DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 54, 2000

Forbidding and Enforcing

Andrzej Ehrenfeucht, Hendrik Jan Hoogeboom, Grzegorz Rozenberg,
and Nike van Vugt

ABSTRACT. DNA molecules and various operations on them can be conve-
niently expressed as strings and operations on strings. Hence, many models of
DNA computation have been formulated within formal language theory.

We propose a novel kind of model, which is based on two types of bound-
ary conditions : forbidding and enforcing. Forbidding conditions say that a
‘conflicting’ group of components may not be present in a system, enforcing
conditions say that if a certain group of molecules is present in the system,
then some other molecules will eventually be present in the system.

Such forbidding-enforcing systems are ‘tolerant’ in describing results of
(molecular) computations : one system describes the whole family of outcomes
all of which obey the forbidding and enforcing constraints of the system, spec-
ifying a possibly infinite family of languages. This should be contrasted with
standard formal language theory (grammars and automata) where a grammar
specifies one language of all words that can be generated.

We illustrate the use of forbidding-enforcing systems for the description
of the structure of DNA molecules, the description of splicing systems, and
the description of the satisfiability problem.

Next to standard issues such as normal forms, we investigate two central
issues : finiteness and the structure of computation.

1. Introduction

The research on DNA computing has lead to many novel models of compu-
tation, see for example [HPP97], [Amo97], [Win98|. Since DNA molecules can
be expressed in a very natural way as strings (or double strings), and various op-
erations on DNA can be expressed then as operations on strings, many of these
models have been formulated within formal language theory. In a typical model
of this sort (see, e.g., splicing systems), after the initial set of molecules (strings)
and the operations on them (productions) are specified, one gets a rewriting system
which defines a single language. This language represents the set of all molecules
that can be obtained from the initial ones using the given operations.

We propose here a different kind of model, which is based on boundary con-
ditions. We propose a description of molecular systems based on two types of
boundary conditions : forbidding and enforcing. Forbidding conditions say that if
a certain group of components is present in the system, then the system will ‘die’
(e.g., it will lose its functionality) — hence such a combination of components is

2000 Mathematics Subject Classification. Primary 68Q05, 68Q45.

© 2000 American Mathematical Society

195

196 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

forbidden. Enforcing conditions say that if a certain group of molecules is present
in the system, then (as the result of a molecular reaction) some other molecules will
eventually be present in the system. Hence the evolution of a system described by
forbidding conditions 7 and enforcing conditions £ will proceed according to the
reactions described by £ but restricted in such a way that none of the forbidding
conditions from F will be created. Such forbidding-enforcing systems, fe systems
for short, are much more ‘tolerant’ in describing results of (molecular) computa-
tions : one fe system describes the whole family of outcomes all of which obey the
forbidding and enforcing constraints of the system. Thus in case when we model
the molecules by strings (as we do in this paper), one fe system specifies a possibly
infinite family of languages. A language belongs to this family if and only if it is
consistent with the forbidding conditions and it satisfies the enforcing conditions —
nothing else is required from the language. As a matter of fact, fe systems follow
the rule “everything that is not forbidden is allowed”, while standard formal lan-
guage theory (grammars and automata) follows the dual rule “everything that is
not allowed is forbidden”. Hence fe systems lead in our opinion to models of com-
putation novel from both the (modeling of) molecular systems and computation
theory point of view.

This paper is organized as follows. First we introduce and investigate forbid-

ding sets and enforcing sets, and then we combine the two and introduce forbidding-
enforcing systems, which constitute our model of molecular systems. Next to stan-
dard issues such as, e.g., normal forms, we investigate two central issues.
(1) Finiteness. This issue is always important from the ‘real world’ point of view.
We investigate many facets of finiteness, and we also discuss the very different role
that finiteness plays in our model when compared to standard grammatical models.
(2) Structure of computation. Although fe systems are defined by boundary con-
ditions, they turn out to be intrinsically computational. Each fe system, when
transformed into a suitable normal form, can be completely represented by a tree
which contains the information about the family of languages defined by the system,
and also about all possible evolving computations of the system.

Finally we want to point out that we have not included the proofs of our results
because the size of the paper would then become too big for this volume.

2. Preliminaries

We denote the set of (positive) natural numbers by N, and the empty set by @.

In this paper we consider non-empty words only. For the ease of notation, we
will fix one alphabet X, i.e., every word, language or family of languages is over ¥,
unless clear otherwise. The set of all non-empty words over ¥ is denoted by =+
(occasionally we will also use the notation ¥* which denotes the set of all words
over %, including the empty word).

The length of a word w is denoted by |w|. For a language K and an integer
n>1 K|, ={w e K | |w| <n}. A sequence of languages K, K, ... is called
ascending if K1 C Ky C A sequence of languages K1, Ks,... converges to a
language K, denoted (K,),en — K, if, for each £ > 1, there is an m > 1 such that
Ky|<e = K|y for every n > m.

A word z € X7 is a subword of a word y € £F, denoted z sub v, if y = uzv for
some u,v € ¥*. The set of subwords of a word z is denoted by sub (z). The set of

FORBIDDING AND ENFORCING 197

subwords of a language K, denoted sub (K), equals | J, ., sub (x). A language K
is called subword free if, for all x,y € K, = sub y implies z = y.

3. Forbidding sets

In this section we formalize the first sort of boundary conditions, viz., forbidding
conditions. To this aim we introduce the notion of a forbidding set.

3.1. Definitions and basic properties.

DEFINITION 1. A forbidding set is a (possibly infinite) family of finite lan-
guages; these finite languages are called forbidders.

A language K is said to be consistent with a forbidder F', denoted K con F,
if ¢ sub(K). A language K is consistent with a forbidding set F, denoted
K con F, if K is consistent with every forbidder in F. O

ExaMPLE 2. Consider the forbidding set F = {{ab,ba}, {aa,bb}} and alphabet
{a,b}. Then it is easily seen that K con F iff K C K, for some i € {1,2, 3,4}, where
Ky =ab*Ubt, Ky =a"bUa™, K3 =ba*Ua™, Ky =b*aUb™. O

For a forbidding set F we define the family of (F-)consistent languages L(F) =
{K | K con F}, and the family of finite consistent languages Lan(F) = {K | K is
finite and K € L(F)}.

THEOREM 3. Let F be a forbidding set and K a language.
(1) K con F implies sub(K) con F
(2) If K' C K and K con F, then K' con F
(8) If Ky, Ko, ... is an ascending sequence of languages with K; con F for alli > 1,
then (U;», Ki) con F

In the third property above, we infer the consistency of the language K from a
converging sequence of fragments of K. This property follows from our assumption
that forbidders are finite sets.

3.2. A useful minimal normal form. In this subsection we consider three
technically useful normal forms for forbidding sets. We use the following obvious
notion of equivalence : two forbidding sets F; and Fy are equivalent if L(F;) =
L(F).

Let F be a forbidding set, and let £, F;, € F with Fy # F,. We say that F} and
Fy are subword incomparable if neither sub (F1) C sub (F2), nor sub (Fa) C sub (F1),
and we call F subword incomparable if each pair of distinct forbidders Fy, Fh € F
is subword incomparable. This is a normal form : for every forbidding set F
there exists an equivalent subword incomparable forbidding set F'. Note that F” is
not always unique : for instance, constructing a subword incomparable equivalent
of {{a,ab},{b,ab}} can yield both {{a,ab}} and {{b,ab}}, since sub ({a,ab}) =
sub ({b, ab}).

We call a forbidding set subword free if all its forbidders are subword free. For
every forbidding set there exists an equivalent subword free forbidding set.

A forbidding set F is in minimal normal form if F is subword free and subword
incomparable.

THEOREM 4. For every forbidding set F there exists an equivalent forbidding
set F' in minimal normal form. F' is unique.

198 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

ExAMPLE 5. The (fortunately finite) equivalent in minimal normal form of
the infinite forbidding set F = {{a’,b%,a’b'} | i > 1} is F' = {{ab}}, since
{a’,b",a’b'} Z sub (K) for all i > 1 iff {a,b,ab} Z sub (K) iff {ab} € sub (K). O

A forbidding set in minimal normal form is indeed minimal, or ‘redundancy free’, in
the sense that removing one of its forbidders or even one element from one forbidder
vields a forbidding set that is not equivalent to the original one.

3.3. Finiteness. We turn now to the issue of finiteness for forbidding sets.
First we observe that we cannot restrict ourselves to finite forbidding sets. On the
other hand, the finite consistent languages characterize all consistent languages of
a forbidding set.

For some specific infinite forbidding sets it is possible to find an equivalent finite
forbidding set : Fp = {{ab}} clearly is a finite ‘summary’ of F; = {{ab}, {a?b?},
{ab},...}. Unfortunately this is not always the case, which is seen as follows.
For a finite forbidding set F, let £ = max{|w| | w € {Jp.r F}. Now, if for two
words x and y it is the case that sub (x)|<; = sub (y)|<¢, then F cannot distinguish
between z and y, which means that {z} € £(F) if and only if {y} € L(F).

Now consider Feven = {{ab’a},{ab'a},{ab’a},...}. For each £, the words
r = aba and y = ab’*a differ only on subwords of length greater than £. Clearly
{z} € L(Feven) if and only if {y} & L(Foven). Hence L(Feven) # L(F) for all finite
F.

Theorem 3 (2) and (3) together yield the following result, which states that
consistence of certain specific finite parts of a language K is necessary and sufficient
to ensure the consistence of K itself.

LeEmMA 6. K con F if and only if K|<; con F for every i > 1.

As a matter of fact, finite languages are central elements of every family of consistent
languages, as demonstrated by the following result.

THEOREM 7. For all forbidding sets F1 and Fo the following holds :
L(F1) = L(F2) if and only if Lan(F1) = Lan(Fo).

4. Enforcing sets

In this section we formalize the second sort of boundary conditions, viz., en-
forcing conditions. To this aim we introduce the notion of enforcing sets.

4.1. Definitions and basic properties.

DEFINITION 8. An enforcing set is a (possibly infinite) family of ordered pairs
(X,Y), where X and Y are finite languages with Y # &; such a pair (X,Y) is
called an enforcer.

A language K satisfies an enforcer (X,Y), denoted Ksat (X,Y), if X C K
implies Y N K # @. A language K satisfies an enforcing set £, denoted K sat &, if
K satisfies every enforcer in £. O

EXAMPLE 9. The family € = {({u,v},{uv,vu}) | u,v € L7} is an enforcing
set. If K C X7 satisfies £, then K is closed under ‘weak catenation’ : for any words
u,v € K at least one of the words wv,vu is in K. Note that there are infinitely
many languages satisfying £, each resulting from a different ‘implementation’ of the
weak catenation. O

FORBIDDING AND ENFORCING 199

Note the essential use in the above example of the non-determinism of enforcers.
Given an enforcer (X,Y) and alanguage K, if the set X of premises is included in K,
then at least one element of the set Y of consequences will be included in K. Thus
allowing Y to include more than one element accounts for the non-determinism. In
the world of molecular reactions the result of molecules from X reacting together
may depend quite essentially on all kinds of conditions under which the reaction
takes place (e.g., temperature, pH, ...).

EXAMPLE 10. Let & be the enforcing set {(@,{b"}) | n is even }. We refer to
each enforcer (@, {b™}) as a ‘brute’ enforcer, because the empty set is included in
every language. Thus if K satisfies £, then K must contain the language {b™ | nis
even }. O

For an enforcing set &€, L(€) = {K | Ksat £} is the family of (£-)satisfying lan-
guages. Similarly, the family of finite satisfying languages is defined by L, (€) =
{K | K is finite and K € L(£)}.

THEOREM 11. Let € be an enforcing set. If Ki,K,,... is an ascending se-
quence of languages with K; sat € for all i > 1, then (U;5, Ki) sat €.

4.2. Computing is evolving through enforcing. Let & be an enforcing
set. An enforcer (X,Y) € £ is applicable to a language K (K-applicable) if X C K.
If (X,Y) is K-applicable, but Y N K = @, then (X,Y) is a K-violator-

Let K, be a language, £ an enforcing set, and assume that it is not true that
Kysat &, ie., there are (X,Y) € £ with X C Ky but ¥ N Ko = @. Now add, for
each of these Ky-violators (X,Y), at least one element of Y to Ky, and denote the
(possibly infinite) superset of Ky constructed non-deterministically in this way by
K. Then clearly none of the Ko-violators is a K;-violator, but some enforcers that
were not applicable to Ky may become now Ki-violators. If so, then repeat the
construction described above, and so on.

This iterative ‘repair procedure’ is illustrated in Figure 1.

Ky
K, Zo Ky-violators are
K, satisfied by K1 = Ko U Zp
K, A K;-violators are
satisfied by Ko = K; U Z;
K,
FIGURE 1.

The underlying idea of this ‘evolving procedure’ is formalized as follows.
DEFINITION 12. For an enforcing set £ and languages K, K’ with K C K " we

say that K’ is an £-extension of K, written K ¢ K', if X C K implies K'NY # o,

for each (X,Y) € €. O

200 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

The E-extension relation expresses the basic computation step induced by &£: a
molecular system that has to satisfy £ evolves according to F¢. It is also our basic
notion for studying computations in forbidding-enforcing systems.

The following theorem says that the iterative repair procedure above yields the
desired result.

THEOREM 13. Let & be an enforcing set and let K1, Ky, ... be an infinite as-
cending sequence of languages. If K; F¢ Kiyy for eachi > 1, then (U;sq Ki) sat €.

It is instructive to see that the previous result does not hold for finite ascending
sequences : take for instance & = {({a}, {0}), ({a, b}, {c})}, and let K, = {a} while
Ky = {a,b}. Then K1 C Ky and K; ¢ Ky whereas K| U Ky does not satisfy £.

This certainly agrees with our intuition : the molecular reactions go on all the
time, providing that the needed components (molecules) are available. Thus such
reactions may lead out of a finite language.

4.3. Finitary normal form. In this subsection we consider an important
normal form for enforcing sets. We begin by distinguishing two finiteness properties
of enforcing sets.

We say that two enforcing sets & and & are equivalent if £(€;) = £(E,). For
a finite language Z we define £(Z) = {(X,Y) € £ | X = Z}.

DEFINITION 14.
(1) An enforcing set £ is finitary if, for each finite language Z, £(Z) is finite.
(2) An enforcing set £ is weakly finitary if, for each finite language K, there exists
a finite language K5 such that K| k¢ K. O

If an enforcing set £ is finitary, it means that each premise set Z can have only a
finite number of different consequence sets included in £. This is a syntactic feature
of £. On the other hand the property of being weakly finitary is more of a semantic
property — it says something about the effect that the enforcing specified by £ has
on finite languages. This effect is required to be ‘continuous’ : each finite language
can always evolve according to &£ to a finite language. Thus one can start with a
finite language and evolve it according to £ in a smooth way without ‘exploding in
one step’ into an infinite set.

The basic relationship between finitary and weakly finitary enforcing sets is
given by the following result.

THEOREM 15.
(1) Every finitary enforcing set is weakly finitary.
(2) There exist weakly finitary enforcing sets that are not finitary.

Our next result says that languages K that satisfy finitary enforcing sets £ play for
such sets the role of the universe (¥1), meaning that £ becomes weakly finitary for
all finite languages within such K.

THEOREM 16. Let £ be a finitary enforcing set, and let K be a language such
that K sat €. For every finite language L C K, there exists a finite language L' C K
such that L ¢ L'.

Note that the above result does not hold if we require that £ is weakly finitary
rather than finitary. To see this consider the weakly finitary enforcing set £ =
{(@,{a,b"}) | n > 1}. Let K = {b" | n > 1}, then obviously K sat £&. Now let

FORBIDDING AND ENFORCING 201

L C K be finite and assume that L -¢ L' for a finite language L’. Let m = max {n |
b® € L'} and consider the enforcer E = (&, {a,b™"'}). Obviously L’sat £ does
not hold, contradicting L ¢ L’. Hence L’ cannot be finite.

The following theorem is one of the main results of the forbidding-enforcing
theory.

THEOREM 17. For every enforcing set there exists an equivalent finitary en-
forcing set.

4.4. Finiteness. In our approach we allow infinite enforcing sets. Unfortu-
nately one cannot restrict oneself to finite enforcing sets only.

LEMMA 18. If &€ is a finite enforcing set, then there is an n > 1 such that, for
each K € L(€) and each L, if K|, C L C K, then L € L(E).

Consequently, if £ is finite, then £(&) contains a finite language, viz., K|.,. Thus,
e.g., for the enforcing set £ in Example 10 there is no equivalent finite enforcing
set, since every language in £(£) contains the infinite set {4 | n is even}. This
gives the following result.

LEMMA 19. There are infinite enforcing sets for which there is no equivalent
finite enforcing set.

We define €|, to be {(X,Y) € £ | |w| <n for all w € X UY}. Analogous to the
situation with forbidding sets, satisfaction of an enforcing set £ by a language K is
guaranteed by the satisfaction of certain specific finite parts of £ by certain specific
finite parts of K.

LEMMA 20. K sat € if and only if K|; sat |, for every i > 1.

Unlike for forbidding sets, finite languages are not particularly important for fami-
lies of satisfying languages. This can be shown using the fact that we can construct
any language K as a singleton family, by enforcing each of its elements. Similarly,
we can enforce that every element of the complement of K be present whenever one
of its elements is present. Formally, let K be a language over %, and let (w;);en
be an arbitrary but fixed ordering of the words of K. Similarly, let {(v;);en be an
arbitrary but fixed ordering of the elements of ¥ — K. Now consider the enforcing
set & = {(@, {wih)} U {({wi}, {wira}) | i 2 1} U{{wvi}, {v1}), {vid; {vit1}) |
i > 1}. Then L(Ex) = {K,X1}, and clearly for every finite language K we have
Lin(Ex) = {K}, whereas for infinite K we have Lg,(Ex) = @. Hence for any two
different infinite languages K and K’ we have L4, (k) = Lan(Ex) = @, whereas

L(Ex) # L(Ek).
5. Forbidding-enforcing systems

We will investigate now systems that combine forbidding and enforcing.

DEFINITION 21. A forbidding-enforcing system (fe system for short) is a con-
struct I' = (F, &), where F is a forbidding set and £ is an enforcing set. O

The corresponding forbidding-enforcing family (fe family), denoted L(F, &), con-
sists of all languages that are both F-consistent and £-satisfying. Hence L(F, &) =
L(F)YNLE).

202 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

ExAmpPLE 22. Let ¥ = {a,b} and let I' = (F,€) be the fe system obtained
by combining the forbidding set F = {{aa, bb}, {ab,ba}} from Example 2 and the
enforcing set & = {(@,{b"}) | n is even} from Example 10. Then a language
K C Y% isin L(F,€) if and only if K = K' U {b" | n is even} where either
K’ Cab* or K' C b*a. U

We carry over the ‘finitary’ qualification of enforcing sets to fe systems in an
obvious way : an fe system I' = (F, &) is finitary if and only if £ is finitary.

5.1. Examples.

DNA molecules — their structure and processing. DNA molecules, par-
tially single or double stranded, can be coded over a suitable alphabet of base
pairs. For the matching base pairs we may use the symbols (), (%), (), (&).
For the single stranded pieces we can use ('), (T), (C), (G) (upper strand) and
(1)s (4): (&), () (ower strand). For this example we consider languages over the
alphabet Xy, consisting of these twelve symbols.

We will give some natural requirements on a formal language representing
the set of linear DNA molecules. These requirements can be formulated in our
forbidding-enforcing framework.

First, of course, no proper molecule can have an unmatched base in the upper
strand next to an unmatched base in the lower strand. This leads to forbidders
{(°)(;) }and { (;)(7) } for each 0,7 € {A, T, C,G}.

Additionally, the molecule described by the string (1) (5) (%) (&) (") is also
described by the inverted string () (&) (o) (%) (%). We denote the operation of
inversion, which is the composition of mirror image and replacing each symbol
(7) in Spase by (7), by inv. In this way we get an infinite number of enforcers,
({z}, {inv (z)}) with x over the alphabet Xy, .

The above set of forbidders and the set of enforcers together yield a fe system
that admits only correct and all correct descriptions of linear DNA molecules.

The effect of cutting by restriction enzymes can easily be translated into en-
forcing rules. E.g., for the restriction enzyme Taql (see, e.g., [NEB]) we have the
enforcer ({z(}) (%) (8) (M)uk {=(%) () (o)} for each pair z,y € &, .. Note that
we have enforced only one of the two halves, the other follows by palindromicity
and inversion.

Recombination is then modelled by reversing the rules. E.g., ligating two pieces
with overhang GC (one resulting from cutting with Taql and the other a sticky end
produced by the restriction enzyme Narl (see, e.g., [NEB])) can be enforced by

() ()))@ (@ =)@) (&) @)

Splicing systems. In splicing systems [HPP97] the above operations are ab-
stracted to the use of splicing rules. The effect of such a splicing rule (u1, vy, us, v3),
which says that two words z;u3v1y; and Tousvays can be spliced to form the word
T1u1v2y2 can be described by an enforcing set as follows : {({z1uiv1y1, Zougvays },
{z1u1vaya}) | 1, 22,11,92 € T}

More attractively, and more directly, one may have the rules of the form
({z,y, 7}, {w}) where r is the restriction enzyme (after all it is a molecule) and
x and y are spliced into w according to 7. This seems to be attractive because, as

FORBIDDING AND ENFORCING 203

various molecules are created during the evolution of such a system, new (restric-
tion) enzymes may become available and so their effects will also be produced — in
this way we can deal with dynamically changing sets of rules.

A splicing rule may be specified in its usual string representation u; #vy $ug#ve,
whereas an enzyme may be given by its amino acid encoding, hence by a word over
an alphabet of 20 symbols.

Satisfiability problem. We explain now a representation of the satisfiability
problem by fe systems using the following example. Let U = (—x;Vz3Vag)A(—x1V
T V =) be a Boolean formula in 3-conjunctive normal form (see, e.g., [GJT9]).
It consists of two clauses, each of which has to be satisfied.

The two truth assignments to the variable z; can be encoded as the strings
xbin (i)f for ‘x; is false’ and xbin (:)t for ‘x; is true’, where bin (1) € {0,1}" is
a suitable binary encoding of i. Any language coding a truth assignment must
have exactly one of the assignments for each variable. This can be achieved by
having the brute enforcers (&, {xvf,xvt}) for each v € {0, 1}* (this constitutes the
enforcing set £/), and by having the forbidder {xvf,xvt} for each v € {0,1}* (this
constitutes the forbidding set Fyr).

Besides these universally valid restrictions, the formula ¥ itself places addi-
tional restrictions on the truth assignment. For instance, the clause -2 V 23 V zg
demands to assign true either to -z, or to x3, or to xg. Equivalently, it demands
not to assign false to all of —x1, z3, and z¢ at the same time, i.e., it forbids the
words x1t, x11f, and x110f to occur at the same time. Hence, the first clause
is represented by the forbidder {x1t,x11f,x110f} and the second clause by the
forbidder {x1t,x10f,x110t}.

In this way, representing each clause by a forbidder, we get the forbidding
set Fy. Now the ‘universal’ forbidders and enforcers together with the forbidders
defined by the formula ¥ yield the fe system I'y = (FyUFy, Ey). This I'y provides
a succinct representation for the satisfiability of W: W is satisfiable if and only if
L(T'y) is non-empty.

5.2. The structure of computation in forbidding-enforcing systems.
We move now to consider the structure of computations in fe systems, and in
particular we claim that for the systems in finitary normal form there is an elegant
representation, in the form of a tree, of all the computations in a given fe system.

We use here the standard notion of a tree. The trees will be rooted, node-
labelled, they may be infinite but always finitely branching. This means that each
node has only a finite number of children (however, we do not assume that there is
a common bound on the number of children for each node). The label of a node v
in a tree 7 is denoted by lab _(v). We call a path in a tree a full path if it starts at
the root and either ends at a leaf or is infinite.

DEFINITION 23. Let T = (F, &) be an fe system, and let 7 be a tree. Then 7
is a [-tree if
(1) each node label is an element of Lay (F),
(2) if a node v, is a descendant of a node vy, then lab . (v1) Fg lab (vg). O

Hence the influence of the forbidding set is expressed by the sort of node labels
that are admitted, while the influence of the enforcing set is expressed through the
condition on the sort of languages that can follow each other on a single path — this
is illustrated in Figure 2.

204 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

K

FIGURE 2. K{,K> € [,ﬁn(]:), K, C KQ, and K; ¢ Ko

We now consider a I'-tree where all the languages from £(I), finite and infinite,
are represented.

DEFINITION 24. Let I' = (F,€&) be an fe system. A D-tree 7 is a complete
I-tree if
(1) if K C X7 is finite and K € L£(T), then K is a node label of T,
(2) if K C T7 is infinite and K € L(T), then there exists an infinite path 7 in 7
such that K = J, ., lab, (v). O

We know already that finitary fe systems constitute a normal form for forbidding-
enforcing systems meaning that as far as the specifications of fe families are con-
cerned one can restrict oneself to finitary fe systems. However, the real attractive-
ness of finitary fe systems stems from the following result.

THEOREM 25. For each finitary fe system I' there exists a complete I'-tree.

This means that every finitary fe system I' can be ‘completely’ represented by a
complete I'-tree 7, that represents both all languages defined by T and all compu-
tations taking place within I :

(1) all finite languages in £(I') occur as node labels in T,

(2) by taking for each infinite path the union of all languages along this path we
get all infinite languages in £(T'),

(3) by following all full paths in 7 we get all evolving computations of I'.

Since finitary fe systems form a normal form for fe systems, one can repre-
sent all languages defined by an arbitrary fe system I' by a tree, viz., the I'-tree
of an equivalent finitary fe system. What will not carry over is the structure of
computations in the original fe system.

THEOREM 26. For each fe system I' there exists a finitely branching tree T with
nodes labelled by finite languages such that for each language K,
K € L(T) iff there exists a full path 7 in T such that K =], lab . (v).

5.3. The role of finite languages. As we have indicated already fe systems
are novel also from formal language theoretic point of view in the sense that a
single fe system defines a possibly infinite family of languages (rather than a sin-
gle language — which is standard in formal language theory). However, there is
another very important, and more ‘semantical’, difference with traditional formal
language theory. In classical formal language theory finite languages are ‘irrelevant’
in the following sense : given any standard sort of grammar G (e.g. context-free
grammar, context-sensitive grammar, ETOL system, ...) and a finite language F/,
the languages L(G) — F and L(G) U F' can be defined by the same sort of gram-
mar. Actually in all these grammars each finite language can be defined in a trivial
(meaningless) way : every element of the finite language can be generated in one

FORBIDDING AND ENFORCING 205

step from the axiom of the grammar. The situation for fe systems is drastically dif-
ferent. An fe family is determined by certain finite parts of languages, as formalized
by the following result.

THEOREM 27. Let K be an fe family, and K a language. If, for alln > 1, there
is an L € K with K|, = L|<y,, then K € K.

COROLLARY 28. Let K be an fe family, and A C X. If all finite languages over
A are in K, then all languages over A are in K.

COROLLARY 29. Let K1 and Ky be fe families. If {K|<p | K € K1} = {K|<n |
K e Ky} foralln>1, then Ky = K.

5.4. Some topology. Since investigation of computations in fe systems often
leads to convergence problems of (evolving) sequences of languages, one comes in a
natural way to some basic topological notions. The following theorem, a topological
reformulation of Theorem 27, is a generalization of Theorem 3 (3) and Theorem 11,
in the sense that we do not require an ascending sequence of languages, the union
of which equals a certain language K, but rather a sequence of languages that
converges to K.

THEOREM 30. Let I' = (F, &) be an fe system and let K be a language. If
Ky, K,,... is a sequence of languages with (K,)neny — K and K; € L(F,E) for all
i €N, then K € L(F,E).

This is exactly the definition of closed sets (in topological sense) : thus the language
sets L(F,&) are closed sets. In fact, it can be shown that the sets of languages for
which a tree as in Theorem 26 exists, are exactly the closed sets (of languages).

6. Discussion

In this paper we have introduced a model of computation which we believe
is novel from both molecular systems and computation theory point of view. We
believe that forbidding-enforcing is an interesting paradigm to be investigated. We
see (at least) three lines of research continuing this paper :

(1) Investigating the use of fe systems for the description of various types of com-
puting, both dry and wet. Examples given in Section 5.1 form only a beginning of
a step in this direction.

(2) Developing the theory of fe systems. In particular we plan here to explore The-
orem 25, and to investigate basic decision problems and complexity issues. There
are also many combinatorial and topological questions that, in view of the current
paper, should be pursued.

(3) There is nothing in the basic idea of forbidding-enforcing systems that restricts
them to strings only. It is well known that graphs are useful for describing the basic
structure of molecules. Moreover, using forbidden subgraphs to specify classes of
graphs (e.g., planar graphs) is quite well understood. We plan to investigate fe
systems over graphs.

References

[Amo97] Martyn Amos. DNA Computation. PhD thesis, Department of Computer Science, Uni-
versity of Warwick, UK, September 1997.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. Bell Telephone Laboratories, 1979.

14

206 A. EHRENFEUCHT, H. J. HOOGEBOOM, C. ROZENBERG, AND N. VAN VUGT

[HPP97] Thomas Head, Gheorghe Paun, and Dennis Pixton. Language theory and molecular ge-
netics : Generative mechanisms suggested by DNA recombination. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 7,
pages 295-360. Springer-Verlag, 1997.

[NEB] New England BioLabs Catalog 1998/1999.

[Win98] Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, Pasadena, California, May 19 1998.

(A. EHRENFEUCHT) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF COLORADO AT
BOULDER, BOULDER, CO 80309, USA

(H. J. HooceBooM) LIACS, UNIVERSITEIT LEIDEN, NIELS BOHRWEG 1, 2333 CA LEIDEN,
THE NETHERLANDS
E-mail address: hoogeboo@ui.leidenuniv.nl

(G. RozenNBERG) LIACS, UNIVERSITEIT LEIDEN, NIELS BOHRWEG 1, 2333 CA LEIDEN, THE
NETHERLANDS, AND, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF COLORADO AT BOUL-
DER, BoULDER, CO 80309, USA

E-mail address: rozenber@wi.leidenuniv.nl

(N. vaN VuaT) LIACS, UNIVERSITEIT LEIDEN, NIELS BOHRWEG 1, 2333 CA LEIDEN, THE
NETHERLANDS
E-mail address: nvvugt@ui.leidenuniv.nl

