting a or inserting

b. Thus the score for the general alignment above is given by
∑ℓ

1=1 σ(xi, yi),
where the empty string ε is equated with the dash −.

Given a scoring system, the similarity of strings x and y is defined to be the
maximal score taken over all alignments of x and y. An alignment that has this
score is called an optimal alignment of x and y.

In simple examples the distances are given by just three values, one fixed value
(typically positive) for matches σ(a, a), one (typically negative) for mismatches
σ(a, b), a 6= b, and one (also negative) for the ‘insdels’ (insertions and deletions)
σ(a,−) and σ(−, b). This latter is sometimes referred to as the gap penalty.

1.2 Example. The scoring system on the alphabet {A, C, G, T} of nucleotides
is defined here by the values +2 and −1 for match and mismatch, and −1 for
gaps.

For the strings TCAGACGATTG and TCGGAGCTG a possible alignment is

TCAG - ACG - ATTG
TC - GGA - GC - T - G

It consists 7 matches and 6 insdels, so its score is 14 − 6 = 8.

Similarly, the alignment

TCAGACGATTG
TCGGA - GCT - G

consists of 6 matches, 2 mismatches, and 2 insdels. Consequently the score is
12 − 2 − 2 = 8. Both alignments have the same score, and the similarity of the
strings is at least 8.

As stated above, one usually has σ(a, a) > 0. In some applications also σ(a, b)
may be positive when a and b are different (but have some similarity). Sec-
tion 1.7 for the BLOSUM62 scoring system, used for amino acids, which has
this feature. In general σ will be symmetric: σ(a, b) = σ(b, a). In the sequel
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the value for insdels is assumed to be given by a fixed gap penalty g ≤ 0, which
does not depend on the symbol that is deleted or introduced.

As noted above, an alignment gives at most a single operation at each position,
which seems reasonable in general. Consider the case where deleting A and C

costs −5 and −2, respectively, whereas substituting A by C costs −2. Now the
two operations A → C → − have total cost −4 which is better than the direct
deletion of A. In such a case the algorithms of this section will compute the
optimal alignment, however this might not correspond to the optimal score set
of operations from one string to the other. Usually the scoring system avoids
this kind of problems.

1.2 Global Alignment

Given a pair of strings x and y over an alphabet Σ and a scoring system for Σ,
we want to compute the similarity of x and y, and an optimal alignment for the
strings.

We use a dynamic programming approach for this problem. The algorithm
computes the similarity for each pair of prefixes of the two strings starting with
short prefixes, storing the values in a table, and reusing them for the longer
prefixes. When the scores of the partial alignments are determined, the second
phase starts. The alignment itself is computed from the numbers stored, working
backwards. This is called a traceback. In the context of molecular biology this
method is known as the Needleman-Wunsch algorithm [8].

A recursive implementation of the problem is easily given. Consider the last
position of an optimal alignment of strings xa and yb. We have only three pos-
sibilities:

(

−

b

)

,
(

a
b

)

, or
(

a
−

)

. Hence the similarity of x and y, the value sim(xa, yb)
of an optimal alignment is found by recursively computing

sim(xa, yb) = max







sim(xa, y) + g

sim(x, y) + σ(a, b)
sim(x, yb) + g

Boundary values (when one of the sequences is empty) can be obtained from
the identities sim(xa, ε) = sim(x, ε) + g, and sim(ε, ε) = 0.

Let x = x1 . . . xm and y = y1 . . . yn be two strings that we want to align. Denote
the value of the optimal alignment of the prefixes x1 . . . xi and y1 . . . yj by A[i, j],
to stay close to programming style. (In our program strings start at position 1,
index i = 0 or j = 0 corresponds to the empty string.)

The first phase of the algorithm computes the values A[i, j] as follows. The value
of the optimal alignment, the similarity of x and y, can be found as A[m, n].

A[i, 0] = i · g 0 ≤ i ≤ m

A[0, j] = j · g 0 ≤ j ≤ n

A[i, j] = max







A[i, j − 1] + g

A[i − 1, j − 1]+ σ(xi, yj)
A[i − 1, j] + g

1 ≤ i ≤ m, 1 ≤ j ≤ n
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For the second phase, traceback, we assume that for each position (i, j) in the
matrix A the cases were stored for which the value of that element was obtained,
either (i, j − 1), (i− 1, j − 1), or (i− 1, j) – as the three cases in the maximum,
representing

(

−

yj

)

,
(

xi

yj

)

, or
(

xi

−

)

. Now start at the bottom-right position (m, n),

and return to the cell of the matrix that resulted in that value. This is repeated
until the first cell (0, 0) is reached. In many cases the maximum was obtained
not for one of the arguments, but for two or even three arguments. In that case
we can choose to store just a single of these, or to store all of them, and trace
all alignments rather than single one.

Alternatively, the trace is not followed from stored values, but is recomputed
from the values in the matrix at the current position A[i, j] and three neigh-
bouring positions A[i − 1, j], A[i − 1, j − 1], and A[i, j − 1].

Complexity. We assume the given strings have length m and n, respectively.
The matrix takes space O(mn), and computing all its elements takes time
O(mn). The traceback is computed in time O(m + n). If we do not need
the alignment itself, but only its score, it is not necessary to store all elements
of the matrix but only the last column (or last row). This reduces the space
complexity to O(m), but time complexity still is O(mn).

1.3 Example. Global alignment of TTCAT and TGCATCGT with scoring
system match 5, mismatch -2, and insdel -6.

A graph represention the problem is as below. The task is to find the opti-
mal path from top-left to bottom-right, where the costs of traversing an edge
are related to the label of the edge (negative values represent costs, while pos-
itive values can be seen as rewards). Bold diagonal edges represent matches,
horizontal and vertical edges represent insdels.
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The following matrix is computed by the dynamic programming algorithm. It
indicates that the score of the optimal global alignment equals 0.
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− T G C A T C G T
− 0 −6−12−18−24−30−36−42−48
T −6 5 −1 −7−13−19−25−31−37
T −12 −1 3 −3 −9 −8−14−20−26
C −18 −7 −3 8 2 −4 −3 −9−15
A −24−13 −9 2 13 7 1 −5−11
T −30−19−15 −4 7 18 12 6 0

The alignment itself can be traced back from the final position, following in-
coming edges that represent the direction over which the maximal score was
obtained. These edges and a possible traceback are as follows, giving the align-
ment
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Two other alignments with optimal score can be read from the diagram.

TTCA - - - T
TGCATCGT

TTCAT - - -
TGCATCGT

Edit Distance. The edit distance between two strings, also called Levenshtein
distance[6], counts the minimum number of operations to change one string into
the other. This corresponds with alignment with match score 0, while mismatch
and insdel are both −1.

LCS. A string z is a subsequence of string x if z can be obtained by deleting
symbols from x. Formally z is a subsequence of x = x1 . . . xm if we can write
z = xi1xi2 . . . xik

for i1 < i2 < · · · < ik. A longest common subsequence of
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1
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Figure 1.1: Global versus local alignment.

strings x and y is a string z of maximal length such that z is subsequence of
both x and y. Although z itself may not be unique, the length of a longest
common subsequence of given strings is.

The problem of finding a longest common subsequence can be answered by
computing the alignment where match is rewarded by +1 while mismatch and
insdel penalty are both 0.

1.3 Local Alignment

Global alignments attempts to align every character in both sequences. This
is useful when the sequences are similar and of roughly equal size. In some
cases one expects only parts of the strings to be similar, e.g., when both strings
contain a common motif. In such cases one tries to find segments of both strings
that are similar, using local alignment (known as Smith-Waterman [13]). This
uses a simple adaptation of the global approach, and is the main topic of this
section.

Another variant is when one wants to determine whether one string can be
seen as extending the other, following a partial overlap. This is motivated by
sequence reconstruction based on a set of substrings. Also this can be solved by
an adaptation of the dynamic programming technique.

Local alignment. Given two strings x and y, and a scoring system, we want
to find substrings x′ and y′ (of x and y respectively) such that the similarity of
x′ and y′ is maximal.

The main difference with the global version of the algorithm is that we can
forget negative values. Whenever a partial alignment reaches a negative value
it is reset to zero. As we want to find substrings with maximal alignment we
can drop the pieces that give negative contribution. In the same vein the value
of the local alignment is not found in the bottom-right corner of the matrix,
but rather it is the maximal value found in the matrix. Indeed, extending the
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maximum alignment will add negative contribution to the value so far obtained,
and this part is skipped when stopping at the maximum.

This means we obtain the following algorithm for the computation of local
alignment. It differs in two aspects from global alignment. The initialization
sets the borders to zero (not the multiples of the gap penalty), and the maximum
for the computation of the non-border cells now includes zero, to avoid negative
values.

A[i, 0] = 0 0 ≤ i ≤ m

A[0, j] = 0 0 ≤ j ≤ n

A[i, j] = max















A[i, j − 1] + g

A[i − 1, j − 1]+ σ(xi, yj)
A[i − 1, j] + g

0

1 ≤ i ≤ m, 1 ≤ j ≤ n

1.4 Example. Local alignment of ATTCAT and TGCATCGT with scoring
system match 2, mismatch -1, and insdel -1.

The following matrix is computed by the dynamic programming algorithm. It
indicates that the score of the optimal local alignment equals 7, which is the
maximal value in the matrix.

− T G C A T C G T
− 0 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0 0
T 0 2 1 0 1 4 3 2 2
T 0 2 1 0 0 3 3 2 4
C 0 1 1 3 2 2 5 4 3
A 0 0 0 2 5 4 4 4 3
T 0 2 1 1 4 7 6 5 6

Tracing back the matrix from the maximal position until a zero is reached one
finds one of the following alignments.

TTCAT
TGCAT

T - CAT
TGCAT

Semi-Global Alignment. In some contexts we are interested in specific over-
lap between the strings x and y. For instance, when we have a set of (overlap-
ping) random segments of a long string we may reconstruct the original long
string using the segments, after we have determined their order using the over-
lap between the strings. Hence we are interested in determining the maximal
overlap consisting of a suffix of x and a prefix of y. As another example when y

is much shorter than x it is not very useful to consider the global alignment of
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max

max

Figure 1.2: Semi-global alignment: finding overlap or containment.

x and y to find the possible position of y within x. See Fig. 1.2 for a pictorial
representation of these two cases.

Both these cases share a property with local alignment that gaps at the begin-
ning or the end of one of the strings should not be penalized. As a consequence
these problems can be solved in a similar manner. Where initial gaps are free
we can include this in the initialization phase of the algorithm (see local align-
ment), not counting the gap panelty in the first row or column of the matrix.
Where final gaps are free we solve this in the final phase of the algoritm. The
solution then is not found in the bottom-right cell, but rather is the maximal
value on either bottom row or rightmost column.

1.4 More Variants of the Basic Algorithm

Complexity Revisited: Linear Space. The time complexity of the algo-
rithm for determining the optimal alignment equals O(mn), where m and n are
the lengths of the given strings. The space complexity also equals O(mn), but
as we have seen, it can be reduced to O(m) if we are interested only in the value
of the alignment, and not in its traceback.

There is however a clever recursive implementation [5] that computes the opti-
mal alignment in space O(m), including the traceback. Let us write sim(x, y)
for the similarity of x and y, the value of the optimal alignment.

Start by dividing y into two (almost) equal parts y[1 · · · n
2 ] and y[n

2 + 1 · · ·n].
This division in the alignment will also cut the first string into two parts, and
(this is important for the recursion) the total score of the alignment can be
computed by adding the scores of the two parts. As we do not know where the
first string was cut when cutting the alignment in the middle of y we reconstruct
that position by looking for the maximal sum of two partial scores.

sim(x, y) = max
0≤k≤m

[

sim(x[1 · · · k], y[1 · · ·
n

2
]) + sim(x[k + 1 · · ·m], y[

n

2
+ 1 · · ·n])

]

The partial scores sim(x[1 · · · k], y[1 · · · n
2 ]) (k = 0, . . . , m) do not have to be

computed one-by-one. In fact they form the last column of the alignment matrix
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for x and y[1 · · · n
2 ]. In the same way the partial scores sim(x[k + 1 · · ·m], y[n

2 +
1 · · ·n) (k = 0, . . . , m) fill the first column of the alignment matrix for x en
y[· · · ], provided it is computed in reverse, from right-to-left, bottom-to-top.

In each step the amount of work halves (as the total matrix size halves). In the
end we thus have used 1 + 1

2 + 1
4 + · · · ≈ 2 times the usual amount of work,

which again is O(mn), while in each computation we only need two columns of
length at most m.

1.5 Example. Starting with TTCAT and TGCATCGT (as in previous exam-
ple) we compute the last column of the alignment of TTCAT and prefix TGCA
and the first column of the alignment of TTCAT and suffix TCGT (in reverse).
The matrix below contains all values, but in reality we keep only two columns
in the middle as stated. The amount of work is (roughly) the same as for the
ordinary algorithm, m · n.

Combining the values on the various positions we get the following scores for
the full alignment: −24 + 0,−13 + 13,−9 − 5, 2 − 5, 13 − 13, 7 − 24. The best
value is 0 which can be obtained at two positions.

From this we conclude that an optimal alignment of the strings can be written
as the composition of optimal alignments of T and TGCA, and of TCAT and
TCGT. These are computed recursively.

− T G C A
− 0 −6−12−18−24
T −6 5 −1 −7−13 0 −4−15−19−36 T
T −12 −1 3 −3 −9 13 2 −9−13−24 T
C −18 −7 −3 8 2 −5 8 −3 −7−18 C
A −24−13 −9 2 13 −9 −3 3 −1−12 A
T −30−19−15 −4 7 −13 −7 −1 5 −6 T

−24−18−12 −6 0 −
T C G T −

Affine Gap Penalty. Usually alignments are considered more relevant if they
contain as little gaps as possible. A single long insertion is preferred over a set
of small ones.
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This can be captured by making the gap cost dependent on the gap length n,
a relatively large cost G for starting a gap (opening it) and a smaller cost L

for each additional position (extending it). Such a value is of the form G + nL,
where n is the length of the gap, and is called affine. (A gap of length one has
cost G + L.)

The basic algorithm can be extended to handle affine costs by computing three
values in each position of the matrix, two additional values indicating the score
when the gap opening cost has already been accounted for, corresponding to
alignments that end with gaps in either top or bottom strand.

Profile Alignment. The familiar alignment procedures are easily modified to
accomodate sequences of character frequency vectors, PSSM – position specific
scoring matrix, where each vector specifies the distribution of characters at a
position in an alignment of several sequences.

In a sense the character at a position is fuzzy rather than exactly determined.
The point that we have to adapt in the basic algorithm is the scoring of a letter
against such a fuzzy position (or column in the PSSM). The new score is simply
the mean of the separate scores for all the different characters, weighted by their
frequencies.

Let α be a frequency vector, mapping alphabet Σ into the interval [0, 1]. Then
for a scoring system σ the score for vector α and symbol a equals σ(α, a) =
∑

b∈Σ σ(b, a).

This method is used in Section 1.6 where a given alignment is extended to
include several other strings. In fact, also the alignment of profiles against one
another is needed for such a multiple alignment. The score then consists of
weighted mean of all letter-letter combinations.

1.6 Example. Consider the profile defined by five sequences.

TGGGGGA
CGAGACA
TGGGG - A
TGAGA - A
TGAGGGA

It defines the following PSSM, in absolute numbers, and frequencies.

1 2 3 4 5 6 7
A 0 0 3 0 2 0 5
C 1 0 0 0 0 1 0
G 0 5 2 5 3 2 0
T 4 0 0 0 0 0 0
- 0 0 0 0 0 2 0

1 2 3 4 5 6 7
A 0 0 .6 0 .4 0 1
C .2 0 0 0 0 .2 0
G 0 1 .4 1 .6 .4 0
T .8 0 0 0 0 0 0
- 0 0 0 0 0 .4 0

The score of symbol A against the fifth column equals 4
10σ(A, A) + 6

10σ(A, G)

Another approach for alinging sequences against a profile is considered later:
profile hidden Markov models.
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1.5 Heuristics

Dot matrix. The dot plot is a widely used technique to visualize similarities
between two sequences. Along the axes of a matrix we put the two sequences,
and we place a dot in the cells where both sequences agree. Then the dots are
filtered, and only those dots are shown that are part of a longer run.

Banded Alignment. For sequences that are quite similar the alignment
traces a path close to the main diagonal of the alignment matrix. This im-
plies that only values near this diagonal contribute to the score computed in
the matrix. This can be used as the basis for a heuristic approach. In computing
the score of an alignment consider only the cells that lie in a small band along
the diagonal. This turns the quadratic algorithm into linear time.

Database Search. Searching a string in a sequence database that is similar
to a given query string forces one to build an alignment for the query against
the full database. Although the algorithm we have discussed is poynomial, the
sheer size of present databases makes this approach unfeasible.

Heuristic techniques have been proposed that improve the speed of the search.
Basically the assumption is that a good alignment should contain at least a
small sequence where the similarity is exeptionally strong.

For FASTA[7] and BLAST[1] see the lecture notes of APG [4, Section 2.2].

1.6 Multiple Alignment

Multiple sequence alignment is an extension of pairwise alignment to incorporate
more than two sequences at a time. It is often used in identifying conserved
sequence regions across a group of sequences hypothesized to be (evolutionarily)
related.

Formally the alignment of ℓ sequences over alphabet Σ consists of a sequence of
ℓ-dimensional vectors with elements from Σ ∪ {ε} such that the concatenation
of the elements on the i-th row concatenate into the i-th sequence. As in the
two-dimensonal case we assume that each of the vectors contains at least one
element from Σ.

Sum of pairs. The usual way of scoring a multiple alignment is sum of pairs.
Each multiple alignment induces alignments between each pair of sequences, by
considering only the two corresponding components, discarding a vector when
both these components are ε.

A multiple alignment defines pairwise alignments for each pair of involved
strings, by restricting to the two rows involved. The sum of pairs score of

the multiple alignment is defined as the sum of the n(n−1)
2 pairwise alignments

defined by the multiple alignment.
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Note that the induced pairwise alignments need not to be optimal. Hence the
sum of pair score can be bounded using the similarity scores sim(x, y) of the
optimal alignments: sop(x1, x2, . . . , xℓ) ≤

∑

1≤i<j≤ℓ sim(xi, xj).

The sum of pair score can also be computed directly from the vectors (the
columns) in the multiple alignment. Given a scoring system σ for elements
of Σ ∪ {ε}, and setting σ(ε, ε) = 0, the score of vector (a1, a2, . . . , aℓ) equals
∑

1≤i<j≤ℓ σ(ai, aj).

Dynamic Programming. The technique of dynamic programming is theo-
retically applicable to any number of sequences. However, because it is compu-
tationally expensive in both time and memory, it is rarely used for more than
three or four sequences in its most basic form. This method requires construct-
ing the ℓ-dimensional equivalent of matrix constructed for two sequences, where
ℓ is the number of sequences in the query. For ℓ strings of length m the hyper-
matrix contains mℓ cells, which implies that the problem takes O(mℓ) time to
compute, for input of size O(m · ℓ).

Star Alignment. For a star alignment we start with a central string s, and
we construct an alignment with s for every other string in the collection we
want to align. Then these pairwise alignments are joined into one multiple
alignment taking s as a guide. For each other string its characters are placed
in the columns as determined by the pairwise aligment with s, inserting gaps in
s as prescribed by the alignment. This method of joining is sometimes called
‘once a gap, always a gap’. Indeed, if one of the pairwise alignments with s

contains a gap (in s) this gap will be added to all the other strings (unless s also
had a gap in that other alignment). Hence a single ocurrence of a gap might be
multiplied, and consequently its negative score.

The central string s is usually taken to be the string that is most similar to the
other strings. This can be determined by computing the pairwise alignment for
all pairs, and adding all scores for each string. The central string is chosen to
be the one that is most similar, i.e., with maximal total similarity to the other
strings.

1.7 Example. Assume we start with 5 strings, s1 = ATTGCCATT, s2 =
ATGGCCATT, s3 = ATCCAATTTT, s4 = ATCTTCTT, and s5 = ACTGACC,
and consider the scoring system +1 (match), −1 (mismatch), −2 (gap).

The similarity scores between the strings are given by the following table. We
can verify that s1 has the best (total) score.

s1 s2 s3 s4 s5

s1 7 −2 0 −3
s2 7 −2 0 −4
s3 −2 −2 0 −7
s4 0 0 0 −3
s5 −3 −4 −7 −3
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We consider the pairwise alignments with s1 and the other strings. These have
optimal score, but are not necessarily unique.

s1 ATTGCCATT
s2 ATGGCCATT

s1 ATTGCCATT - -
s3 ATC - CAATTTT

These are easily combined into a common alignment.

s1 ATTGCCATT - -
s2 ATGGCCATT - -
s3 ATC - CAATTTT

Finally we add the two other alignments

s1 ATTGCCATT
s4 ATCTTC - TT

s1 ATTGCCATT
s5 ACTGACC - -

to obtain
s1 ATTGCCATT - -
s2 ATGGCCATT - -
s3 ATC - CAATTTT
s4 ATCTTC - TT - -
s5 ACTGACC - - - -

Example taken from Setubal & Meidanis [12].

Progressive Alignment. A slightly more sophisticated heuristic than star
alignment does not simply compute a central string, but determines a tree that
captures the similarities between the strings. In this tree the leaves correspond
to the strings, and the path length from one leaf to another is assumed to be
proportional to the distance from one string to the other. Methods to obtain
such a tree are clustering algorithms, like Neighbour Joining or UPGMA, that
are discussed in Chapter 2.

See the lecture notes of APG [4, Section 2.4] for an account of this method,
including the introduction of sequence weights corresponding to the branching
structure of the tree.
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1.7 BLOSUM62

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62

See the APG notes [4] for an account how matrices like this are obtained.

# Matrix made by matblas from blosum62.iij

# * column uses minimum score

# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units

# Blocks Database = /data/blocks_5.0/blocks.dat

# Cluster Percentage: >= 62

# Entropy = 0.6979, Expected = -0.5209

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
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