
Chapter 2

Phylogeny

2.1 Introduction

In this chapter we study algoritmic methods to determine a hierarchical relation
between a set of objects. We assume here that this hierarchical relation can be
presented by a tree. The original objects are placed at the leaves of the tree,
while internal nodes are added to explain the relations between the objects.
Similar objects are placed close to one another in the tree, where close means
that the distance over the edges that lead from one leaf to the other is small.

In biology the objects considered are usually species. Classically the species are
compared on the basis of morphological properties (number of legs, type of skin
cover, way offspring is born, . . .). At present one tends to use molecular data,
comparing specific pieces of DNA or functionally equivalent proteins.

Note that the application of the algorithms presented here is not restricted
to biological species. The techniques are examples of clustering algorithms.
Examples of objects that have been compared using these techniques are chain
letters and natural languages (based on precomputed distances).

The data that is used to construct trees can be devided into two classes.

– Character based, values in a discrete domain. Such a character can represent
a specific property of an animal (which may be morphological) or it can be
the value in a column of a multiple alignment of orthologous genes. In the
latter case the character is one of the values A, C, G or T (or sometimes −).
Each object is represented as a string of symbols, and new strings have to
be assigned to the internal nodes such that the differences between adjacent
strings are as low as possible.

– Distance based, where a matrix of distances between the objects is given, and
a tree has to be constructed with weighted edges such that the path lengths
in the tree correspond (as much as possible) to the original distances.

15

16 CHAPTER 2. PHYLOGENY

2.2 Trees

The trees used in phylogeny can be both rooted and unrooted. A rooted tree
is given in Example 2.2 while an unrooted tree is depicted in Example 2.1. In
both cases it is usually asumed that the internal nodes have degree three. In the
rooted case that means the trees are binary (bifurcating): one incoming edge
(except for the root) and two outgoing edges.

Leaves are used to represent the given objects, called taxa (singular taxon), short
for ‘taxonomic units’. Internal nodes are postulated as genetic predecessors to
explain the genetic differences and agreements between the taxa.

In distance based methods the edges are labelled by numbers. The tree in this
way defines a distance between its leaves, adding the edge numbers on the path
from one leaf to the another. In the rooted case sometimes a specific property
of the distances is required: all leaves are at the same distance from the root.

In phylogenetic tools trees and their branching structure are specified in various
formats. A popular one is the Newick Standard. Here we start at a node and
specify the neighbours as a comma separated list. Each of these neighbours can
be a tree itself, hence a list. Edge lengths can be added.

2.1 Example. Consider the tree specification

(Gibbon:1.4, ((Human:0.4, Chimpanzee:0.5):0.2, Gorilla:0.6):0.5, Orangutan:1.0);

It can be drawn as follows, a typical unrooted tree.

Gibbon

1.4

0.5

0.2

Human

0.4

Chimpansee
0.5

Gorilla

0.6

Orangutan

1.0

This picture can be obtained in various formats online at
http://www.bioinformatics.nl/tools/plottree.html

Counting Trees. A naive solution to the reconstruction of trees would be
to enumerate all trees with the proper number of leaves and stop when one
fitting the data is found. In this section we show that the number of (unrooted,
leaf-labelled) trees grows very quickly, making this approach infeasible.

There is a unique labelled tree with three leaves.

2.3. CHARACTER BASED 17

1
2

3

Trees with four leaves are constructed from this tree by adding a new edge to
one of the three original edges. This can be done in essentially three different
ways.

1
2

3

4

1
2

3

4

1
2

3

4

After some rearranging we find the following three possible diagrams. When we
look at four different leaves in an arbitrary unrooted tree, and number them by
1, 2, 3, 4, they will form one of these bifurcation diagrams.

1

4

2

3

1

3

2

4

1

2

3

4
Using n!! to denote the double factorial, which for odd n is defined by n!! =
n · (n− 2) · (n− 4) . . . 3 · 1, we have the following result on the number of trees.

Theorem. The number of labelled, unrooted, binary trees with n leaves equals
(2n − 5)!!.

For n = 3, 4, . . . , 12 these numbers equal 1, 3, 15, 105, 945, 10395, 135135,
2027025, 34459425, 654729075, 13749310575, 316234143225.

2.3 Character Based Methods

We are given a set of taxa together with a set of characters. In the small example
we have five taxa and six characters. The entries in the matrix indicate the
various character states. In the rooted tree next to the character matrix four
nodes are postulated with their character states. Along the edges the characters
are indicated that are changed along the edge. This tree needs a total of eight
character switches along the edges to explain the five taxa.

The purpose of character based taxonomy is to construct a tree (rooted or
unrooted) that is parsimonous, i.e., has as little character changes as possible.
The most general problem is large parsimony where both the topology of the tree
itself has to be found, and the character states along the tree. Unfortunately
large parsimony is an NP complete problem.

18 CHAPTER 2. PHYLOGENY

If the tree has been obtained by other methods, e.g., by the distance based
methods that follow, labelling the tree with appropriate character states is the
problem known as small parsimony.

2.2 Example.

1 2 3 4 5 6
A C A G G T A

B C A G A C A

C C G G G T A

D T G C A C T

E T G C G T A
A B C D E

CAGGTA CAGACA CGGGTA TGCACT TGCGTA

CAGGTA
4,5

TGCGTA

4,5,6

CGGGTA

2

TGGGTA

1
3

Small parsimony. Given a binary tree topology (branching structure) and
character states for each of the leaves (taxa) we have to obtain the character
states for the internal nodes. This can be done for each character separately:
in order to have a parsimony, each character separately should be optimal.

We generalize the example given above, where each character change was counted.
Here there is a weight associated to each change, given as a matrix C, where
Cij is the cost of changing from i at the parent to j at the child.

The algorithm given here is originally proposed by Sankoff [10]. It is a fine
example of dynamic programming, evaluating the tree bottom-up.

In each node v of the tree we will compute a vector S(v) such that for each
character state t the component St(v) equals the minimal cost of a tree with
the given states in the leaves and with t as character state in the root v of the
subtree.

In case v is a leaf we only allow the given character state at that node, so the
cost vector is defined by

St(v) =

{

0 state(v) = t

∞ otherwise

Assuming state t at a node v, the minimal cost of the subtree rooted at v can
be recursively determined by considering all possibilities of characters at the
children of v.

St(v) = min
i
{Cti + Si(u)} + min

j
{Ctj + Sj(w)}

Once all values have been determined, the best choice for the character state in
the root is known. The values for the other nodes are found using a backtrace
process, finding for which arguments the minima were obtained.

2.3. CHARACTER BASED 19

2.3 Example. Given the following tree with character states in the leaves as
given, the S-values are the vectors associated to the internal nodes for the state
sequence A, C, G, T .

The transitions A ↔ G and C ↔ T cost 1, the
other character changes (transversions) cost 2.5
(where the bases have different ring structures).

A C G T

A 0 2.5 1 2.5
C 2.5 0 2.5 1
G 1 2.5 0 2.5
T 2.5 1 2.5 0

A C T A G

[5, 1, 5, 1]

[1, 5, 1, 5]

[3.5, 3.5, 4.5, 3.5]

[4.5, 7, 5.5, 7]

A C T A G

C

1

A

1

A

2.5

A

From characters to distances. Consider the DNA as a string (over the al-
phabet A, C, G, T). A simple distance measure between strings is the number of
substitutions to obtain one string from the other. This is like gap-less alignment,
ignoring insertions and deletions. For small relative changes this works rather
well. However, if we apply random changes to a string over a longer period,
then it is possible that a character changes for a second time, and might even
change back into its original value. Thus the number of differences will deviate
from the number of substitutions that occurred. If distance between strings is
to represent the time that passed in changing one string into the other, we have
to use a suitable model.

Various substitution models have been proposed to account for changes over a
longer period of time. The Jukes-Cantor model is one of the simplest. It assumes
there is only one parameter µ that determines the relative rate of change from
one character (nucleotide) into another. It can be shown that under this model
the probability that character i changes into character j during a time period t

equals pij(t) = 1
4 (1− e−4µt), i 6= j. The probability that it is not changed after

that period equals pii(t) = 1
4 (1 + 3e−4µt).

Distance between two sequences is given by d = − 3
4 ln(1 − 4

3p) where p is the
proportion of sites that differ between the two sequences. Note that for random
strings p will be 1

4 . The resulting distance then is infinite.

20 CHAPTER 2. PHYLOGENY

More sophisticated models have more parameters. They can have different rates
depending on the nucleotides, and distinguish the different relative frequencies
of the nucleotides.

2.4 Distance based Methods

A metric space is a set of objects O together with a mapping d : O × O →
R, the distance function, which should satisfy four conditions: (i) distance is
never negative, (ii) the distance between objects is zero only between a object
and itself, (iii) it is symmetric, and (iv) the distance between objects is never
decreased by making a detour.

In formulas this reads as follows

i) d(x, y) ≥ 0
ii) d(x, y) = 0 if and only if x = y

iii) d(x, y) = d(y, x)
iv) d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

Trees can be used to specify distances. The objects are placed in the leaves of
the tree, and edges are labelled with numbers. The tree-distance between two
objects is then the total length of the path between the objects. A distance
defined by a tree is called additive.

2.4 Example. A tree and the distance matrix it defines.

E
1

D
4

3

2

C

2
1

A
1

F3

B

2

A B C D E F

A 0 6 4 11 8 4
B 6 0 6 9 6 8
C 4 6 0 11 8 6
D 11 9 11 0 5 13
E 8 6 8 5 0 10
F 4 8 6 13 10 0

Not every distance can be represented by a tree. On the other hand, every
function defined in this way by a tree automatically satisfies the requirements
of a metric, in particular that of the triangle inequality. As in the general picture
below, look at the relative position of three nodes x, y and z in a tree. Then
d(x, z) = a + c, whereas d(x, y) + d(y, z) = (a + b) + (b + c) > d(x, z), assuming
branch lengths a, b, c in the tree are positive.

x

y

z

a
b

c

2.5. NEIGHBOUR JOINING 21

In general we have the following two basic questions related to phylogeny. If we
have a matrix representing a distance mapping d on a finite set of objects:

• How do we determine whether d is additive?
• Given that d is additive, how can we reconstruct its tree?

This latter problem is formulated here in the strict mathematical sense. In
practice one usually does not have a precise additive function because of errors
and imprecisions. Thus, the algorithm that solves the problem is expected to be
robust. If the distance matrix (Mxy) is ‘close’ to additive, it should construct
a tree for the matrix, such that the distance d(x, y) defined by the tree is close
to that given by the matrix. We will not discuss here how the notion ‘close’ is
formalized.

2.5 Unrooted Trees and Neighbour Joining

Additive distances. Every additive metric satisfies the four point condition.
Every set of four nodes can be ordered such that

d(u, v) + d(w, x) = d(u, w) + d(v, x) ≥ d(u, x) + d(v, w)

This is easily seen if we realize that the only relative position of four nodes in
the tree is as follows. Now if we pair the nodes on both sides of the central
branch, then the distances d(u, x) + d(v, w) do not include that branch, thus
the sum is less than in the other two cases. The pairing that gives the minimal
distance determines how the four nodes are separated. In the figure below there
is an edge that separates {u, x} from {v, w}.

u

x

v

w

2.5 Example. Consider nodes A, B, C and D. d(A, B)+d(C, D) = 6+11 = 17,
d(A, C) + d(B, D) = 4 + 9 = 13, and d(A, D) + d(B, C) = 11 + 6 = 17. These
four points satisfy the four point condition. Nodes {A, C} are separated from
{B, D} by an edge in the tree.

It can be shown that the four point condition characterizes additive distances.
Whenever the metric satisfies the condition, a tree for the metric can be con-
structed.

Three leaves. In case we have only three leaves, the tree for the given distance
matrix can be computed solving a simple set of equations, as follows.

22 CHAPTER 2. PHYLOGENY

x

y

z

ℓx

ℓy

ℓz







d(x, y) = ℓx + ℓy

d(y, z) = ℓy + ℓz

d(z, x) = ℓz + ℓx

⇐⇒







ℓx = 1
2 (d(x, y) + d(z, x) − d(y, z))

ℓy = 1
2 (d(y, z) + d(x, y) − d(z, x))

ℓz = 1
2 (d(z, x) + d(y, z) − d(x, y))

Note that all these lengths will be non-negative if the d-values satisfy the triangle
inequality.

Neighbours. The tree is reconstructed from the given distance matrix by
determining neighbouring leaves in the tree, leaves that are connected to the
same internal node. In the example A and F , as well as D and E are neighbours.
Such neighbours are then joined into a single node. Thus A&F and C are
neighbours, as are D&E and B.

Determining neighbours is not a simple matter of comparing distances. In the
diagram below the shortest distance is between v and x. However, it is clear
that v and x are not neighbours. This is obvious form the picture, but also
follows from the four point condition: d(u, x) + d(v, w) = 26 which is less than
d(u, v) + d(w, x) = 28. Indeed, there is a edge in the tree that separates {u, x}
from {v, w}.

x

6

u

7
1

v

5

w

8

Neighbour-Joining. The algorithm that reconstructs a tree for a given ad-
ditive distance matrix d determines iteratively a pair of neighbours x and y.
These neighbours are ‘joined’, they are connected to a new node. The distance
of the new node to all nodes in the graph is computed, including x and y. The
new node replaces the neighbours x and y and the computation continues with
one node less. As we have seen, the pair x, y is not simply the pair of closest
nodes. Instead a new ‘corrected’ distance is computed, which includes the total
distance of a node to the rest of the nodes.

For each node x compute the ‘average’ distance to all other nodes

r(x) =
1

N − 2

∑

z∈V

d(x, z)

2.5. NEIGHBOUR JOINING 23

Then, the matrix given by D(x, y) = d(x, y) − r(x) − r(y) is computed. It can
be shown that the pair of nodes x, y for which D(x, y) is minimal is indeed a
neighbouring pair (they are connected by edges to the same node). The nodes
x, y are joined into a new node z.

The distance of the new node z to all other nodes in the set, including the
original x and y, is given by the formulas

– d(z, x) = 1
2 (d(x, y) + r(x) − r(y))

– d(z, y) = 1
2 (d(x, y) + r(y) − r(x))

– d(z, w) = 1
2 (d(x, w) + d(y, w) − d(x, y)), w 6= x, y.

The computation is repeated until three nodes are left. For this final triple the
distances are computed as in the three leaves case.

Sometimes one wants to see a clear direction of evolution in the tree. Obviously
this is not present in the unrooted tree. It is customary to add an outlier to the
set of taxa, one that is so different from the rest that it must be the first object
that splits from the other objects. This fixes the position of the root

2.6 Remark. The formulas can be understood when we try to solve a situation
similar to the three node case, where (N − 1) · r(x) is the total distance to all
other nodes, and ℓz is the average distance to the other nodes (excluding x and
y) from the newly inserted node z.

z

w
y

x

ℓz

ℓy

ℓx











d(x, y) = ℓx + ℓy

r(x) =
(N−1)·ℓx+ℓy+(N−2)·ℓz

N−2

r(y) =
(N−1)·ℓy+ℓx+(N−2)·ℓz

N−2

From this ℓx − ℓy = r(x) − r(y) follows. �

2.7 Example. We start with the distance matrix d(·, ·) from a previous exam-
ple. We compute the sum of distances r(·) for each node, and the ‘corrected’
distance D(x, y) = d(x, y) − r(x) − r(y). 1

d A B C D E F 4 · r
A − 33.0
B 6.0 − 35.0
C 4.0 6.0 − 35.0
D 11.0 9.0 11.0 − 49.0
E 8.0 6.0 8.0 5.0 − 37.0
F 4.0 8.0 6.0 13.0 10.0 − 41.0

−4 · D A B C D E F

A −
B 44.0 −
C 52.0 46.0 −
D 38.0 48.0 40.0 −
E 38.0 48.0 40.0 66.0 −
F 58.0 44.0 52.0 38.0 38.0 −

Step 1. The minimal value is D(D, E) = 66
4 . Hence nodes E and D are neigh-

bours. They are joined to form x1 (distances 1.0 and 4.0 for the edges).

1Sorry for having D both as taxon and as distance matrix.

24 CHAPTER 2. PHYLOGENY

E

D

C A

F

B

x1

E
1

D
4

C A

F

B

We now obtain the following matrices2.

d A B C x1 F 3 · r
A − 21.0
B 6.0 − 25.0
C 4.0 6.0 − 23.0
x1 7.0 5.0 7.0 − 28.0
F 4.0 8.0 6.0 9.0 − 27.0

−3 · D A B C x1 F

A −
B 28.0 −
C 32.0 30.0 −
x1 28.0 38.0 30.0 −
F 36.0 28.0 32.0 28.0 −

Step 2. Nodes x1 and B are joined into the new node x2 (with distances 3.0
and 2.0).

Present distance matrix

d A C x2 F 2 · r
A − 12.0
C 4.0 − 14.0
x2 4.0 4.0 − 14.0
F 4.0 6.0 6.0 − 16.0

−2 · D A C x2 F

A −
C 18.0 −
x2 18.0 20.0 −
F 20.0 18.0 18.0 −

Step 3. Nodes x2, C are joined and form x3 (with distances 2.0 and 2.0).

x1

x2

E
1

D
4

3

C A

F

B

2
x1

x2

x3

x4

E
1

D
4

3

2

C

2

A

F

B

2

d A x3 F r

A − 6.0
x3 2.0 − 6.0
F 4.0 4.0 − 8.0

Now that we have three remaining nodes the joining phase ends. The three
nodes we have connected to the ‘central’ node with edges the length of which
can be computed as in the three node case.

2The position of x1 in the matrix is due to the program we wrote, where the new node

replaces E.

2.6. UPGMA 25

x1

x2

x3

x4

E
1

D
4

3

2

C

2
1

A
1

F3

B

2

A B C D E F

A 0 6 4 11 8 4
B 6 0 6 9 6 8
C 4 6 0 11 8 6
D 11 9 11 0 5 13
E 8 6 8 5 0 10
F 4 8 6 13 10 0

2.6 Rooted Trees and UPGMA

In this section it is assumed that the distances between the objects can be
represented by a rooted tree, where all leaves have equal distance to the root.
This assumption holds if we believe that species are descending from a common
ancestor with a constant molecular clock, i.e., the genetic changes along all
branches are in direct (linear) correspondence with the time that has passed.

A

D

2

2

B

E

3

3

3

2

C

F

3

3

2

4

root A B C D E F

A 0 10 14 4 10 14
B 10 0 14 10 6 14
C 14 14 0 14 14 6
D 4 10 14 0 10 14
E 10 6 14 10 0 14
F 14 14 6 14 14 0

Note that a rooted tree can be transformed into an unrooted tree by removing
the root, and joining the two branches of the root into a single edge. Hence
rooted trees can be seen as a special case of additive distances. The position of
the old root has been indicated by a small arrow.

D

2

3

6F 3

C

3

2

B

3

E3

A

2

Utrametric distance. We consider a such a ‘clock tree’ where all leaves
have the same distance to the root. Looking at three leaves we get the following
situation, the only possible branching diagram for three leaves in a rooted tree.

26 CHAPTER 2. PHYLOGENY

It is clear that we have one short distance, and two longer ones, the longer ones
being equal: d(v, w) ≤ d(u, v) = d(u, w). Sometimes this is called the three

point condition.

w v u

Mathematically the three point condition is equivalent to a so-called ultrametric

distance, where condition iv) is replaced by

iv′ d(x, z) ≤ max{ d(z, y), d(y, z) }

This is a stronger requirement than the original one.

Perfect distance matrix. When the matrix perfectly meets the conditions
of an ultrametric it is rather simple (at least in theory) to determine the tree
representing the matrix, basically by clustering nodes having the same distance
to an arbitrary fixed node. The subtree for each cluster is then determined
recursively.

2.8 Example. Start with the following distance matrix. It is ultrametric.

A B C D E F G

A −
B 15.7 −
C 28.4 28.4 −
D 8.0 15.7 28.4 −
E 36.4 36.4 36.4 36.4 −
F 15.7 1.0 28.4 15.7 36.4 −
G 15.7 12.5 28.4 15.7 36.4 12.5 −

Take an arbitrary taxon, for instance G. Its distances to other taxa are 12.5,
15.7, 28.4, and 36.4. Hence, if we follow the path from leaf G upwards to the
root, at distance 6.25 we find a branch to the subtree with nodes B and F , at
distance 7.85 we find a branch to the subtree with nodes A and D, at distance
14.2 we find a branch to the subtree with node C, and finally at distance 18.2
we find the root, with a branch to the subtree with node E.

At this moment we have practically found the full tree. It suffices to see that
taxa B and F are 1.0 apart, which means their common anester in the tree is
0.5 above both nodes. A similar computation is done for A and D.

2.6. UPGMA 27

UPGMA Algorithm. The UPGMA (for unweighted pair-group method using

arithmetic mean) is a general data clustering technique. We consider each initial
taxon as a cluster consisting of a single point. The algorithm repeatedly joins
the pair of clusters having minimal distance into a new larger cluster. At each
moment the distance between clusters is defined as the arithmetic mean of all
distances between points in the two clusters:

d(C1, C2) =
1

|C1||C2|

∑

x ∈ C1

y ∈ C2

d(x, y)

If two (disjoint) clusters C1 and C2 are amalgamated into a new cluster C1∪C2

its distance to each other cluster has to be computed. Fortunately we do not
have to compute the mean distance from scratch. It can be simply obtained
from the distances of the original clusters (and their sizes):

d(C1 ∪ C2, C) =
|C1|

|C1| + |C2|
d(C1, C) +

|C2|

|C1| + |C2|
d(C2, C)

2.9 Example. Start with the following initial distance matrix, which does not
perfectly conform to an ultrametric.

A B C D E F G

A −
B 19.0 −
C 27.0 31.0 −
D 8.0 18.0 26.0 −
E 33.0 36.0 41.0 31.0 −
F 18.0 1.0 32.0 17.0 35.0 −
G 13.0 13.0 29.0 14.0 28.0 12.0 −

Step 1. The minimal distance equals 1.0. The clusters to amalgamate are B

and F . We obtain the following distance matrix.

A BF C D E G

A −
BF 18.5 −
C 27.0 31.5 −
D 8.0 17.5 26.0 −
E 33.0 35.5 41.0 31.0 −
G 13.0 12.5 29.0 14.0 28.0 −

Step 2. The minimal distance equals 8.0. The clusters to amalgamate are A

and D.

28 CHAPTER 2. PHYLOGENY

Step 3. The minimal distance equals 12.5. The clusters to amalgamate are BF

and G.

AD BF C E G

AD −
BF 18.0 −
C 26.5 31.5 −
E 32.0 35.5 41.0 −
G 13.5 12.5 29.0 28.0 −

AD BFG C E

AD −
BFG 15.8 −

C 26.5 30.2 −
E 32.0 31.8 41.0 −

Step 4. The minimal distance equals 15.8. The clusters to amalgamate are AD

and BFG.

Step 5. The minimal distance equals 15.8. The clusters to amalgamate are
ABDFG and C.

ABDFG C E

ABDFG −
C 28.4 −
E 31.9 41.0 −

A E

A −
E 36.4 −

Step 6. The final clusters that are amalgamated are A and E. The height of
the resulting tree is 18.2.

The final phylogeny looks as follows.

A

D

4.0

4.0

4.0

B

F

0.5

0.5

0.5

G

5.8

6.2

6.2

3.9

1.6

7.9

C

6.3

14.2

14.2

E

4.0

18.2

18.2

Here we repeat the original distance matrix, and the distance matrix that is

2.6. UPGMA 29

defined by the resulting tree.

A B C D E F G

A −
B 19 −
C 27 31 −
D 8 18 26 −
E 33 36 41 31 −
F 18 1 32 17 35 −
G 13 13 29 14 28 12 −

A B C D E F G

−
15.8 −
28.4 28.4 −
8.0 15.8 28.4 −
36.4 36.4 36.4 36.4 −
15.8 1.0 28.4 15.8 36.4 −
15.8 12.4 28.4 15.8 36.4 12.4 −

The example was taken from http://www.nmsr.org/upgma.htm on the web. The

actual data are from the paper by Fitch and Margoliash [3]. The taxa correspond to

the species (A) Turtle, (B) Man, (C) Tuna, (D) Chicken, (E) Moth, (F) Monkey, and

(G) Dog.

Any distance that is ‘close’ to an ultrametric distance can be reconstructed by
the UPGMA: the tree that is found will have the same topology as the one it is
close to. In general however, even when we start with an additive distance, the
tree that is obtained can have a branching structure different from the original
one.

30 CHAPTER 2. PHYLOGENY

Bibliography

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman (1990).
Basic local alignment search tool. Journal of Molecular Biology 215 (3):
403–410. doi:10.1006/jmbi.1990.9999
⊲ alignment heuristics, BLAST, Section 1.5

[2] K.S. Booth, G.S. Lueker: Testing for the consecutive ones property, in-
terval graphs, and planarity using PQ-tree algorithms, Journal of Com-
putational Systems Science, Vol. 13 (1976), pp. 335-379.
⊲ physical mapping, Section 3.5

[3] Fitch and Margoliash, Construction of Phylogenetic Trees, Science Vol.
155, 20 Jan. 1967.

[4] A.P. Gultyaev, Computational Molecular Biology, Application-oriented
view, Leiden University, 2009.

[5] D.S. Hirschberg. Algorithms for the Longest Common Subsequence
Problem, Journal of the ACM, 24 (1977) 664–675.
⊲ linear space alignment, Section 1.4

[6] V.I. Levenshtein, Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady 10 (1966):707–710.
⊲ global alignment, edit distance, Section 1.2

[7] D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity
searches. Science. 1985 Mar 22;227(4693):1435-41.
⊲ alignment heuristics, FASTA, Section 1.5

[8] S.B. Needleman, C.D. Wunsch. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins. J
Mol Biol 48 (3): 443–53. doi:10.1016/0022-2836(70)90057-4
⊲ global alignment, Section 1.2

[9] N. Saitou and M. Nei, (1987). The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-
425
⊲ phylogeny, unrooted trees, Section 2.5

45

http://dx.doi.org/10.1006/jmbi.1990.9999
http://dx.doi.org/10.1016/0022-2836(70)90057-4

46 BIBLIOGRAPHY

[10] D. Sankoff (1975). Minimal mutation trees of sequences. SIAM Journal
of Applied Mathematics 28: 35-42.
⊲ character based, small parsimony, Sankoff algorithm, Section 2.3

[11] R. Shamir, Algorithms in Molecular Biology, lecture notes,
2001-2002, Tel Aviv University School of Computer Science.
www.cs.tau.ac.il/ rshamir/algmb/01/algmb01.html

[12] J. Setubal, J. Meidanis. Introduction to Computational Molecular Biol-

ogy, PWS Publishing Company, 1997.

[13] T.F. Smith, M.S. Waterman (1981). Identification of Common Molec-
ular Subsequences. Journal of Molecular Biology 147: 195–197.
doi:10.1016/0022-2836(81)90087-5
⊲ local alignment, Section 1.3

http://www.cs.tau.ac.il/~rshamir/algmb/01/algmb01.html
http://dx.doi.org/10.1016/0022-2836(81)90087-5

