Datastructuren Data Structures

Hendrik Jan Hoogeboom

Informatica – LIACS Universiteit Leiden

najaar 2023

Table of Contents I

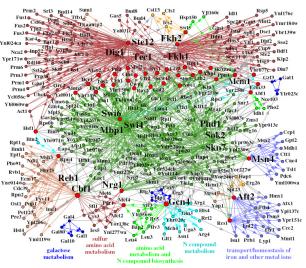
- 1 Basic Data Structures
- 2 Tree Traversal
- 3 Binary Search Trees
- 4 Balancing Binary Trees
- 5 Priority Queues

- 6 B-Trees
- 7 Graphs
- 8 Hash Tables
- 9 Data Compression
- 10 Pattern Matching

Contents

- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

transcription regulatory interactions



Directed network modules, Palla etal. New Journal of Physics, 2007. zie ook college SNACS

graph definition

zie FoCS en Algoritmiek!

Definition

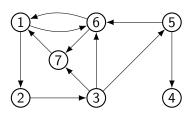
A *graph* is a pair G = (V, E) where:

- V is a set of *vertices*, or *nodes*
- $E \subseteq V \times V$ is a set *edges*, or *arcs*, *lines*

Contents

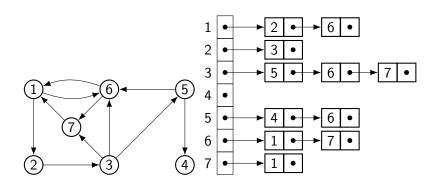
- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

adjacency matrix



	1	2	3	4	5	6	7
1	<i>(</i> ·	1				1	. \
2			1				
3	١.				1	1	1
4	١.						
5	١.			1		1	
6	1						1
7	(•	•	•	•	•	.)

adjacency lists



representation

```
\begin{array}{ll} \text{space} & \text{matrix} & O(|V|^2) \\ & \text{lists} & O(|V|+|E|) & |E| \leqslant |V|^2 \end{array}
```

data science / network analysis huge graphs, few bits per node sparse graphs

operations 'abstract'

- $\mathbf{u}, \mathbf{v} \in \mathbf{E}$
- all outgoing edges
- all incoming edges

Contents

- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

graph traversal

```
DepthFS pre-order stack
BreadthFS level-order queue

- tree-traversal + marking nodes

DFS nodes can be twice on stack
structure spanning tree
tree, forward, back, cross
```

depth first search

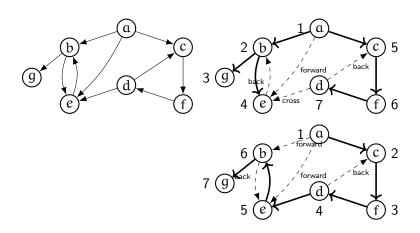
```
Recursive DFS

DFS(v)
    visit(v)
    mark(v)
    for each w adjacent to v
    do if w is not marked
        thenDFS(w)
        fi
    od
end // DFS
```

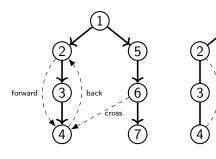
Iterative DFS

```
// start with unmarked nodes
S.push(init)
while S is not empty
do v = S.pop()
   if v is not marked
        thenmark v
        for each edge from v to w
        do if w is unmarked
             thenS.push(w)
             fi
   od
```

dfs tree (directed)



dfs edges



back

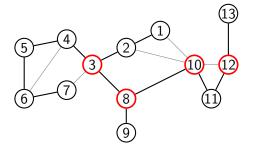
applications of DFS

A DFS traversal itself and the forest-like representation of the graph it provides have proved to be extremely helpful for the development of efficient algorithms for checking many important properties of graphs. Note that the DFS yields two orderings of vertices: the order in which the vertices are reached for the first time (pushed onto the stack) and the order in which the vertices become dead ends (popped off the stack). These orders are qualitatively different, and various applications can take advantage of either of them.

[Levitin, Design & Analysis of Algorithms]

- articulation points
- topological sorting

articulation points



articulation points

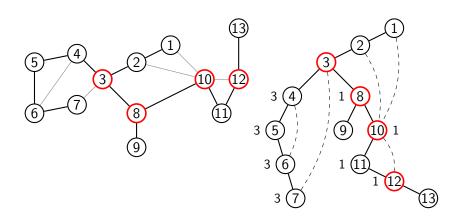
construct DFS tree for graph

Lemma

A vertex v is an articulation point if either

- $lue{v}$ is the root, and has two or more children, or
- v has a (strict) subtree, and no node in the subtree has a back edge that reaches above v.

dfs and articulation points

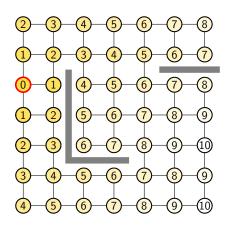


breadth-first search

Iterative BFS

```
// Q is a queue of vertices
    // start with unmarked nodes
Q.enqueue(init)
dist[init] = 0
while Q is not empty
do v = Q.dequeue()
    newdist = dist[v] + 1
    for all edges from v to w
    do if w is not marked
        then Q. enqueue (w)
            mark w
            dist[w] = newdist
        fi
    od
od
```

bfs: 'floodfill'



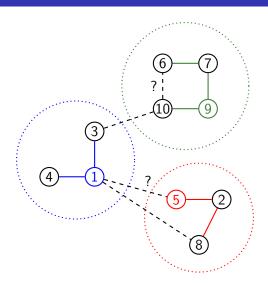
Contents

- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

Algorithms from the Book \boxtimes

124	union-find	Galler and Fischer
116	Knuth-Morris-Pratt	pattern matching
99	Blum,Floyd,Pratt,Rivest,Tarjan	median
94	binary search	
88	Floyd-Warshall	all-pairs shortest path
84	Euclidean algorithm	greatest common divisor (GCD)
75	quicksort	Tony Hoare
63	Huffman coding	data compression
55	Schwartz-Zippel lemma	polynomial identity
54	Miller-Rabin	primality test
48	depth first search	
45	sieve of Eratosthenes	primes
45	Dijkstra	shortest path
44	Gentry	homomorphic encryption
43	Cooley-Tukey	fast Fourier transform

application Union-Find



Union-Find

- INITIALIZE: construct the initial partition; each component consists of a singleton set $\{d\}$, with $d \in D$.
- FIND: retrieves the name of the component, i.e, $\operatorname{FIND}(\mathfrak{u}) = \operatorname{FIND}(\mathfrak{v})$ iff \mathfrak{u} and \mathfrak{v} belong to the same set in the partition.
- UNION: given two elements $\mathfrak u$ and $\mathfrak v$ the sets they belong to are merged. Has no effects when $\mathfrak u$ and $\mathfrak v$ already belong to the same set.
 - Usually it is assumed that u, v are representatives, i.e., names of components, not arbitrary elements.

name array

Union(9,6)

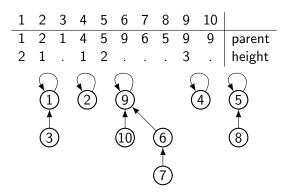
lists

									10	
1	2	1	4	5	6	6	5	9	9	find
3	2	1	4	8	7	6	5	10	9	next
2	1		1	2	2			2		size

Union(9,6)

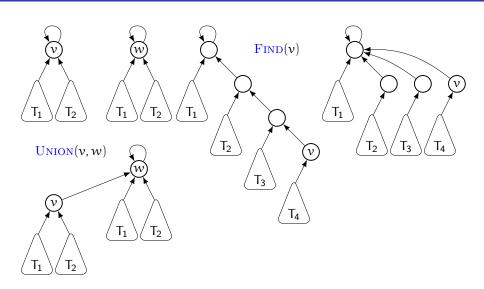
1	2	3	4	5	6	7	8	9	10	
1	2	1	4	5	9	9	5	9	9	find
3	2	1	4	8	10	6	5	7	9	find next size
2	1		1	2				4		size

union-find with path-compression



Disjoint Sets, ADT Union-Find

path compression

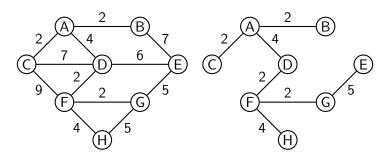


Datastructuren
Graphs
Minimal Spanning Trees

Contents

- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

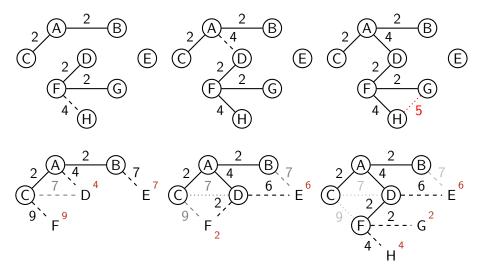
minimal spanning tree



Definition (Minimal spanning tree of weighted graph)

A tree containing all nodes of the graph, with minimal total sum of edge weights

minimal spanning tree Kruskal vs. Prim



minimal spanning tree - Kruskal

Kruskal (high level)

repeat

consider edge with smallest weight if it does not yield a cycle then add it to the tree else discard the edge fi until no edges left

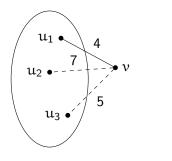
minimal spanning tree - Prim

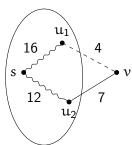
```
start with single node
repeat
consider edge with smallest weight
that connects node in tree with one outside
add new node+edge to the tree
until all nodes in tree
```

optimization: for each node outside tree select minimal weight connection to tree

Prim vs Dijkstra

growing tree: keep best candidate connection





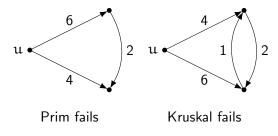
```
Datastructuren

Graphs

Minimal Spanning Trees
```

Prim

directed graphs not supported



Contents

- 7 Graphs
 - Representation
 - Graph traversal
 - Disjoint Sets, ADT Union-Find
 - Minimal Spanning Trees
 - Shortest Paths
 - Topological Sort

```
Datastructuren

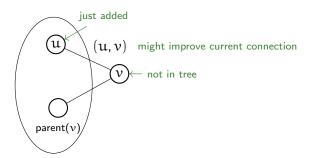
Graphs
Shortest Paths
```

Dijkstra

shortest path from *fixed source* node to all other nodes

Prim vs Dijkstra

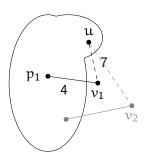
growing tree

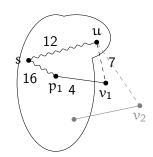


Prim	Dijkstra
single edge	length complete path
undirected	(un)directed
negative OK	non-negative
random start	specific source (to all other)

Prim vs Dijkstra update

new node added $u\colon \mathsf{update}\ \mathsf{nodes}\ \nu_i$ not in tree





complexity

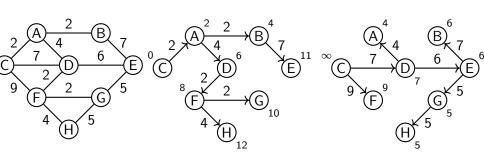
adjacency lists

$$|V|\leqslant |E|\leqslant |V|^2$$

		heap	better	
minimal	$ V ^2$	$ V \cdot \lg V $	$ V \cdot \lg V $	findmin
each edge	E	$ E {\cdot}lg V $	E	decreasekey
	$ V ^2$	$ E \cdot \lg V $	$ E + V \cdot g V $	

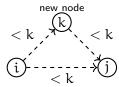
heap: better for small number of edges (or use better priority queue)

distance vs. bottleneck



all pairs

$$\begin{split} L^k(i,j) &= \mathsf{min}(\ L^{k-1}(i,j),\ L^{k-1}(i,k) + L^{k-1}(k,j)\) \\ &\mathsf{nodes}\ 1,2,\dots,n \\ L^k &\mathsf{path}\ \mathsf{via}\ \mathsf{nodes}\ \leqslant k \\ L^0 &\mathsf{only}\ \mathsf{single}\ \mathsf{edges}\ \ \sim \mathsf{adjacency}\ \mathsf{matrix} \end{split}$$



all pairs shortest distance

```
\mathsf{L}^k(\mathfrak{i},\mathfrak{j}) = \mathsf{min}(\ \mathsf{L}^{k-1}(\mathfrak{i},\mathfrak{j}),\ \mathsf{L}^{k-1}(\mathfrak{i},k) + \mathsf{L}^{k-1}(k,\mathfrak{j})\ )
```

Floyd-Warshall

Floyd example

partial result A³,

$$A^{3} = \begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 1 & 6 \\ 2 & 3 & 0 & 1 & 4 \\ \hline 4 & 1 & 0 & 5 \\ -2 & 0 & -1 & . \end{array}$$

path reconstruction

Path-reconstruction

```
Path(u, v)
   if next[u][v] = null
   thenreturn []
   fi
   path = [v]
   while u != v
   do v = next[u][v]
      path.insert_at_end(v)
   od
   return path
```

```
Datastructuren

Graphs
Shortest Paths
```

transitive closure

Warshall

```
// initially conn equals the adjacency matrix
// with additionally 1=true on the diagonal
for k from 1 to n
do for i from 1 to n
do for j from 1 to n
do conn[i,j] = conn[i,j] or (conn[i,k] and conn[k,j])
od
od
```

Contents

7 Graphs

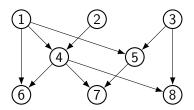
- Representation
- Graph traversal
- Disjoint Sets, ADT Union-Find
- Minimal Spanning Trees
- Shortest Paths
- Topological Sort

topological sorting

Let G = (V, E) be a directed graph.

Definition

A topological ordering [or sort] of G is an ordering (ν_1, \ldots, ν_n) of V, such that if $(\nu_i, \nu_j) \in E$ then i < j.

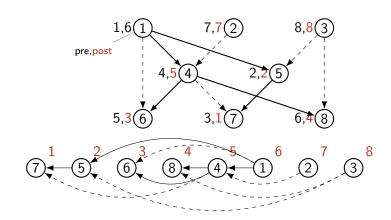


topological sorting

finding a topological sort:

- depth-first search post-order
- source removal Kahn's algorithm
 - 1 pick node without incoming edges
 - $2\,$ remove that node with outgoing edges. go to step 1.

DFS application: topological sort



Datastructuren Graphs Topological Sort

end.