
Opgaven Fundamentele Informatica 2 1

Opgaven uit oude tentamens FI1.

1. De taal K bestaat uit alle woorden (over {a, b}) met precies één voorkomen van
deelwoord ab, dus aabaa ∈ K, maar aabaab /∈ K.

a. Laat zien dat K2 niet de taal is van alle woorden met precies twee voorkomens
van ab.

We kijken naar het complement van K.

b. Geef een deterministische eindige automaat voor de taal {a, b}∗ −K.

c. Laat zien dat {a, b}∗ −K regulier is, dat wil zeggen druk de taal uit in eindige
talen met behulp van de operaties vereniging, concatenatie en ster.

2. Gegeven is de taal K =

{ w ∈ {a, b}∗ | na(w) is even, en elke a wordt gevolgd door een b }

Voorbeelden:
λ ∈ K, bbbbbb ∈ K, abbbabbb ∈ K, bababaab /∈ K, babbabbbab /∈ K.

a. Geef een deterministische eindige automaat voor K.

b. Toon aan dat de taal K regulier is door deze uit te drukken in eindige talen met
behulp van de operaties vereniging, concatenatie en ster.

De reguliere taal L is als volgt gedefinieerd:

L = {a, b} · {a} · {a, b}∗ · {a} · {a, b} ∪ {a, b} · {b} · {a, b}∗ · {b} · {a, b}

c. Beschrijf L in woorden, analoog aan de manier waarop in onderdeel a. de taal K
gedefinieerd is

3. a. Geef een deterministische eindige automaat voor de taal

K = { w ∈ {a, b}∗ | w heeft een suffix abb }

b. Doe dit ook voor de taal mir(K). (spiegelbeeld)

c. Toon aan dat K regulier is, maw. druk K uit in eindige talen met behulp van de
operaties vereniging, concatenatie en ster (∪, ·, ∗).
Doe dit ook voor het complement van K ten opzichte van {a, b}∗.

Uitwerkingen FI2 2

1) Alle woorden met één voorkomen ab.

a. Zowel aba als bab behoren tot K (want bevatten elk één voorkomen van ab). Dan
behoort aba · bab tot K2, maar dit woord heeft niet twee, maar drie voorkomens van ab.

b. Complement: geen ab of tenminste twee.

0 1 2+

b

a

a

b

b

a

a

b

a, b

c. {b}∗{a}∗ ∪ {a, b}∗{ab}{a, b}∗{ab}{a, b}∗,
of als reguliere expressie b∗a∗ + (a+ b)∗ab(a+ b)∗ab(a+ b)∗.

2) Even aantal a, elke a door een b gevolgd.

a.

g

b
a b

a

b

a
b

a a, b

b. ({b}∗{ab}{b}∗{ab})∗{b}∗.
c. Tweede letter gelijk aan de een-na-laatste letter (en lengte tenminste 4).

3) Suffix abb.

a.

0 1 2 3

b

a

a

b b

a

a

b

b. Spiegelbeeld: prefix bba.

0 1 2 3

g

b

a

b

a

a

b

a, b

a, b

c. {a, b}∗{abb}
Complement, eindigt niet op abb, dus eindigt op a, op ab, of op bbb. Maar we zijn de korte
woorden vergeten! {λ, b, bb} ∪ {a, b}∗{a, ab, bbb}

Opgaven FI2 Operaties 3

M 1.33. Let L1 and L2 be subsets of {a, b}∗.

a. Show that if L1 ⊆ L2, then L∗1 ⊆ L∗2.

b. Show that L∗1 ∪ L∗2 ⊆ (L1 ∪ L2)
∗.

c. Give an example of two languages L1 and L2 such that L∗1 ∪ L∗2 6= (L1 ∪ L2)
∗.

d. One way for the two languages L∗1 ∪L∗2 and (L1 ∪L2)
∗ to be equal is for one of the two

languages L1 and L2 to be a subset of the other, or more generally, for one of the two
languages L∗1 and L∗2 to be a subset of the other. Find an example of languages L1 and
L2 for which neither of L∗1 and L∗2, but L∗1 ∪ L∗2 = (L1 ∪ L2)

∗.

M 1.36.

a. Consider the language L of all strings of a’s and b’s that do not end with b and do not
contain the substring bb. Find a finite language S such that L = S∗.

b. Show that there is no language S such that S∗ is the language of all strings of a’s and
b’s that do not contain the substring bb.

M 1.37. Let L1, L2, and L3 be languages over some alphabet Σ. In each case below, two
languages are given. Say what the relationship is between them. (Are they always equal?
If not, is one always a subset of the other?) Give reasons for your answers, including
counterexamples if appropriate.

a. L1(L2 ∩ L3), L1L2 ∩ L1L3

b. L∗1 ∩ L∗2, (L1 ∩ L2)
∗

c. L∗1L
∗
2, (L1L2)

∗

Opgaven aangegeven met M komen uit het boek van John C. Martin, Introduction to
Languages and the Theory of Computation, 4th edition, McGraw Hill, 2010

De uitwerkingen van deze opgaven zijn grotendeels gebaseerd op eerdere versies van FI2,
door collega’s J. Kleijn en M.M. Bonsangue.

Uitwerkingen FI2 4

1.33 Let L1, L2 ⊆ {a, b}∗.
a. Assume L1 ⊆ L2. Then LL1 ⊆ LL2, for any language L: LL1 = {uv | u ∈ L, v ∈
L1} ⊆ {uv | u ∈ L, v ∈ L2} = LL2. Symmetrically L1L ⊆ L2L.

Thus L2
1 = L1L1 ⊆ L1L2 ⊆ L2L2L

2
2 and in general Lk1 = Lk−11 L1 ⊆ Lk−11 L2 ⊆ Lk−12 L2 = Lk2

for all k ≥ 1. Consequently,

L∗1 =
⋃
k≥0 L

k
1 ⊆

⋃
k≥0 L

k
2 = L∗2.

b. L∗1∪L∗2 ⊆ (L1∪L2)
∗ always holds, since L1 ⊆ L1∪L2 which implies that L∗1 ⊆ (L1∪L2)

∗

(see item a. above) and similarly L∗2 ⊆ (L1 ∪ L2)
∗.

c. The inclusion L∗1 ∪L∗2 ⊆ (L1 ∪L2)
∗ may be strict: for L1 = {0} and L2 = {1} we have

{0}∗ ∪ {1}∗ 6= {0, 1}∗.
d. If L∗1 ⊆ L∗2 then L∗1∪L∗2 = L∗2 and since L1 ⊆ L∗1 ⊆ L∗2 also (L1∪L2)

∗ ⊆ (L∗2∪L2)
∗ = L∗2.

Similarly, L∗2 ⊆ L∗1 implies that L∗1 ∪ L∗2 = L∗1 = (L1 ∪ L2)
∗.

Next consider L1 = {02, 05} and L2 = {03, 05}.
Then L∗1 = {λ, 02, 04, 05, . . .} = {0}∗ − {0, 03} and

L∗2 = {λ, 03, 05, 06, 08, 09, . . .} = {0}∗ − {0, 02, 04, 07}. Thus neither L∗1 ⊆ L∗2 nor L∗2 ⊆ L∗1.
However, L∗1∪L∗2 = {0}∗−{0} and also (L1∪L2)

∗ = {02, 03, 05}∗ = {λ, 02, 03, 04, 05, . . .} =
{0}∗ − {0}.

1.36 L consists of all strings from {a, b}∗ that do not end with b and do not have a
subword bb.

a. L = {a, ba}∗.
b. Consider now the language K consisting of all strings from {a, b}∗ that do not have a
subword bb. Assume that K = S∗ for a finite set S. Then b ∈ K = S∗. Since S∗ = S∗S∗,
it follows that bb ∈ S∗S∗ = S∗ = K, a contradiction. Hence there cannot exist a finite S
such that K = S∗.

1.37 Let L1, L2, L3 ⊆ Σ∗ for some alphabet Σ.

a. L1(L2∩L3) ⊆ L1L2∩L1L3, because w ∈ L1(L2∩L3) implies that w = xy with x ∈ L1

and y ∈ L2 ∩ L3. Consequently, w ∈ L1L2 and w ∈ L1L3.

Equality does not necessarily hold. Let L1 = {a, ab}, L2 = {ba}, and L3 = {a}. Then
L1(L2 ∩ L3) = ∅ 6= {aba} = {aba, abba} ∩ {aa, aba} = L1L2 ∩ L1L3,

b. L∗1 ∩ L∗2 ⊇ (L1 ∩ L2)
∗, because w ∈ (L1 ∩ L2)

∗ implies that w is a concatenation of 0
or more words from L1 ∩ L2. Consequently, w ∈ L∗1 and w ∈ L∗2.
Equality does not necessarily hold. Let L1 = {a} and L2 = {aa}. Then L∗1 ∩ L∗2 =
{a}∗ ∩ {aa}∗ = {aa}∗ 6= {λ} = ∅∗ = (L1 ∩ L2)

∗.

c. L∗1L
∗
2 and (L1L2)

∗ are not necessarily included in one another.

Let L1 = {a} and L2 = {b}. Then L∗1L
∗
2 = {a}∗{b}∗ consisting of words with a number

of a’s followed by some number of b’s and (L1L2)
∗ = {ab}∗ consisting of words with

alternating a’s and b’s. These two languages are incomparable: aab ∈ L∗1L∗2− (L1L2)
∗ and

abab ∈ (L1L2)
∗ − L∗1L∗2.

Opgaven FI2 Deterministische automaten 5

Als extra oefening.

M 2.1. Draw a DFA accepting for each of the following languages, The alphabet is {a, b}.
The language of all strings . . .

a. . . . containing exactly two a’s.

b. . . . containing at least two a’s.

c. . . . that do not end with ab.

d. . . . that begin or end with aa or bb.
(i) . . . that begin with aa or bb. (ii) . . . that end with aa or bb.

e. . . . not containing the substring aa.

f. . . . in which the number of a’s is even.

g. . . . in which both the number of a’s and the number of b’s are even.

h. . . . containing no more than one occurrence of the string aa.
(The string aaa contains two occurrences of aa.)

i. . . . in which every a (if there are any) is followed immediately by bb.

j. . . . containing both bb and aba as substrings.

k. . . . containing both aba and bab as substrings.

Uitwerkingen FI2 6

M 2.1

0(a) 1 2 +

b

a

b

a

b

a

a, b

0(b) 1 2+

b

a

b

a

a, b

(di)

a

b

aa

×

bb

a, b

a, b

a, b

a

b

a

b

a

b

(dii)

a

b

aa

bb

a

b

b

a

a

b

a

ba

b

(d)

a

b

aa

bb

a

b

aa

bb

a, b

a, b

a

b

a

b

a

b

a

b

b

a

a

ba

b

λ(e) a aa

b

a

b

a
a, b λ

(f)

ab

a

a
b

ee(g) oe

ooeo

a

b b

a

a

bb
a

0

(h)

1 2

3 4

×b
a

b

a a

b

b
a

b

a

a, b

0a(j)

1a 2b 3a 3b

0b 0c 1c 2c

3c

a

b

a

b a

b

a

b

a
b

a, ba

b

b

a

a

b
a

b

This dfa can be found ‘manually’, but also by the product construction for the intersection
of the languages for substring bb and aba (a parallel simulation of both automata).

Uitwerkingen FI2 7

a b c 0 1 2 3

a

b

a

b
a, b

b

a

a

b a

b

a, b

Opgaven FI2 Product, Distinguishability 8

M 2.10. De twee automaten M1 en M2 hieronder accepteren respectievelijk de talen L1

en L2.
Construeer dfa voor elk van de volgende talen.

a. L1 ∪ L2 b. L1 ∩ L2 c. L1 − L2

AM1 B C

b

a

a
b

a

b XM2 Y Z

a, ba
b

a
b

M 2.12. For each of the following languages, draw a dfa accepting it.

a. {a, b}∗{a} e. {a} ∪ {b}{a}∗ ∪ {a}{b}∗{a}
b. {bb, ba}∗ f. {a, b}∗{ab, bba}
c. {a, b}∗{b, aa}{a, b}∗ g. {b, bba}∗{a}
d. {bbb, baa}∗{a} h. {aba, aa}∗{ba}∗

M 2.13. For the dfa pictured below, show that there cannot be any dfa with fewer
states accepting the same language.

a
b a

ba

b

a, b

M 2.14. Let z be a fixed string of length n over the alphabet {a, b}.
We can find a dfa with n + 1 states accepting the language of all strings in {a, b}∗ that
end in z. Its states correspond to the n+ 1 distinct prefixes of z.

Show that there can be no dfa with fewer than n+ 1 states accepting this language.

M 2.21. For each of the following languages L ⊆ {a, b}∗, show that the elements of the
infinite set { an | n ≥ 0 } are pairwise L-distinguishable.

a. L = { anba2n | n ≥ 0 }
b. L = { aibjak | k > i+ j }
c. L = { aibj | j = i or j = 2i }
d. L = { aibj | j is a multiple of i }
e. L = { x | na(x) < 2nb(x) }
f. L = { x | no prefix of x has more b′s than a′s }
g. L = {an3 | n ≥ 1 }
h. L = { ww | w ∈ {a, b}∗ }

We conclude that none of these language is accepted by a dfa.

Uitwerkingen FI2 9

M 2.10 Apply the product construction to M1 and M2:

a b

(A,X) (B,X) (A, Y)

(B,X) (B,X) (C, Y)

(A, Y) (B,X) (A,Z)

(C, Y) (B,X) (A,Z)

(A,Z) (B,Z) (A,Z)

(B,Z) (B,Z) (C,Z)

(C,Z) (B,Z) (A,Z)

The desired automata each have (A,X) as initial state. Note that the states (B, Y) and
(C,X) which are not reachable from (A,X) are not mentioned in the table for the product
transition function.

a. For L1 ∪ L2, we have as accepting states {(C, Y), (C,Z), (A,Z), (B,Z)}, that is any
pair of original states in which at least one is accepting.

b. For L1 ∩ L2, we have as accepting states {(C,Z)}, that is any pair of original states
in which both are accepting.

c. For L1 − L2, we have as accepting states {(C, Y)}, that is any pair of original states
in which the first is accepting and the second not.

Drawing the automata is now easy; add the proper accepting states for each application.

AX

M1 ×M2

BX CX

AY BY CY

AZ BZ CZ

a

b
a

b

a

b

a

b

b

a

a

b

a

b

Uitwerkingen FI2 10

M 2.12 In het volgende hoofdstuk leren we om op een systematische manier reguliere
operaties te vertalen naar eindige automaten. Het is me niet altijd duidelijk welke methode
het boek in gedachten heeft.

b. {bb, ba}∗: strings of even length, every odd position is a b (counting the first position
as 1).

(b)

b

a
a, b

a, b

c. Can be written as the union of {a, b}∗{aa}{a, b}∗ (contains substring aa) and
{a, b}∗{b}{a, b}∗ (contains b).

0 1 2
a

b

b

a
a, b

a b
b

a

a, b

Then we can apply the product construction, for union. Obviously, this is not the most
compact automaton. Observe that only two strings are not in the language.

0a 1a 2a

0b 1b 2b

a

b
b

a
a

b
a

b
b

a
a, b 0 1 2a

b

a, b
a, b

e. The union of languages indicates three easily handled cases. For each automaton we
omitted the garbage (or sink) state x. Simulate in parallel.

0 1a
0 1

b
a 0 1 2a

b

a

000(e)

1x1

x1x

xx1
xx2

xxx

a

b

b

a

a

b

b

a

a, b

a, b

g. Verbeterd! Elke a is óf de laatste a van de string, of wordt vooraf gegaan door bb.
Verder moet de laatste letter een a zijn. We tellen dus de b’s om te kijken of de volgende
a aan de eis voldoet. In toestand 3 hebben we een a gezien die ‘aan de regels’ voldoet.
Dat mag de laatste zijn (want volgt dan gewoon op twee losse b’s, maar er mag ook een
a op volgen (en maakt dan deel uit van bba).

Uitwerkingen FI2 11

0(g) 1 2 3

a x

b b

a
a

a, b
a, b

b

a

a

b

h. Ook hier geen idee hoe ik hier een productconstrutie kan toepassen?

0

(h)

12

3 4

g

b
aa

b

a

b

a

b

b

a

a, b

M 2.13 The automaton accepts the language L consisting of all strings from {a, b}∗ that
do not contain aa and end in ab.

The simplest strings corresponding to its four states are λ, a, ab, and aa. If each pair
of these strings are distinguishable, then it follows from Theorem 2.21 that any dfa
recognizing L has at least 4 states. Strings x, y are distinguishable if we find z such that
exactly one of xz and yz belong to L.

First note that an accepting state is distinguishable with any nonaccepting state. In this
case, ab versus λ, a, aa. Choose z = λ: ab ∈ L, while a, b and aa are not in L. In
the table below we choose some z such that every pair of the four strings is shown to be
distinguishable.

x = λ a ab aa
z = λ λ /∈ L a /∈ L ab ∈ L aa /∈ L

ab ab ∈ L aab /∈ L abab ∈ L aaab /∈ L
b b /∈ L ab ∈ L abb /∈ L aab /∈ L

Hence, there is no dfa accepting L with fewer states than the given dfa.

M 2.14 Let z be a word over the alphabet {a, b}. L = {a, b}∗{z} is the language of
all strings that end in z (have suffix z). Any dfa which accepts L has at least |z| + 1
states. The reason is that z has |z| + 1 prefixes (from λ to z itself) which all have to be
distinguished in the automaton. Consider two prefixes x and u of z, with |x| > |u|, and
let z = xy. Then xy = z ∈ L, but uy 6∈ L (t is shorter than z, so cannot end in z). Hence
x and u are distinguishable with respect to L.

No more states are needed, since there is no need to distinguish between a word and the
longest prefix of z which is a suffix of this word. We will formally prove this.

Consider a word x and let v be its longest suffix which is also a prefix of z: thus x = uv
and z = vw for some w. (Note that every word x has such a suffix!)

We will show that x ≡L v, or, for every y ∈ {0, 1}∗ we have xy ∈ L iff vy ∈ L. Or,
equivalently, xy ends in z iff vy ends in z.

Uitwerkingen FI2 12

Choose any y. We consider two cases.

(1) |y| ≥ |z|, as z is shorter than y, we have xy ∈ L iff y ∈ L iff vy ∈ L because it is only
relevant whether y ends with z or not;

(2) case |y| < |z|. Then xy ends in z iff there is v′ such that x = u′v′ with v′y = z. Thus,
v′ is a suffix of x that is also a prefix of z. Recall that v is the longest suffix of x with
this property: thus |v| ≥ |v′| and v′ is a suffix of v. That means z = v′y is a suffix of vy.

(Dit zou twee kanten op moeten gaan, deze implicatie.)

Consequently, x and v are indistinguishable and we know how to define a dfa accepting
L.

As an example we give a dfa accepting {a, b}∗{babb} with 5 states:

q0 corresponding to matching suffix λ; q1 for b; q2 for ba; q3 for bab; and q4 for babb, this
is the final state since its last symbols form z = babb.

q0 q1 q2 q3 q4
b

a

a

b

b

a

b

a

b

a

M 2.21 In each case we consider ai and a` such that i 6= `, and we find string z such that
exactly one of aiz and a`z belongs to L. This shows that each pair of strings in {a}∗ is
L-distinguishable.

a. Let z = ba2i. Then aiz ∈ L, while a`z /∈ L
b. Assume that ` > i. Let z = bai+2.

c. Again assume that ` > i. Let z = bi. Then aibi ∈ L, while a`bi /∈ L, because i < `, so
neither i = ` nor i = 2`.

f. Assume that ` > i. Choose z = b`. Then aib` /∈ L, while a`b` ∈ L.

g. It is easy to choose z = n3 − i for some value n3 ≥ i, so that aiz = an
3 ∈ L, but we

have to argue that a`z /∈ L. (An example where the argument would go wrong is a20 vs.
a57. Choosing z = a7 we have two cubes: 20 + 7 = 27 and 57 + 7 = 64.)

Again assume ` > i. Use the fact that consecutive cubes n3 are at increasing distances.
Choose n such that the distance (n + 1)3 − n3 is larger than `− i. Then ` + n3 − i is in
between n3 and (n+ 1)3.

Opgaven FI2 Niet-determinisme 13

X.1. For each of the following languages, draw a nfa accepting it. Compare with M 2.12.

a. {a, b}∗{a} e. {a} ∪ {b}{a}∗ ∪ {a}{b}∗{a}
b. {bb, ba}∗ f. {a, b}∗{ab, bba}
c. {a, b}∗{b, aa}{a, b}∗ g. {b, bba}∗{a}
d. {bbb, baa}∗{a} h. {aba, aa}∗{ba}∗

3.38. Below we have depicted several nfa. Using the subset construction, for each of
them construct a dfa accepting the same language. Indicate the subsets in the states.

1(a) 2 3

a, b

a b

a, b

1(b) 2 3

a, b

a b

1(c) 2 3 4

a

a, b

b

a

a, b

b

1(d)

2

3

45

a b
a

a
a

a
a

1(e)

2

3

45

a

b

b

a

b

a

a

a

1(f) 2 3

4 5

a a

a

b

b
b

b

1(g)

2

3
4

b
a

b b

b

bb

a

b
a

b

3.44. Suppose M = (Q,Σ, δ, qin , A) is an nfa accepting a language L.

a. Describe how to construct an nfa M1 with no transitions to its initial state so that
M1 also accepts L.

b. Investigate how to construct an nfa M2 with exactly one accepting state and no
transitions from that state, so that M2 also accepts L.

Uitwerkingen FI2 14

X.1.

(b)

b

bb

a

(c)

a, ba, b
b

a a

1(g) 4

23

b

a

b

b

a (h)

a a

a

b

a

b a

b

Laten we (g) eens deterministisch maken. We krijgen de automaat de we eerder al ‘met
de hand’ gemaakt hebben.

{1}(g) {1, 2} {1, 2, 3} {1, 4}

{4} ∅

b b

a
a

a, b
a, b

b

a

a

b

3.38. In de oplossingen stelt bijvoorbeeld 123 natuurlijk de verzameling {1, 2, 3} voor.

1(a) 12 13 123

b

a

a

b

b
a

b

a
1(b) 12 13

b

a

a
b

a

b

1

(d)
2

3

145

125

12

∅

b

a

a b

b

b

a, b a

a

a

b

a

b

Om geklodder te vermijden hebben we hieronder de garbage toestand ∅ een aantal keer
getekend.

Uitwerkingen FI2 15

1(f) 2 34

45∅

35233 ∅∅

ba, b

a

b

a

b a

b

ba

b

ab

a

b

a

a

3.44 a. Let M = (Q,Σ, δ, qin , A) be an nfa.

We add a new initial state q′in 6∈ Q and copy all the outgoing edges from the original qin
to qin : (q′in , σ, q) ∈ δ′ whenever (qin , σ, q) ∈ δ. New q′in will be accepting when qini is
accepting.

All the rest remains unchanged: M ′ = (Q ∪ {q′in},Σ, δ′, q′in , A′).
b. We difficulties when the initial state is also accepting. Then in the new automaton
that must also be the case, as this is the only way to accept the empty string. If the initial
state is the only accepting state, we will always accpet the Kleene star of all accepted
strings.

Otherwise, if the initial state is not accepting, we can mimic the previous construction.
Let M = (Q,Σ, δ, qin , A) be an nfa.

We add a new accepting state qf 6∈ Q and copy all edges incoming to any accepting state
so to also go to qf : (p, σ, qf) ∈ δ′ whenever (p, σ, q) ∈ δ for some q ∈ A.

All the rest remains unchanged: M ′ = (Q ∪ {qf},Σ, δ′, qin , {qf}).

Opgaven FI2 λ-Transities 16

M 3.18. Below the transition diagram for a nfa-λ. For each string below, say whether
the automaton accepts it. a. aba b. abab c. aaabbb

1 2 3 4 5
a λ a, b λ

b

a b a

M 3.22. A transition table is given for a nfa-λ with seven states.

q δ(q, a) δ(q, b) δ(q, λ)
1 ∅ ∅ {2}
2 {3} ∅ {5}
3 ∅ {4} ∅
4 {4} ∅ {1}
5 ∅ {6, 7} ∅
6 {5} ∅ ∅
7 ∅ ∅ {1}

Find:
a. Λ({2, 3} b. Λ({1} c. Λ({3, 4}
d. δ∗(1, ba) e. δ∗(1, ab) f. δ∗(1, ababa)

M 3.37. Draw equivalent nfa (so, without λ-transitions).

1(a)

2 3

4 5
b

λ

a

b

b

a 1(b) 2

3 4

5

a

b

a

aλ

b

λ

1(c)

2

3

4

a

a

a

b

λ
a 1(d)

2 3

4 5 6

λ

λ

a

b

a

λ a

b

1(e) 2 3

4

λ
a

b
b

λ

M 3.40. Draw equivalent dfa.

1(a)

2

3

4

5 6 7

b

λ

λ

a b

b

λ

b

b

a

1(b)

2

3

4

5

6

λ

a b

a
a

b b

b

Uitwerkingen FI2 17

M 3.18 a. We determine δ∗(1, aba). First observe that δ∗(1, λ) = Λ({1}) = {1}; then
δ∗(1, a) = Λ(

⋃
r∈δ∗(1,λ) δ(r, a) = Λ(δ(1, a)) = Λ({2}) = {2, 3}. This means that processing

symbol a from the initial state leads to state 2 or state 3.

We add b: δ∗(1, ab) = Λ(δ(2, b)∪ δ(3, b)) = Λ(∅∪{3, 4}) = {3, 4, 5} and so after ab we are
in either state 3 or state 4 or state 5.
Finally we process another a: δ∗(1, aba) = Λ(δ(3, a)∪δ(4, a)∪δ(5, a)) = Λ({4}∪{4}∪∅) =
Λ({4}) = {4, 5}. Thus after reading aba we are in state 4 or in state 5 and since 5 is an
accepting state, aba is accepted by M .

b. abab is not accepted: from a. we know that δ∗(1, aba) = {4, 5}. Thus δ∗(1, abab) =
Λ(δ(4, b) ∪ δ(5, b)) = Λ({2}) = {2, 3}.
c. aaabbb is accepted by M (check!).

M 3.22 a. Λ({2, 3}) = {2, 3, 5}.
b. Λ({1}) = {1, 2, 5}.
d. To determine δ∗(1, ba) = first observe that δ∗(1,Λ) = Λ({1}) = {1, 2, 5} (see above
item b.). We thus have δ∗(1, b) = Λ(

⋃
p∈δ∗(1,λ) δ(p, b)) = Λ(δ(1, b) ∪ δ(2, b) ∪ δ(5, b)) =

Λ({6, 7}) = {1, 2, 5, 6, 7}. Finally we obtain δ∗(1, ba) = Λ(
⋃
p∈δ∗(1,b) δ(p, a)) = Λ(δ(1, a) ∪

δ(2, a) ∪ δ(5, a) ∪ δ(6, a) ∪ δ(7, a)) = Λ({3, 5}) = {3, 5}.

M 3.37. Merk op dat (a) een voor de hand liggende representatie is van de taal
{bab}∗{ba}∗. Evenzo is (d) een automaat voor {ab}∗ ∪ {a}∗{b}∗{a}.

1(a)

2 3

4 5
b

b

a

b

b

a 1(b) 2

3 4

5

a
b
a

a
a

b

a

1(c)

2

3

4

a

a

a

b

a

a
1(d)

2 3

4 5 6

a

a b
a

a

b

a

b

a

a

b

1(e) 2 3

4

a

b

a

b
b
a

b

Opgaven FI2 Reguliere expressies 18

M 3.1. In each case below, find a string of minimum length in {a, b}∗ not in the language
corresponding to the given regular expression.

a. b∗(ab)∗a∗

b. (a∗ + b∗)(a∗ + b∗)(a∗ + b∗)

c. a∗(baa∗)∗b∗

d. b∗(a+ ba)∗b∗

M 3.3. Let r and s be arbitrary regular expressions over the alphabet Σ.
In each case below, find a simpler equivalent regular expression.

a. r(r∗r + r∗) + r∗

b. (r + Λ)∗

c. (r + s)∗rs(r + s)∗ + s∗r∗

M 3.6. Suppose w and z are strings in {a, b}∗. Find regular expressions corresponding
to each of the languages defined recursively below.

a. λ ∈ L; for every x ∈ L, then wx and xz are elements of L.

b. a ∈ L; for every x ∈ L, wx, xw, and xz are elements of L.

c. λ ∈ L; a ∈ L; for every x ∈ L, wx and zx are in L.

M 3.7. Find a regular expression corresponding to each of the following subsets of {a, b}∗.
The language of all strings . . .

a. . . . containing exactly two a’s.

b. . . . containing at least two a’s.

c. . . . that do not end with ab.

d. . . . that begin or end with aa or bb.

e. . . . not containing the substring aa.

f. . . . in which the number of a’s is even.

g. . . . containing no more than one occurrence of the string aa.
(aaa contains two occurrences of aa.)

h. . . . in which every a is followed immediately by bb.

i. . . . containing both bb and aba as substrings.

j. . . . not containing the substring aaa.

k. . . . not containing the substring bba.

l. . . . containing both bab and aba as substrings.

m. . . . in which the number of a’s is even and the number of b’s is odd.

n. . . . in which both the number of a’s and the number of b’s are odd.

M 3.10. a. If L is the language corresponding to the regular expression (aab+bbaba)∗baba,
find a regular expression corresponding to Lr = { xr | x ∈ L }.
b. Using the example in part (a) as a model, give a recursive definition of the reverse er

of a regular expression e.

c. Show that for every regular expression e, if the language L corresponds to e, then Lr

corresponds to er.

Uitwerkingen FI2 19

M 3.1 a. r = b∗(ab)∗a∗: the word aab is not in the language defined by r, since every a
should be followed by a b or belong to a suffix of a’s. Note that Λ, a, b, and all words of
length 2 are in the language, defined by r. So, aab is of minimal length.

Another example is abb: every b should be preceded by a a unless it is part of a prefix of
b’s.

d. r = b∗(a + ba)∗b∗: the word abba does not belong to the language of r, because that
requires that a b can only be followed by a b if it belongs to a prefix or suffix consisting
of b’s. Verify that all words of length ≤ 3 belong to the language.

M 3.3 a. r(r∗r + r∗) + r∗ = r∗.

b. (r + Λ)∗ = r∗.

c. The expression (r+ s)∗rs(r+ s)∗+ s∗r∗ denotes all words that contain at least once rs
(i.e. the expression (r + s)∗rs(r + s)∗) or do not contain any occurrence of rs at all (i.e.
the expression s∗r∗). This is thus equivalent to (r + s)∗.

M 3.6 a. (w)∗(z)∗.

b. (w)∗a(w + z)∗.

c. (w + z)∗(a+ Λ).

M 3.7 c. Empty string, end in a or end in bb: (a+ b)∗(a+ bb) + Λ.

e. Every a is followed by a b, unless it is the last letter: (b+ ab)∗(Λ + a).

k. Once we have seen bb only b’s can follow: (a+ ba)∗b∗.

l. (a+ b)∗bab(a+ b)∗aba(a+ b)∗ + (a+ b)∗aba(a+ b)∗bab(a+ b)∗ + (a+ b)∗baba(a+ b)∗ +
(a+ b)∗abab(a+ b)∗.

m. (a+ b(aa+ bb)∗(ab+ ba))(aa+ bb+ (ab+ ba)(aa+ bb)∗(ab+ ba))∗

The first part checks a minimum string with an odd number of b’s and even number of
a’s. After that the strings can be extended as much as we want with a string of even
number of a’s and b’s .

n. (aa+bb+(ab+ba)(aa+bb)∗(ab+ba))∗(ab+ba)(aa+bb+(ab+ba)(aa+bb)∗(ab+ba))∗.

The central part denotes the string with one a and one b. And then we add left and right
an even number of a’s and b’s.

M 3.10 The reverse function rev assigns to each string its reversal (mirror image).

Formally, given an alphabet Σ, we define rev: Σ∗ → Σ∗ recursively by:

rev(λ) = λ (no change)

rev(xa) = a rev(x) for x ∈ Σ∗, a ∈ Σ (last letter first, reverse the rest)

Now rev(x) may be abbreviated as xr.

For a language L we use Lr to denote the language consisting of the reversals of the words
from L, thus Lr = { xr | x ∈ L }.
a. Consider the regular expression e = (aab + bbaba)∗baba defining the regular language
‖e‖. Then the language ‖e‖r can be defined by the regular expression er = abab(baa +
ababb)∗; thus ‖er‖ = ‖e‖r.
b. In general we have the recursively defined function rrev which “reverses” regular
expressions (in the sense that it yields a regular expression with a reversed semantics):

Uitwerkingen FI2 20

rrev(∅) = ∅; rrev(Λ) = Λ; rrev(a) = a for all a ∈ Σ.

and for the composite elements:

if e1 and e2 are regular expressions, then

– rrev(e1 + e2) = rrev(e1) + rrev(e2);
– rrev(e1e2) = rrev(e2) rrev(e1); and
– rrev(e∗1) = rrev(e1))

∗.

Now we have to prove that this rrev has the property ‖ rrev(e)‖ = ‖e‖r.
This is proved by induction on the structure of e.

Basis first.

– e = ∅: then ‖ rrev(∅)‖ = ‖∅‖ = ∅ = ‖∅‖r;
– e = Λ: then ‖ rrev(Λ)‖ = ‖Λ‖ = {λ} = ‖Λ‖r;
– e = a: then ‖ rrev(a)‖ = ‖a| = {a} = ‖a‖r.
Induction step, assuming that ‖ rrev(e1)‖ = ‖e1‖r and ‖ rrev(e2)‖ = ‖e2‖r:
– e = e1 + e2: then
‖ rrev(e1 + e2)‖ = ‖ rrev(e1) + rrev(e2)‖ = ‖ rrev(e1)‖ ∪ ‖ rrev(e2)‖ =
(induction) ‖(e1)‖r ∪ ‖(e2)‖r = (‖e1‖ ∪ ‖e2‖)r = ‖e1 + e2‖r;
– e = e1e2: then
‖ rrev(e1e2)‖ = | rrev(e2) rrev(e1)‖ = ‖ rrev(e2)‖ · ‖ rrev(e1)‖ =
(induction) ‖(e2)‖r‖(e1)‖r = (‖(e1)‖ · ‖(e2)‖)r = ‖e1e2‖r;
– e = e∗1: then
‖ rrev(e∗1)‖ = ‖(rrev(e1))

∗‖ = ‖ rrev(e1)‖∗ =
(induction) (‖e1‖r)∗ = (‖e1‖∗)r = ‖e∗1‖r.
c. It follows from b. that the language Lr is regular whenever the language L is regular:
we have seen that L = ‖e‖ implies that Lr = ‖ rrev(e)‖ and that rrev(e) is a regular
expression follows immediately from the definition of rrev as given above.

Opgaven FI2 Automaten en expressies 21

M 3.49. Below two dfa M1 and M2 accepting languages L1 and L2, respectively respec-
tively. Draw nfa-λ accepting each of the following languages, using the constructions for
the regular operations.

a. L∗2 ∪ L1 b. L2L
∗
1 c. L1L2 ∪ (L2L1)

∗

1(a) 2

34

a

b b

a

a

bb
a P(b) Q R

b

a
b

a

b

a

M 3.51. Bepaal een reguliere expressie voor elk van de onderstaande dfa, met behulp
van een geschikt algoritme.

1(a) 2

3

a

b a

b

a b 1(b) 2 3
a, b b

a

a

b

1(c) 2

34

a, b

a, b

a, b

a b

1(d) 2

3 4

a

b

a

b

a

b

a

a

Uitwerkingen FI2 22

3.51a See Figure 3.40 (a). We use the algebraic method of Brzozowski to derive for the
depicted automata a corresponding regular expression.

First we write the automaton (a) as a system of 3 equations in three variables:

x1 = ax3 + bx2
x2 = ax1 + bx3
x3 = ax2 + bx1 + Λ

By substituting x3 in the first two equations we obtain the system

x1 = a(ax2 + bx1 + Λ) + bx2 = abx1 + (aa+ b)x2 + a
x2 = ax1 + b(ax2 + bx1 + Λ) = bax2 + ((a+ bb)x1 + b)

Using the Arden’s lemma, we obtain that x2 = (ba)∗((a + bb)x1 + b). If we substitute x2
in the first equations we have

x1 = abx1 + (aa+ b)(ba)∗((a+ bb)x1 + b) + a
= (ab+ (aa+ b)(ba)∗(a+ bb))x1 + ((aa+ b)(ba)∗b+ a)

Using again Arden’s lemma, we obtain that x1 = ((ab + (aa + b)(ba)∗(a + bb)))∗((aa +
b)(ba)∗b+ a). This is a regular expression denoting the same language of the automaton
in Figure 3.40 (a).

3.51 c We use the state removal method of Brzozowski and McCluskey to derive for the
depicted automata a corresponding regular expression.

First we add a new initial state q0 without incoming transitions and a new (the only)
final state qf without outgoing transitions in such a way that the resulting NFA accepts
the same language (see exercise 3.44). At the same time we combine with + the labels of
parallel edges into a single regular expression.

1 2

34

a, b

a, b

a, b

a b

q0 1 2

34

qf

Λ a+ b

a+ b

a+ b

a b
Λ

Λ

Now we remove state 4. Before deleting 4, we consider the transitions from 3 to 4 and
from 4 to 1 and 2. This leads to the introduction of an arc labeled with (a + b)a from 3
to 1 and an arc labeled with (a+ b)b from 3 to 2.

q0 1 2

3

qf

Λ a+ b

a+ b(a+ b)b

(a+ b)a

Λ

Λ

Then state 1 is removed. This leads to the introduction of an arc labeled with Λ(a + b)
from q0 to 2 and an arc labeled with (a+ b)a(a+ b) from 3 to 2. The latter is combined
using + with the label (a+ b)b of the already existing arc from 3 to 2.

Uitwerkingen FI2 23

q0 2

3

qf

Λ(a+ b)

a+ b(a+ b)b+ (a+ b)a(a+ b)

Λ

Λ

Then state 3 is removed. This leads to the introduction of an arc labeled with (a + b)Λ
from 2 to qf which is combined with the existing parallel arc labeled with Λ. Also an arc
from 2 to 2 is added which is labeled with (a+b)((a+b)b+(a+b)a(a+b)), a combination
of the label of the arc from 2 to 3 and that of the arc from 3 to 2.

q0 2

qf

Λ(a+ b)

(a+ b)((a+ b)b+ (a+ b)a(a+ b))

Λ + (a+ b)Λ

Finally, we remove state 2 and find a regular expression for L(M).

q0 qf

Λ(a+ b)((a+ b)((a+ b)b+ (a+ b)a(a+ b)))∗(Λ + (a+ b)Λ)

In set notation we have L(M) = {a, b}({a, b}({a, b}{b} ∪ {a, b}{a}{a, b}))∗{Λ, a, b}.

Opgaven FI2 Pumping, etc. 24

M 2.22. Gebruik voor elk van de talen uit opgave M 2.21 (bladzijde 8) het pomplemma
om te laten zien dat de taal niet door een dfa geaccepteerd kan worden.

M 2.57. Each case below defines a language over {a, b}. Determine whether these
languages can be accepted by a dfa, and prove that your answer is correct. The set of
all strings . . .

a. . . .x beginning with a nonnull[=non-empty] string of the form ww.

b. . . .x containing some nonnull substring of the form ww.

c. . . .x having some nonnull substring of the form www. (use the following fact: there
are arbitrarily long strings in {a, b}∗ that do not contain any nonnull substring of the
form www.)

d. . . . of odd-length with middle symbol a.

e. . . . of even-length, and of length at least 2 with the two middle symbols equal.

f. . . . of the form xyx for some x with |x| ≥ 1.

g. The set of non-palindromes.

h. . . . in which the number of a’s is a perfect square.

i. . . . having the property that in every prefix, the number of a’s and the number of b’s
differ by no more than 2.

j. . . . having the property that in some prefix, the number of a’s is 3 more than the
number of b’s.

k. . . . in which the number of a’s and the number of b’s are both divisible by 5.

l. . . .x for which there is an integer k > 1 (possibly depending on x) such that the number
of a’s in x and the number of b’s in x are both divisible by k.

Assuming that L can be accepted by a DFA,

m. max(L) = {x ∈ L | there is no nonnull string y so that xy ∈ L}.
n. min(L) = {x ∈ L | no prefix of x other than x itself is in L}.

Uitwerkingen FI2 25

2.57 You are asked for a number of languages over the alphabet {a, b} to determine
whether they can be accepted by a dfa or not. You can go after the number of equivalence
classes, or use the pumping lemma for a negative answer. To show the language is
regular you can build a dfa or use closure properties (like Boolean operations) on known
languages.

a. No. Let L = {x ∈ {a, b}∗ | ∃w, y ∈ {a, b}∗.w 6= Λ ∧ x = wwy}, and take two
words v = abn and v′ = abm for n,m > 0 and n 6= m. For z = abn we have that
vz = abnabn ∈ L whereas v′z = abmabn 6∈ L. It follows that all words abn for n > 0
are pairwise distinguishable, and therefore there can be no FA recognizing L, as it would
need infinitely many states by Theorem 2.26.

b. Yes. Let L = {x ∈ {a, b}∗ | ∃y, w, z : w 6= Λ ∧ x = ywwz}.
Claim: x ∈ L if and only if x contains aa, bb, abab or baba as a subword.

Proof of the claim: if aa, bb, abab of baba a subword is of x, then is x by definition in L.

Conversely, assume that x ∈ L. Then |x| ≥ 2. Let aa and bb be not subwords of x. Then
in x it holds that every a that is not the last symbol of x, is followed by a b, en that every
b that is not the last symbol of x, is followed by an a. Let now y, w, z ∈ {a, b}∗ with
w 6= Λ such that x = ywwz. Then we know that w 6= 0 and w 6= 1; thus either w = abu
or w = bau. If u = Λ, then we are done. Otherwise |u| ≥ 2, and w = ababv or w = babav,
respectively, en we are ready also in this case.

The only case that remains to check is when |u| = 1. If w = abu, than must be u = a
and x = ywwz = yabaabaz, contradicting our assumption that x does not contain aa as
subword. Analogously, if w = bau, then must be u = b and is x = ywwz = ybabbabz,
contradicting our assumption that x does not contain bb as subword.

Summarizing, if x ∈ L, then x contains at least one of the words aa, bb, abab and baba as
subword.

Now it is easy to draw a FA that recognizes L:

a

b

b

a

a

b
a, b

a

b

b

a
a, b

a, b

h. No. We already have seen that { a2n | n ≥ 0 } cannot be accepted by a dfa, as an
application of the pumping lemma.

Now assume Lh = { x ∈ {a, b}∗ | na(x) is a perfect square } is accepted by a dfa. Then
also Lh ∩ {a}∗ is accepted by a dfa. This contradicts the above.

i. Yes. Keep the difference in a state. As the difference is bounded for each prefix this
can be recorded in a finite number of states.

Opgaven FI2 Equivalences, minimization 26

M 2.33. Let x be a string of length n in {a, b}∗, and let L = {x}. How many equivalence
classes does ≡L have? Describe them.

M 2.36. For a certain language L ⊆ {a, b}∗, ≡L has exactly four equivalence classes.
They are [λ], [a], [ab], and [b]. It is also true that the three strings a, aa, and abb are all
equivalent, and that the two strings b and aba are equivalent. Finally, ab ∈ L, but λ and
a are not in L, and b is not even a prefix of any element of L. Draw a dfa accepting L.

M 2.55. For each of the dfas pictured below, use the minimization algorithm to find a
minimum-state dfa recognizing the same language. (It’s possible that the given dfa may
already be minimal.)

1(a)

2

3 4

5

b

a

ba

a

b

a

b

a

b
1(b) 2

3

4 5 6

b
a

a

b

a b
b

a

b

a a

b

1(c)

2

3

4 5

6 7

b

a

b
a

ba

a

b

a b
a

ba

b

λ(d)

a

b

aa

ab

ba

bb

a

b

a

b

a

b

a

b

a

b

b

a

b

a

1(e)

2

3

4

5

6

7

a

b

a

b

a

b

b

a b

a
a

b

a

b λ(f)

a

b

aa

ab

ba

bb

a

b

a

b

a

b

a

b

a

b

b

a

b

a

Opgaven FI2 Equivalences, minimization 27

1(g)

2

3

4

5

6

7

89

a

b

a

b

a

b

a

b a

b
a

b

a

b

a

b

a

b

Uitwerkingen FI2 28

2.33 L = {x} with x a word over {a, b}. Then ≡L has |x|+ 2 equivalence classes: one for
each prefix of x and one containing all the words that are not a prefix of x.

For any language L, the strings that are not prefix of a string in L (if such strings exist)
form a equivalence class.

2.36

L ⊆ {a, b}∗ is a language for which we are asked to give a finite automaton. We apply
the construction used to prove Theorem 5.1.

≡L has 4 equivalence classes [λ], [a], [ab], and [b] which we will use as states. [λ] will be
the initial state. Moreover, since ab ∈ L and λ, a, b 6∈ L, we designate [ab] as the only
final state of the automaton.

The transition function δ is defined as follows.

δ([λ], a) = [a] and δ([λ], b) = [b];

δ([a], b) = [ab] and since a ≡L aa, we set δ([a], a) = [aa] = [a];

similarly, δ([ab], a) = [aba] = [b] and δ([ab], b) = [abb] = [a].

What remains are the transitions from [b]. We know that b is not a prefix of any word
in L. Hence (see Exercise 2.33), [b] is the equivalence class consisting of all words which
can never be extended to a word in L. In the automaton this equivalence class is a sink:
δ([b], a) = [ba] = [b] and δ([b], b) = [bb] = [b].

[λ] [a] [ab]

[b]

a
a

b

a

b

a

a, b

2.55 a. We construct S = {(p, q) ⊆ Q × Q | p 6≡ q} recursively, following Algorithm
2.40. In the first pass we note that 5 is an accepting state and the other states are not.
Thus we mark (with 1) in the Q×Q table, the entries (5, 1), (5, 2), (5, 3), and (5, 4). (For
symmetry reasons it is sufficient to fill in only the lower triangle. At the diagonal, we
have the identities (p, p) which are never in S).

In the second pass (given as 2), we find:

(1, 2) ∈ S, because δ(1, b) = 3 and δ(2, b) = 5, and (3, 5) ∈ S;

(2, 3) ∈ S, because δ(2, b) = 5 and δ(3, b) = 3, and (5, 3) ∈ S;

(1, 4) ∈ S, because δ(1, b) = 3 and δ(4, b) = 5, and (3, 5) ∈ S;

(3, 4) ∈ S, because δ(3, b) = 3 and δ(4, b) = 5, and (3, 5) ∈ S;

and no more.

In the third pass, we find no new pairs.

Uitwerkingen FI2 29

1 2 3 4 5

1 =

2 2 =

3 2 =

4 2 2 =

5 1 1 1 1 =

Consequently, we have the following equivalence classes: {1, 3}, {2, 4} and {5}, which
gives a minimal FA with three states q0 = {1, 3}, the initial state; q1 = {2, 4}; and
q3 = {5}, the only final state. Its transition function is given in the next table:

a b

q0 = {1, 3} q1 q0
q1 = {2, 4} q0 q3
q3 = {5} q1 q3

Draw this dfa.

b. The given dfa is already minimal.

Opgaven FI2 Context-Free Languages 30

M 4.1. In each case below, say what language (a subset of {a, b}∗) is generated by the
context-free grammar with the indicated productions.

a. S → aS | bS | λ

b. S → SS | bS | a

c. S → SaS | b

d. S → SaS | b | λ

e. S → TT T → at | Ta | b

f. S → aSa | bSb | aAb | bAa A→ aAa | bAb | a | b | λ

g. S → aT | bT | λ T → aS | bs

h. S → aT | bT T → aS | bs | λ

4.3. In each case below, find a cfg generating the given language. The set of strings in
{a, b}∗ . . .

a. . . . odd-length, with middle symbol a.

b. . . . even-length, with the two middle symbols equal.

c. . . . odd-length, whose first, middle, and last symbols are all the same.

4.26. In each part, draw an nfa accepting the language generated by the cfg having
the given productions.

a. S → aA | bC A→ aS | bB B → aC | bA C → aB | bS | λ

b. S → bS | aA | λ A→ aA | bB B → bS | λ

4.27. Find a right-linear grammar generating the language L(M), where M is the dfa
shown below.

A B C

D

a

b

a
b

b

a

a, b

4.29. Each of the following grammars, though not regular, generates a regular language.
In each case, find a regular grammar generating the language.

a. S → SSS | a | ab

b. S → AabB A→ aA | bA | λ B → Bab | Bb | ab | b

Opgaven FI2 Context-Free Languages 31

c. S → AAS | ab | aab A→ ab | ba | λ

d. S → AB A→ aAa | bAb | a | b B → aB | bB | λ

e. S → AA | B A→ AAA | Ab | bA | a B → bB | λ

4.34. Show that the cfg with productions

S → a | Sa | bSS | SSb | SbS
is ambiguous.

4.36. For each part of Exercise 4.1, decide whether the grammar is ambiguous or not,
and prove your answer.

4.38. In each case below, show that the grammar is ambiguous, and find an equivalent
unambiguous grammar.

a. S → SS | a | b

b. S → ABA A→ aA | λ B → bB | λ

c. S → aSb | aaSb | λ

d. S → aSb | abS | λ

4.48. Show that the nullable variables defined by Definition 4.7 are precisely those vari-
ables A for which A⇒∗ λ. TODO

4.49. In each case below, find a context-free grammar with no λ-productions that gener-
ates the same language, except possibly for λ, as the given cfg.

a. S → AB | λ A→ aASb | a B → bS

b. S → AB | ABC
A→ BA | BC | λ | a
B → AC | CB | λ | b
C → BC | AB | A | c

Uitwerkingen FI2 32

4.1 a. L(G) = a, b∗.
b. L(G) = {a, b}∗{a}.
c. L(G) = {ba}∗{b}.
d. L(G) = {x ∈ {a, b}∗ | bb does not occur in x}.
e. L(G) = {a}∗{b}{a}∗{b}{a}∗, i.e. the language of all words with exactly two occur-
rences of b.
f. L(G) = {xaybxr, xbyaxr | x, y ∈ {a, b}∗ ∧ y = yr}, i.e. the language of all words which
are palindromes over {a, b} with exactly one single “mistake”.
g. L(G) = {x ∈ {a, b}∗ | |x| is even }.
h. L(G) = {x ∈ {a, b}∗ | |x| is odd }.

4.3 Find a context-free grammar generating the given language.
a. For L = {xay | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with productions
S → aSa | aSb | bSa | bSb | a
b. For L = {xaay, xbby | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with
S → aSa | aSb | bSa | bSb | aa | bb
c. For L = {axaya, bxbyb | x, y ∈ {a, b}∗ ∧ |x| = |y|} the CFG with
S → aAa | bBb, A→ aAa | aAb | bAa | bAb | a, B → aBa | aBb | bBa | bBb | b

4.26 Describe the language generated by the given grammars.
a. S → aA | bC | λ, A→ aS | bB, B → aC | bA | λ, C → aB | bS
This is a regular grammar. Using the construction given in the proof of Theorem 4.14,
we obtain the following NFA accepting L(G).

S A

BC

a

b b

a

a

bb
a

Now it is not difficult to see that L(G) = {x ∈ {a, b}∗ | |x| is odd }.
S corresponds to “even number of a’s and even number of b’s”
A corresponds to “odd number of a’s and even number of b’s”
B corresponds to “odd number of a’s and odd number of b’s”
C corresponds to “even number of a’s and odd number of b’s”.
b. S → bS | aA | Λ, A→ aA | bB | b, B → bS
This is a regular grammar. Using the construction given in the proof of Theorem 4.14,
we obtain the following NFA accepting L(G).

S A B

b

a

a

b

b

From this automaton we can read the regular expression (b + aa∗bb)∗(Λ + aa∗b) which
describes L(G).

Uitwerkingen FI2 33

4.27 See the FA M in Figure 4.33. The regular grammar G with L(G) = L(M) con-
structed from M as in Theorem 4.4 has the productions:
A→ aB | bD | λ, B → aB | bC, C → aB | bC, D → aD | bD.
This grammar has A as its starting symbol. Note that the state D is a ’sink’ state and
that,consequently, the productions relating to D can be safely omitted from the grammar
without affecting the successful derivations (and hence the generated language). This
yields:
A→ aB | λ, B → aB | bC, C → aB | bC.

4.29 Each of the given grammars, though not regular, generates a regular language. Find
for each a regular grammar (a CFG with only productions of the form X → aY and
X → a) generating its language.

a. S → SSS | a | ab
The only non-terminating production for S is S → SSS, which means that the number
of occurrences of S in the current string increases with 2 each time this production is
used. Terminating productions can be postponed until no production S → SSS will be
applied anymore. Since we begin with one S, this means that just before termination we
will have an odd number of S’s. Termination of S yields for every occurrence of S either
a or ab. Hence L(G) consists of an odd number of concatenated a or ab strings:

L(G) = ({a, ab}{a, ab})∗{a, ab} which is indeed a regular language, and can be accepted
by the following nfa:

Z

V

U

W

a
a

a
a

b

b

A right-linear grammar for this language would be (starting symbol Z):

Z → aU | aV , V → bU , U → aZ | aW | λ, W → bZ

b. S → AabB, A→ aA | bA | λ, B → Bab | Bb | ab | b
It is easy to see that from A the language {a, b}∗ is generated.

From B we obtain the language {ab, b}{ab, b}∗ = {ab, b}∗{ab, b}.
Consequently L(G) = {a, b}∗{ab}{ab, b}∗{ab, b}, a regular language.

A right-linear grammar for this language would be (with starting symbol Z):

Z → aZ | bZ | aU , U → bV , V → aW | bV | bX, W → bV | bX, X → λ.

c. S → AAS | ab | aab, A→ ab | ba | λ
As long as no terminating productions have been used every string derived from S consists
of an even number of A’s followed by an S. Upon termination the S will be rewritten into
ab or aab, while each A yields ab or ba or λ. An even number of concatenated A’s yields a
string consisting of an arbitrary number of concatenated occurrences of ab and ba. Note
that this number is not necessarily even, since any A may also be rewritten into λ.

Consequently, L(G) = {ab, ba}∗{ab, aab}, a regular language.

A right-linear grammar for this language would be (with starting symbol Z):

Z → aY | bX, X → aZ, Y → bZ | bU | aW , W → bU , U → λ.

Uitwerkingen FI2 34

d. S → AB, A→ aAa | bAb | a | b, B → aB | bB | Λ
From A we generate the language consisting of all odd-length palindromes over {a, b},
which is not a regular language! However B generates {a, b}∗.
Thus L(G) consists of words formed by an odd-length palindrome followed by an arbitrary
word over {a, b}. Now note that every non-empty word over {a, b} can be seen as an a or
b (both odd-length palindromes) followed by an arbitrary word over {a, b}. Consequently,
L(G) = {a, b}+, a regular language after all!

A right-linear grammar for this (easy) language would be:
Z → aZ | bZ | aU | bU U → λ.

e. S → AA | B, A→ AAA | Ab | bA | a, B → bB | b
Clearly, every occurrence of B generates {b}+. Because of S → B, this implies that
{b}+ ⊆ L(G).

The other production for S is S → AA. Due to A → AAA we can generate any even
(non-zero) number of A’s Each A can surround itself with any number of b’s before either
terminating as a. Hence after S ⇒ AA we can produce any word over {a, b} with an even
(non-zero) number of a’s. Remember that we can also generate {b}+, the (non empty)
strings with zero a’s. This implies that L(G) = ({b}∗{a}{b}∗{a}{b}∗)∗ \ {λ}.
A right-linear grammar for this language would be (starting symbol Z):

Z → aX | bY , X → bX | aY , Y → bY | aX | λ.

4.34 Consider the CFG with productions: S → a |Sa | bSS |SSb |SbS. This grammar is
ambiguous, the word abaa has two different leftmost derivations:
S ⇒ SbS ⇒ abS ⇒ abSa⇒ abaa and S ⇒ Sa⇒ SbSa⇒ abSa⇒ abaa.

4.36 We look at the grammars given in Exercise 4.1. For each of them we have to decide
if the grammar is ambiguous or not.

Grammars a. and h. are both not ambiguous, as it can be proved in a similar manner as
for grammar g.

b. The grammar is ambiguous. This follows from the two different leftmost derivations
for aaa:

S ⇒ SS ⇒ SSS ⇒3 aaa

and
S ⇒ SS ⇒ aS ⇒ aSS ⇒2 aaa .

c. and d. The grammars are ambiguous. This follows from the two different leftmost
derivations for the word babab:

S ⇒ SaS ⇒ SaSaS ⇒3 babab

and
S ⇒ SaS ⇒ baS ⇒ baSaS ⇒2 babab .

e. This grammar is ambiguous. We have the following two leftmost derivations for abab:

S ⇒ TT ⇒ aTT ⇒ aTaT ⇒ abaT ⇒ abab

and
S ⇒ TT ⇒ TaT ⇒ aTaT ⇒2 abab .

Uitwerkingen FI2 35

f. First of all note that since all productions have at most one non-terminal at the right
hand side, every derivations is a leftmost one.

Next we prove by induction on the length of x ∈ Σ∗ that if S ⇒∗ x then this is the only
derivation of x from S, and that if A⇒∗ x then this is the only derivation of x from A.

(Induction base) n = 0 then x = λ. λ is not derivable from S because every production of
S introduce a terminal. But A⇒∗ λ, because A⇒ Λ. Clearly this is the only derivation
of λ from A, because all other productions introduce terminals.
(Induction step) Assume the above statement holds for all strings of length strictly smaller
than x ∈ Σ∗ such that S ⇒∗ x or A⇒∗ x.

Assume S ⇒∗ x. If x = aya then the first step in the derivation of x from S must be
S ⇒ aSa. Thus S ⇒∗ y. But y is strictly smaller than x, and, by induction hypothesis,
the derivation S ⇒∗ y is unique. Thus also that of x from S is unique. The case when
x = byb is similar. If x = ayb then the first step in the derivation of x from S must be
S ⇒ aAb. Thus A⇒∗ y, and by induction hypothesis it follows that the latter derivation
is unique. And thus so also that of x from S is unique. The case when x = bya is similar.

If A ⇒∗ x we have four cases. The case x = aya and byb can be treated as above. If
x = a or x = b then A⇒ x is immediately the unique derivation for x from A. The case
x = λ is not necessary because is treated in the base of the induction.

g. The proof is similar to f. First we note that since all productions have at most one
non-terminal at the right hand side every derivations is a leftmost one. Next we prove
by induction on the length of x ∈ Σ∗ that if S ⇒∗ x then this is the only derivation of x
from S, and that if T ⇒∗ x then this is the only derivation of x from T .

(Induction base) n = 0 then x = λ. We have that S ⇒∗ λ, because S ⇒ λ. This is the
only derivation of λ from S, because all other productions introduce terminals. Further,
λ is not derivable from T , because every production of T introduce a terminal.

(Induction step) Assume the above statement holds for all strings of length strictly smaller
than x ∈ Σ∗, with S ⇒∗ x or T ⇒∗ x.

Assume S ⇒∗ x. If x = ay then the first step in the derivation of x from S must be
S ⇒ aT . Thus T ⇒∗ y. But y is strictly smaller than x, and, by induction hypothesis,
the derivation T ⇒∗ y is unique. Thus also that of x from S is unique. The case when
x = by is similar.

Assume T ⇒∗ x If x = ay then the first step in the derivation of x from T must be
T ⇒ aS. Thus S ⇒∗ y. But y is strictly smaller than x, and, by induction hypothesis,
the derivation S ⇒∗ y is unique. Thus also that of x from T is unique. The case when
x = by is similar.

4.38 We have to show that a given grammar is ambiguous and we have to give a non-
ambiguous grammar generating the same language.

a. S → SS | a | b
According to this grammar the string aba has two different leftmost derivations: S ⇒
SS

`⇒ aS ⇒ aSS ⇒ abS ⇒ aba and

S ⇒ SS ⇒ SSS ⇒ aSS ⇒ abS ⇒ aba.

The two derivation trees are as follows:

Uitwerkingen FI2 36

S

S S

a S S

a a

S

S S

aS S

a a

With the exception of the empty string λ, all strings over {a, b} can be generated, that is
de regular language {a, b}+.

An equivalent regular grammar is then : S → aX | bX X → aX | bX | λ .

This grammar is not ambiguous because it is a regular grammar stemming from a deter-
ministic finite automaton.

b. S → ABA A→ aA | λ B →| bB | λ
According to this grammar , the word a has two different leftmost derivations : S ⇒
ABA⇒ aABA⇒3 a and
S ⇒ ABA⇒ BA⇒ A⇒ aA⇒ a.
The corresponding derivation trees look like this:

S

A

a A

λ

B

λ

A

λ

S

A

a A

λ

B

λ

A

λ

The grammar generates words of 0 or more a’s followed by 0 or more b’s followed by 0
or more a’ s, ie the language denoted by the regular expression a∗b∗a∗. An equivalent
regular grammar is:

S → aS | bX | λ X → bX | aY | λ Y → aY | λ .
This grammar is not ambiguous, because its underlying finite automaton is clearly deter-
ministic. For example, the word a has the unique derivation S ⇒ aS ⇒ λ.

d. S → aSb | aaSb | λa .

According to this grammar , the word aaab has two different leftmost derivations : S ⇒
aSb⇒ aaaSb⇒ aaab and

S ⇒ aaSb⇒ aaaSb⇒ aaab .

The grammar generates the words consisting of a number of a’s followed by some b’s
where the number of a’s is at least as large as the number of b ’s but more than twice as
large. i.e. the language {aibj | j ≥ i ≥ 2j}.
The ambiguity of the given grammar is caused by the extra a’s that can be added at any
time. The following grammar generates the same language, but first generates one a for
each b and if two a ’s per b are generated, then it proceed so until the derivation stops.
Thus, we have an additional non-terminal in order to be able to separate two processes:

S → aSb | λ | aaAb A→ aaAb | λ .

This grammar in not ambiguous, because the only derivation of each string of the form
aj+kbj, where 0 ≤ k ≤ j, is

Uitwerkingen FI2 37

S ⇒j ajSbj ⇒ ajbj if k = 0 and

S ⇒j−k aj−kSbj−k ⇒ aj−kaaAbbj−k ⇒k−1 aj−k+2a2(k−1)Abk−1bj−k+1 ⇒ aj+kbj if k ≥ 1.

4.48 Let G = (V,Σ, S, P) be a cfg. According to Definition 6.6, a variable is nullable if
and only if it has a production with righthand-side λ or a production with righthand-side
consisting of nullable variables only.

We have to prove that for all A ∈ V it holds that A is nullable if and only if A ⇒∗ λ in
G.

Let A ∈ V . First assume that A is nullable. We use (structural) induction. If A is nullable,
because of the production A → λ, then we have immediately that A ⇒ λ. Otherwise
there is a production A→ B1B2 . . . Bn with n ≥ 1 and the Bi nullable variables. By the
induction hypothesis we have Bi ⇒∗ λ for all 1 ≤ i ≤ n. Thus A ⇒ B1B2 . . . Bn ⇒∗
B2 . . . Bn ⇒∗ Bn ⇒∗ λ as desired.

Next assume that A ⇒m λ in G for some m ≥ 1 (the case m = 0 does not occur). We
prove by induction on m that A is nullable. If m = 1, then A ⇒ λ. This implies that
A → λ is a production of G and so A is nullable. Next assume (induction hypothesis)
that whenever B ⇒k λ for some k ≤ m, then B is nullable. Then consider the case
A⇒m+1 λ. This implies that the first production used in this derivation has been of the
form A → B1 . . . Bn for some n ≥ 1. Thus A ⇒ B1 . . . Bn ⇒m λ. Consequently, for each
1 ≤ i ≤ n, we have Bi ⇒ki λ where 1 ≤ ki ≤ m. By the induction hypothesis each Bi is
nullable and so also A is nullable.

4.49 Find a CFG without λ-productions that generates the same language (except for λ)
as the given CFG. We apply Algorithm 6.1.

a. CFG G is given as S → AB | λ, A→ aASb | a, B → bS.

The nullable variables are N0 = {S} = N1.

Modify the productions: S → AB | λ, A→ aASb | aAb | a, B → bS | b.
Finally, remove the λ-productions to obtain G′ with

S → AB, A→ aASb | aAb | a, B → bS | b.
Note that S is nullable. Thus (see exercise 6.33) S ⇒∗ Λ which implies that Λ ∈ L(G).
Hence, in this case L(G)− L(G′) = {λ}.
b. CFG G is given as
S → AB | ABC, A→ BA | BC | λ | a,
B → AC | CB | λ | b, C → BC | AB | A | c.
The nullable variables are obtained as N3 = N2 = {S,A,B,C} from
N0 = {A,B}, N1 = N0 ∪ {C}, N2 = N1 ∪ {S}.
Modify the productions (duplicates not included):
S → AB | A | B | λ | ABC | BC | AC | C, A→ BA | B | A | BC | C | λ | a,
B → AC | A | C | CB | B | λ | b, C → BC | B | C | λ | AB | A | c.
Finally, remove the Λ productions and X → X productions to obtain G′

S → AB | A | B | ABC | BC | AC | C, A→ BA | B | BC | C | a,
B → AC | A | C | CB | b, C → BC | B | AB |, A | c.
Note that S is nullable and so λ ∈ L(G). Hence, also in this case L(G)− L(G′) = {λ}.

Opgaven FI2 Pushdown automata 38

0 1 2
a, b, λ

a; +A
b; +B

a;A/λ
b;B/λ

λ;Z/Z

Figure 1: Automaton for Pal (5.4) (5.5)

5.1.

a. For the pda with language AnBn below, trace the sequence of moves made for the
input strings ab, aab, and abb. Initial stack symbol Z.

q0 q1 q2 q3
a;Z/AZ b;A/λ

a;A/AA b;A/λ

λ;Z/Z

b. For the pda with language SimplePal below, trace the sequence of moves made for the
input strings bacab and baca. Initial stack symbol Z.

0 1 2
c

a; +A
b; +B

a;A/λ
b;B/λ

λ;Z/Z

5.3. For an input string x ∈ {a, b}∗ with |x| = n, how many possible complete sequences
of moves (i.e., start in the initial configuration (qin , x, Zin) and terminate in a configuration
from which no move is possible) can the pda for Pal in Figure 1 make? It is helpful to
remember that once the pda reaches the state 1, there is no choice of moves.

5.4. Consider again the pda for Pal, given in Figure 1. For each of the following languages
over {a, b}, modify it to obtain a pda accepting the language.

a. The language of even-length palindromes.

b. The language of odd-length palindromes.

5.6. In both cases below, a transition table is given for a pda with initial state q0 and
accepting state q2. Describe in each case the language that is accepted.

a. 1. (q0, a, Z) 7→ (q1, aZ)
2. (q0, b, Z) 7→ (q1, BZ)
3. (q1, a, A) 7→ (q1, A), (q1, a, A) 7→ (q2, A)
4. (q1, b, A) 7→ (q1, A)
5. (q1, a, B) 7→ (q1, B)
6. (q1, b, B) 7→ (q1, B), (q1, b, B) 7→ (q2, B)

b. 1. (q0, σ, Z) 7→ (q0, XZ), σ ∈ {a, b}
3. (q0, σ,X) 7→ (q1, XX), σ ∈ {a, b}

Opgaven FI2 Pushdown automata 39

5. (q0, c, A) 7→ (q1, X), A ∈ {X,Z}
7. (q1, σ,X) 7→ (q1, λ), σ ∈ {a, b}
9. (q1, λ, Z) 7→ (q2, Z)

5.10. Show that every regular language can be accepted by a deterministic pda M with
only two states in which there are no λ-transitions and no symbols are ever removed from
the stack.

5.13. Suppose L ⊆ Σ∗ is accepted by a pda M , and for some fixed k and every x ∈ L, no
sequence of moves made by M on input x causes the stack to have more than k elements.
Show that L is regular.

5.15. Suppose L ⊆ Σ∗ is accepted by a pda M , and for some fixed k, and every x ∈ L,
at least one choice of moves allows M to accept x in such a way that the stack never
contains more than k elements. Does it follow that L is regular? Prove your answer.

5.28. In each case below, you are given a cfg G and a string x that it generates. For
the top-down pda NT (G), trace a sequence of moves by which x is accepted, showing at
each step the state, the unread input, and the stack contents. Show at the same time the
corresponding leftmost derivation of x in the grammar.

a. The grammar has productions S → S + T | T T → T ∗ F | F F → [S] | a and
x = [a+ a ∗ a] ∗ a.

b. The grammar has productions S → S + S | S ∗ S | [S] | a, and x = [a ∗ a+ a].

c. The grammar has productions S → [S]S | λ, and x = [] [[] []] .

5.32. Let M be the pda given for Pal, except that the final move is changed to (2, λ), so
that M does in fact accept by empty stack. See below.

Let x = ababa. Find a sequence of moves of M by which x is accepted, and give the
corresponding leftmost derivation in the cfg obtained from M as in Theorem 5.29.

0 1 2
a, b, λ

a; +A
b; +B

a;A/λ
b;B/λ

λ;Z/λ

5.34. In each case below, you are given a cfg G and a string x that it generates. For
the nondeterministic bottom-up pda NB(G), trace a sequence of moves by which x is
accepted, showing at each step the stack contents and the unread input. Show at the
same time the corresponding rightmost derivation of x (in reverse order) in the grammar.

a. The grammar has productions S → S [S] | λ, and x = [] [[]].

b. The grammar has productions S → [S] S | λ, and x = [] [[]].

Uitwerkingen FI2 40

5.1.a (q0, ab, Z0) ` (q1, b, aZ0) ` (q2, λ, Z0) `, (q3, λ, Z0) `, acceptance.

(q0, aab, Z0) ` (q1, ab, aZ0) ` (q1, b, aaZ0) ` (q2, λ, aZ0) `, crash.

(q0, abb, Z0) ` (q1, bb, aZ0) ` (q2, b, Z0) `, crash.

5.1.b (q0, bbcbb, Z0) ` (q0, bcbb, bZ0) ` (q0, cbb, bbZ0) ` (q1, bb, bbZ0) ` (q1, b, bZ0) ` (q1, λ, Z0)
` (q2, λ, Z0), acceptance.

(q0, baca, Z0) ` (q0, aca, bZ0) ` (q0, ca, abZ0) ` (q1, a, abZ0) ` (q1, λ, bZ0) 6`, crash.

5.3 As argued in exercise 5.2, the pda has two options in state q0: to consider the current
symbol as the middle one in an odd length palindrome, or to make a λ-move to q1. In
addition, there is the option never to leave q0. Consequently, for an input string of length
n the pda has 2n+ 1 different (complete) computations.

5.4 a. The pda accepts only even length palindromes once the possibilities (in moves
1-6) to go from q0 to q1 while reading an a or a b have been removed.

b. The pda accepts only odd length palindromes once the possibilities (moves 7-9) to go
from q0 to q1 with a λ-move have been removed.

5.6 a. This pda accepts {axa, bxb | x ∈ {a, b}∗}.
b. The pda accepts {xcy | x, y ∈ {a, b}∗ and |x| = |y|}.

5.10 Let M0 = (Q,Σ, q0, A, δ) be an dfa. From M0 we construct a DPDA M with two
states: p0 is the initial state; if q0 ∈ A, that is Λ ∈ L(M0), then p0 is also the accepting
state, otherwise p1 is the accepting state. The stack alphabet of M is Q with q0 as the
initial stack symbol.

The DPDA simulates M0 as follows: the state on top of the stack corresponds to the
current state of M0. If M0 moves to a state r while reading an input symbol a, also M
reads a and it pushes r onto the stack while moving to the accepting state if r ∈ A and
to the non-accepting state if r 6∈ A.

Note that M never removes a symbol from the stack, has no λ-transitions, and is deter-
ministic (because M0 is deterministic).

5.28 b. Given is the cfg with productions S → S + S |S ∗ S | (S) | a. This grammar
generates the string x = (a ∗ a + a). We consider the top-down pda constructed from
the grammar as in Definition 7.4 and trace a sequence of steps by which x is accepted
together with the corresponding leftmost derivation.

Uitwerkingen FI2 41

state string stack step

q0 (a ∗ a+ a) Z0

q1 (a ∗ a+ a) SZ0 S
q1 (a ∗ a+ a) (S)Z0 ⇒ (S)
q1 a ∗ a+ a) S)Z0

q1 a ∗ a+ a) S + S)Z0 ⇒ (S + S)
q1 a ∗ a+ a) S ∗ S + S)Z0 ⇒ (S ∗ S + S)
q1 a ∗ a+ a) a ∗ S + S)Z0 ⇒ (a ∗ S + S)
q1 ∗a+ a) ∗S + S)Z0

q1 a+ a) S + S)Z0

q1 a+ a) a+ S)Z0 ⇒ (a ∗ a+ S)
q1 +a) ,+S)Z0

q1 a) S)Z0

q1 a) a)Z0 ⇒ (a ∗ a+ a)
q1))Z0

q1 λ Z0

q2 λ Z0

5.32 Consider the pda M from Example 5.7 with move 12 δ(q1, λ, Z0) = {(q2, Z0)}
changed into δ(q1, λ, Z0) = {(q2, λ)}.

state string stack step

q0 ababa Z0 S ⇒ [q0, Z0, q2]
q0 baba aZ0 ⇒ a[q0, a, q1][q1, Z0, q2]
q0 aba baZ0 ⇒ ab[q0, b, q1][q1, a, q1][q1, Z0, q2]
q1 ba baZ0 ⇒ aba[q1, b, q1][q1, a, q1][q1, Z0, q2]
q1 a aZ0 ⇒ abab[q1, a, q1][q1, Z0, q2]
q1 λ Z0 ⇒ ababa[q1, Z0, q2]
q2 λ λ ⇒ ababa

This pda accepts the same language L = L(M) but now by empty stack and so we can
apply Theorem 5.29: we consider the CFG as constructed there with L(G) = L.

For x = ababa the table above shows a sequence of steps in the new PDA by which x is
accepted together with the corresponding leftmost derivation in G.

5.34 a. Given is the cfg with productions S → [S]S |λ. This grammar generates the
string x = [][[]]. We consider the bottom-up pda constructed from the grammar as in
Example 5.24 and trace a sequence of steps by which x is accepted together with the
corresponding rightmost derivation of x in the grammar in reverse order.

Uitwerkingen FI2 42

move state string stack step

q [][[]] Z0

reduce q [][[]] SZ0 ⇒ [][[]]
shift q][[]] [SZ0

reduce q][[]] S[SZ0 ⇒ S[][[]]
shift q [[]]]S[SZ0

reduce q1,1 [[]] S[SZ0 ⇒ S[S][[]]
q1,2 [[]] [SZ0

q1,3 [[]] SZ0

q [[]] SZ0

shift q []] [SZ0

reduce q []] S[SZ0 ⇒ S[[]]
shift q]] [S[SZ0

reduce q]] S[S[SZ0 ⇒ S[S[]]
shift q]]S[S[SZ0

reduce q1,1] S[S[SZ0 ⇒ S[S[S]]
q1,2] [S[SZ0

q1,3] S[SZ0

q] S[SZ0

shift q λ]S[SZ0

reduce q1,1 λ S[SZ0 S ⇒ S[S]
q1,2 λ [SZ0

q1,3 λ SZ0

q λ SZ0

(pop S) q1 λ Z0

(accept) q2 λ Z0

5.36 Let M be a pda (accepting with empty stack) and consider the cfg G obtained from
M as in the proof of Theorem 5.29. Since every accepting computation of M determines
a unique leftmost derivation of a word in L(G), it follows that G is unambiguous if M is
deterministic.

However if G is unambiguous it is not necessarily the case that M is deterministic. It is
sufficient if M never has more than one accepting computation per word.

5.38 a Consider the cfg G given by the productions:

S → S1$, S1 → AS1 | λ, A→ aA | b.
The top-down pda associated with G is given below through its transition diagram.

q0 q1 q2
λ;Z/SZ

$; $/λ
a; a/λ b; b/λ

λ;S/S1$
λ;S1/AS1 λ;S1/λ
λ;A/aA λ;A/b

λ;Z/Z

Uitwerkingen FI2 43

Note that this pda is non-deterministic as a consequence of a choice in productions when
rewriting S1 or A.

Opgaven FI2 Context-Free and Non-Context-Free Languages 44

6.2. In each case below, show using the pumping lemma that the given language is not
a cfl.

a. L = { aibjck | i < j < k }
b. L = { a2n | n ≥ 0 }
c. L = { x ∈ {a, b}∗ | nb(x) = na(x)2 }
d. L = { anb2nan | n ≥ 0 }
e. L = { x ∈ {a, b, c}∗ | na(x) = max{nb(x), nc(x)} }
f. L = { x ∈ {a, b, c}∗ | na(x) = min{nb(x), nc(x)} }
g. { anbmanbn+m | m,n ≥ 0 }

6.5. For each case below, decide whether the given language is a cfl, and prove your
answer.

a. L = { anbmambn | m,n ≥ 0 }
b. L = {xayb | x, y ∈ {a, b}∗ and |x| = |y| }
c. L = {xcx | x ∈ {a, b}∗ }
d. L = {xyx | x, y ∈ {a, b}∗ and |x| ≥ 1 }
e. L = {x ∈ {a, b}∗ | na(x) < nb(x) < 2n(x) }
f. L = {x ∈ {a, b}∗ | na(x) = 10nb(x) }
g. L is the set of non-balanced strings of parentheses

6.12.

a. Show that if L is a cfl and F is finite, L− F is a cfl.

b. Show that if L is not a cfl and F is finite, then L− F is not a cfl.

c. Show that if L is not a cfl and F is finite, then L ∪ F is not a cfl.

6.13. For each part of Exercise 6.12, say whether the statement is true if “finite” is
replaced by “regular”, and give reasons.

Uitwerkingen FI2 45

6.2 Show using the pumping lemma lemma, that the given languages are not context-free.

a. L = {aibjck | 0 ≤ i < j < k}.
Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a). Let n be the
constant of that lemma. Consider u = anbn+1cn+2 ∈ L. Then |u| ≥ n and thus there exist
v, w, x, y, z such that u = vwxyz with |wy| > 0, |wxy| ≤ n, and vwixyiz ∈ L for every
i ≥ 0. We distinguish two cases:

1. wy contains at least one a. Then, since |wxy| ≤ n, there are no c’s in wy. Consequently,
vw2xy2z contains at least n + 1 a’s and exactly n + 2 c’s, which implies that vw2xy2z is
not in L. A contradiction.

2. wy does not contain any a. Then it must contain a b or a c. In this case vw0xy0z
contains n a’s and either at most n b’s or at most n + 1 c’s. Thus vw0xy0z 6∈ L, again a
contradiction.

Since we get in all (both) cases a contradiction we conclude that the pumping lemma is
not satisfied and hence L is not context-free.

c. L = {x ∈ {a, b}∗ | nb(x) = na(x)2}.
Examples of words in L are: aabbbb, babbba, abbbabbbabbb.

Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a). Let n be the
constant of that lemma. Consider u = anbn

2 ∈ L. Then |u| ≥ n and thus there exist
v, w, x, y, z such that u = vwxyz with |wy| > 0, |wxy| ≤ n, and vwixyiz ∈ L for every
i ≥ 0.

Let na(wy) = p and nb(wy) = q. Then for each i ≥ 0 we have na(vw
ixyiz) = na(u) +

(i − 1)p = n + (i − 1)p and nb(vw
ixyiz) = nb(u) + (i − 1)q = n2 + (i − 1)q. Since, by

our assumption vwixyiz ∈ L for every i ≥ 0, it must be the case that (n + (i − 1)p)2 =
n2 + (i− 1)q for every i ≥ 0. This however is impossible as can be seen as follows. Since
|wy| > 0, at least one of p and q is not 0.

If p = 0 and q 6= 0, then n2 = n2 + (i − 1)q for every i ≥ 0, which clearly is not true if
i ≥ 2.

If p 6= 0 and q = 0, then (n + (i− 1)p)2 = n2 for every i ≥ 0, which clearly is not true if
i ≥ 2.

If p 6= 0 and q 6= 0, then we have (for i = 2) that (n + p)2 = n2 + q which implies that
q = 2np+ p2, and (for i = 3) that (n+ 2p)2 = n2 + 2q which implies that q = 2np+ 2p2.
Hence p = 0 should hold, a contradiction.

We conclude that the pumping lemma is not satisfied and that, consequently, L is not
context-free.

6.5 Is the given language context-free? Prove your answer.

b. L = {xayb | x, y ∈ {a, b}∗ and |x| = |y|} is a cfl; give a grammar.

S → Y b Y → aSX | bSX | a X → a|b .

c. L = {xcx | x ∈ {a, b}∗} is not a cfl; proof similar as in Example 6.2.

d. L = {xyx | x, y ∈ {a, b}∗ and |x| ≥ 1} is not a cfl;

Assume that L is context-free. Then it satisfies the pumping lemma. Let n be the constant
of that lemma. Now consider u = xyx with x = anbn and y = Λ. Thus u = anbnanbn.
There must exist words p, q, r, s, t such that u = pqrst such that |qs| > 0, |qrs| ≤ n, and
pqirsit ∈ L for every i ≥ 0. We distinguish two cases:

Uitwerkingen FI2 46

1. qs consists only of a’s from the first group of a’s in u or it consists only of b’s from
the second group of b’s. Then pq2rs2t is either an+jbnanbn or anbnanbn+j for some j ≥ 1,
which are both not in L. A contradiction.

2. qs contains a b from the first group of b’s in u or it contains an a from the second
group of a’s in u. Then pq0rs0t is either akblambn or anbkalbm with k,m ≥ 1 and l < n.
Neither of these words is in L, again a contradiction.

Consequently, we always end up with a contradiction and so L is not a cfl.

6.12 b L is not a CFL and F is a finite language. Then L − F is not a cfl, which we
prove by contradiction. Assume that L− F is a cfl.

Note that L ∩ F ⊆ F is finite and hence a cfl. Since a union of two cfls is a cfl, it
follows that (L − F) ∪ (L ∩ F) = L is context-free, a contradiction. We conclude that
L− F is not a cfl.

6.13

a. Let L be a cfland F a regular language. Then L − F = L ∩ F̄ is a cfl, because
the complement F̄ of a regular language is regular, and the intersection of a CFL with a
regular language is a cfl.

b. L is not a cfl and F is a regular language. Then L − F may or may not be a cfl.
As seen above in 6.12b , if F is a finite language, then L− F is not context-free. On the
other hand, if we let F = Σ∗ where Σ is an alphabet such that L ⊆ Σ∗, then L− F = ∅
which is a cfl.

