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graph definition

zie FoCS en Algoritmiek!

Definition

A graph is a pair G = (V, E) where:
m V is a set of vertices, or nodes

m ECV xVisa set edges, or arcs, lines

directed / undirected
vertices / edges can have labels (string, number)

complexity in [V] and [E| [E| < |V]?
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adjacency matrix
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adjacency lists
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representation

space matrix O(|V]?)
lists  O([VI+E]) [E|<|V]?

data science / network analysis
huge graphs, few bits per node
sparse graphs

operations  ‘abstract’
m(u,v)eE
m all outgoing edges

m all incoming edges
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graph traversal

DepthFS pre-order  stack

BreadthFS level-order queue
— tree-traversal + marking nodes
DFS  nodes can be twice on stack

structure  spanning tree
tree, forward, back, cross
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depth first search

~ Recursive DFS

DFS(v)
visit(v)
mark (v)
for each w adjacent to v
do if w is not marked

thenDFS (w)
fi
od
end // DFS

Iterative DFS

// start with unmarked nodes
S.push(init)
while S is not empty

do

od

v = S.pop()
if v is not marked
thenmark v
for each edge from v to w
do if w is unmarked
thenS.push(w)
fi
od
fi
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dfs tree (directed)
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dfs edges
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applications of DFS

A DFS traversal itself and the forest-like representation of the graph it
provides have proved to be extremely helpful for the development of efficient
algorithms for checking many important properties of graphs. Note that
the DFS yields two orderings of vertices: the order in which the vertices are
reached for the first time (pushed onto the stack) and the order in which
the vertices become dead ends (popped off the stack). These orders are
qualitatively different, and various applications can take advantage of either
of them. [Levitin, Design & Analysis of Algorithms]

m articulation points

m topological sorting
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articulation points

construct DFS tree for graph

A vertex v is an articulation point if either

m Vv is the root, and has two or more children, or
m v has a (strict) subtree, and no node in the subtree has a back
edge that reaches above v.
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dfs and articulation points
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breadth-first search

Iterative BFS

// Q is a queue of vertices
// start with unmarked nodes
Q.enqueue(init)
dist[init] = 0O
while Q is not empty
do v = Q.dequeue()
newdist = dist[v] + 1
for all edges from v to w
do if w is not marked
thenQ.enqueue (w)
mark w
dist[w] = newdist
fi
od
od
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Algorithms from the Book X

124
116
99
94
88
84
75
63
55
54
48
45
45
44
43

union-find
Knuth-Morris-Pratt
Blum,Floyd,Pratt,Rivest, Tarjan
binary search
Floyd-Warshall
Euclidean algorithm
quicksort

Huffman coding
Schwartz-Zippel lemma
Miller-Rabin

depth first search

sieve of Eratosthenes
Dijkstra

Gentry

Cooley—Tukey

accessed 22.10'23

Galler and Fischer
pattern matching
median

all-pairs shortest path

greatest common divisor (GCD)
Tony Hoare

data compression

polynomial identity

primality test

primes

shortest path
homomorphic encryption
fast Fourier transform


https://cstheory.stackexchange.com/q/189/12122
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application Union-Find
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Union-Find

m INITIALIZE: construct the initial partition; each component
consists of a singleton set {d}, with d € D.

m FIND: retrieves the name of the component, i.e,

FIND(u) = FIND(v) iff u and v belong to the same set in the
partition.

m UNION: given two elements u and v the sets they belong to
are merged. Has no effects when u and v already belong to
the same set.

Usually it is assumed that u, v are representatives, i.e., names
of components, not arbitrary elements.
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name array

2 34567 8 9 10
2 345 6 7 8 9 10| find
1 23 45 6 7 8 9 10
1 21456 6 5 9 9 |find
UNION(9, 6)
1 23 456 7 8 9 10
121459 95 9 9 |find
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union-find with path-compression
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path compression

NN

UNION(v, w) :
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minimal spanning tree

Definition (Minimal spanning tree of weighted graph)

A tree containing all nodes of the graph, with minimal total sum of
edge weights
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minimal spanning tree  Kruskal vs. Prim
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minimal spanning tree - Kruskal

— Kruskal (high level)

repeat
consider edge with smallest weight
if it does not yield a cycle
thenadd it to the tree
else discard the edge
fi

until no edges left
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minimal spanning tree - Prim

—— Prim (high level)

start with single node
repeat
consider edge with smallest weight
that connects node in tree with one outside
add new nodet+edge to the tree
until all nodes in tree

optimization: for each node outside tree select minimal weight
connection to tree
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Prim vs Dijkstra

growing tree : keep best candidate connection
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Prim

Prim
cost[source] = 0 // infinite for other vertices
parent [source] = 0 // code for the root
PQ =V // all vertices

while PQ is not empty
do u is vertex in PQ with minimal cost[u]
remove u from PQ
for each edge (u,v)
do if length(u,v) < cost[v]
thencost[v] = length(u,v)
parent[v] = u
fi
od
od
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directed graphs not supported

Prim fails Kruskal fails
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Dijkstra

Dijkstra
dist[source] = 0 // infinite for other vertices
parent [source] = 0 // code for the root
Q=V // start with all vertices

while Q is not empty
do u is vertex in Q with minimal dist[u]
remove u from Q
for each edge (u,v)
do if dist[u] + length(u,v) < dist[v]
thendist[v] = dist[u] + length(u,v)
parent[v] = u
fi
od
od

shortest path from fixed source node to all other nodes
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Prim vs Dijkstra

growing tree

just added
@‘ (LL, V) might improve current connection

' <— not in tree

Prim Dijkstra

single edge length complete path
undirected (un)directed

negative OK  non-negative

random start  specific source (to all other)
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Prim vs Dijkstra update

new node added u: update nodes vi not in tree
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complexity

adjacency lists

VI <[E[< VP
heap better
minimal [V[?> [V|-Ig|V| [VI]-1g V] findmin
each edge |E| |E| Ig |V| |E| decreasekey

VP [EllgVI [E[+[V]-Ig]V]

heap: better for small number of edges
(or use better priority queue)



Datastructuren
L Graphs
L Shortest Paths

distance vs. bottleneck
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all pairs

L¥(i,j) = min( L*1(1,5), L*1(H, k) + L1 (k,5) )

nodes 1,2,..., n
Lk path via nodes <k

1% only single edges  ~ adjacency matrix
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all pairs shortest distance

L*(,3) = min( L*1(4,5), L1, k) + L*1(k,5) )

Floyd-Warshall

// initially dist equals the adjacency matrix
for each edge (i,j)
do mnext[i,j]l =i
od
for k from 1 to n
do for i from 1 to n
do for j from 1 to n
do if dist[i,k] + distlk,j] < dist[i,j]
thendist[i, j] dist[i,k] + distl[k,j]
next[i,]j] next [i,k]

fi
od
od

od
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Floyd example

partial result A3, and distances via node 4
1 2 3 4 1 2 3 4
1/0 2 1 6 1 ) 6+0 6—1 6
A% 21 3 0 1 4 21 4—-2 . 4—1 4
3 1 0 5 3 540 .
4\—2 0 —1 4 0 —1
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path reconstruction

~ Path-reconstruction ____

Path(u, v)
if next[u] [v] = null
thenreturn []
fi
path = [v]
while u !'= v
do v = next[u] [v]
path.insert_at_end(v)
od
return path
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transitive closure

Warshall

// initially conn equals the adjacency matrix
// with additionally 1=true on the diagonal
for k from 1 to n
do for i from 1 to n
do for j from 1 to n
do conn[i,j] = conn[i,j] or ( conn[i,k] and connl[k,j] )
od
od
od
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topological sorting

Let G = (V, E) be a directed graph.

A topological ordering [or sort] of G is an ordering (v1,...,vn) of
V, such that if (vi,vj) € E then 1 <j.
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topological sorting

finding a topological sort:

m depth-first search  post-order

m source removal  Kahn's algorithm

1 pick node without incoming edges
2 remove that node with outgoing edges. go to step 1.
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DFS application: topological sort

pre,post
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end.
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