Datastructuren

Datastructuren

Data Structures

Hendrik Jan Hoogeboom

Informatica — LIACS
Universiteit Leiden

najaar 2023

Datastructuren

Table of Contents |

Basic Data Structures
Tree Traversal

Binary Search Trees
Balancing Binary Trees

Priority Queues

@ B-Trees

Graphs

Bl Hash Tables

El Data Compression

Pattern Matching

Datastructuren

LGraphs

Contents

Graphs
m Representation
m Graph traversal
m Disjoint Sets, ADT Union-Find
m Minimal Spanning Trees
m Shortest Paths
m Topological Sort

transcription regulatory interactions

Prlnzk‘Srl,% Buar4 Sum! Buds Cst13 Ctsi V60 1ain RSPS y11i76c
gt G sp150_o

15 ,o/.
Budd B 3 B

Fusl
, ',.s mrigdw

Fus2:
Fus3
Ynl024ca
Nead
YpriTiw

Ost1 P }P%f‘;
m?.““i

2
e ‘:?W B Mm Ugn :1114
Vmilew oo 0 sulfur Lot Leud G *5“_‘
amino acid N compound
alactose metabolism ctabolisny
metabolism

Tsul Prbl Lypi

transport/hom
nd other m

Directed network modules, Palla etal. New Journal of Physics, 2007.
zie ook college SNACS

https://doi.org/10.1088/1367-2630/9/6/186
https://liacs.leidenuniv.nl/~takesfw/SNACS/

Datastructuren

LGraphs

graph definition

zie FoCS en Algoritmiek!

Definition

A graph is a pair G = (V, E) where:
m V is a set of vertices, or nodes

m ECV xVisa set edges, or arcs, lines

directed / undirected
vertices / edges can have labels (string, number)

complexity in [V] and [E| [E| < |V]?

Datastructuren
L Graphs
LRepresentation

Contents

Graphs
m Representation

Datastructuren
L Graphs
LRepresentation

adjacency matrix

1
2
e 3 1 11
4
5
6
7

Datastructuren
L Graphs
LRepresentation

adjacency lists

~N O o A W NN =

2] J~[6]"]
o—3]]

o5 f6]f>{7]]
[]

[J+[6]]
17]
or—11]e]

Datastructuren
L Graphs
LRepresentation

representation

space matrix O(|V]?)
lists O([VI+E]) [E|<|V]?

data science / network analysis
huge graphs, few bits per node
sparse graphs

operations ‘abstract’
m(u,v)eE
m all outgoing edges

m all incoming edges

Datastructuren
L Graphs
L Graph traversal

Contents

Graphs

m Graph traversal

Datastructuren
L Graphs
L Graph traversal

graph traversal

DepthFS pre-order stack

BreadthFS level-order queue
— tree-traversal + marking nodes
DFS nodes can be twice on stack

structure spanning tree
tree, forward, back, cross

Datastructuren
L Graphs
L Graph traversal

depth first search

~ Recursive DFS

DFS(v)
visit(v)
mark (v)
for each w adjacent to v
do if w is not marked

thenDFS (w)
fi
od
end // DFS

Iterative DFS

// start with unmarked nodes
S.push(init)
while S is not empty

do

od

v = S.pop()
if v is not marked
thenmark v
for each edge from v to w
do if w is unmarked
thenS.push(w)
fi
od
fi

Datastructuren

LGraphs

L Graph traversal

dfs tree (directed)

Datastructuren
L Graphs
L Graph traversal

dfs edges

Datastructuren
L Graphs
L Graph traversal

applications of DFS

A DFS traversal itself and the forest-like representation of the graph it
provides have proved to be extremely helpful for the development of efficient
algorithms for checking many important properties of graphs. Note that
the DFS yields two orderings of vertices: the order in which the vertices are
reached for the first time (pushed onto the stack) and the order in which
the vertices become dead ends (popped off the stack). These orders are
qualitatively different, and various applications can take advantage of either
of them. [Levitin, Design & Analysis of Algorithms]

m articulation points

m topological sorting

Datastructuren
L Graphs
L Graph traversal

articulation points

Datastructuren

LGraphs

L Graph traversal

articulation points

construct DFS tree for graph

A vertex v is an articulation point if either

m Vv is the root, and has two or more children, or
m v has a (strict) subtree, and no node in the subtree has a back
edge that reaches above v.

Datastructuren
L Graphs
L Graph traversal

dfs and articulation points

Datastructuren
L Graphs
L Graph traversal

breadth-first search

Iterative BFS

// Q is a queue of vertices
// start with unmarked nodes
Q.enqueue(init)
dist[init] = 0O
while Q is not empty
do v = Q.dequeue()
newdist = dist[v] + 1
for all edges from v to w
do if w is not marked
thenQ.enqueue (w)
mark w
dist[w] = newdist
fi
od
od

Datastructuren
LGraphs
L Disjoint Sets, ADT Union-Find

Contents

Graphs

m Disjoint Sets, ADT Union-Find

Datastructuren

LGraphs

L Disjoint Sets, ADT Union-Find

Algorithms from the Book X

124
116
99
94
88
84
75
63
55
54
48
45
45
44
43

union-find
Knuth-Morris-Pratt
Blum,Floyd,Pratt,Rivest, Tarjan
binary search
Floyd-Warshall
Euclidean algorithm
quicksort

Huffman coding
Schwartz-Zippel lemma
Miller-Rabin

depth first search

sieve of Eratosthenes
Dijkstra

Gentry

Cooley—Tukey

accessed 22.10'23

Galler and Fischer
pattern matching
median

all-pairs shortest path

greatest common divisor (GCD)
Tony Hoare

data compression

polynomial identity

primality test

primes

shortest path
homomorphic encryption
fast Fourier transform

https://cstheory.stackexchange.com/q/189/12122

Datastructuren
LGraphs
L Disjoint Sets, ADT Union-Find

application Union-Find

Datastructuren
LGraphs
L Disjoint Sets, ADT Union-Find

Union-Find

m INITIALIZE: construct the initial partition; each component
consists of a singleton set {d}, with d € D.

m FIND: retrieves the name of the component, i.e,

FIND(u) = FIND(v) iff u and v belong to the same set in the
partition.

m UNION: given two elements u and v the sets they belong to
are merged. Has no effects when u and v already belong to
the same set.

Usually it is assumed that u, v are representatives, i.e., names
of components, not arbitrary elements.

Datastructuren
LGraphs
L Disjoint Sets, ADT Union-Find

name array

2 34567 8 9 10
2 345 6 7 8 9 10| find
1 23 45 6 7 8 9 10
1 21456 6 5 9 9 |find
UNION(9, 6)
1 23 456 7 8 9 10
121459 95 9 9 |find

T
i
<
S
=)
=
(a]
<
il
193
"
v
£
o
w
a

||

LGraphs

Datastructuren

123456789 10|

123 456 7 8 9 10|find

123 456 7 8 9 10

next
size

1

111111111

-+ -+
o) (0] o) (0]
S 3 N S 3 N
= Ccn = Ccn
o (@]

Slo o Slo o
olo S o oo~ <
O (1O O

O 1O 1O
N~y O

M~ (O O
o
©Olo ~ oo o
O .0 00 N O[O 00 N
< | < S
o | oM [
N[N N N[N N
= M AN = M AN

UNION(9, 6)

Datastructuren
LGraphs
L Disjoint Sets, ADT Union-Find

union-find with path-compression

Datastructuren

LGraphs

L Disjoint Sets, ADT Union-Find

path compression

NN

UNION(v, w) :

Datastructuren
LGraphs
L Minimal Spanning Trees

Contents

Graphs

m Minimal Spanning Trees

Datastructuren
LGraphs
L Minimal Spanning Trees

minimal spanning tree

Definition (Minimal spanning tree of weighted graph)

A tree containing all nodes of the graph, with minimal total sum of
edge weights

Datastructuren
LGraphs
L Minimal Spanning Trees

minimal spanning tree Kruskal vs. Prim

Datastructuren
LGraphs
L Minimal Spanning Trees

minimal spanning tree - Kruskal

— Kruskal (high level)

repeat
consider edge with smallest weight
if it does not yield a cycle
thenadd it to the tree
else discard the edge
fi

until no edges left

Datastructuren
LGraphs
L Minimal Spanning Trees

minimal spanning tree - Prim

—— Prim (high level)

start with single node
repeat
consider edge with smallest weight
that connects node in tree with one outside
add new nodet+edge to the tree
until all nodes in tree

optimization: for each node outside tree select minimal weight
connection to tree

Datastructuren

LGraphs

L Minimal Spanning Trees

Prim vs Dijkstra

growing tree : keep best candidate connection

Datastructuren
LGraphs
L Minimal Spanning Trees

Prim

Prim
cost[source] = 0 // infinite for other vertices
parent [source] = 0 // code for the root
PQ =V // all vertices

while PQ is not empty
do u is vertex in PQ with minimal cost[u]
remove u from PQ
for each edge (u,v)
do if length(u,v) < cost[v]
thencost[v] = length(u,v)
parent[v] = u
fi
od
od

Datastructuren
LGraphs
L Minimal Spanning Trees

directed graphs not supported

Prim fails Kruskal fails

Datastructuren
L Graphs
L Shortest Paths

Contents

Graphs

m Shortest Paths

Datastructuren
L Graphs
L Shortest Paths

Dijkstra

Dijkstra
dist[source] = 0 // infinite for other vertices
parent [source] = 0 // code for the root
Q=V // start with all vertices

while Q is not empty
do u is vertex in Q with minimal dist[u]
remove u from Q
for each edge (u,v)
do if dist[u] + length(u,v) < dist[v]
thendist[v] = dist[u] + length(u,v)
parent[v] = u
fi
od
od

shortest path from fixed source node to all other nodes

Datastructuren
L Graphs
L Shortest Paths

Prim vs Dijkstra

growing tree

just added
@‘ (LL, V) might improve current connection

' <— not in tree

Prim Dijkstra

single edge length complete path
undirected (un)directed

negative OK non-negative

random start specific source (to all other)

Datastructuren

LGraphs

L Shortest Paths

Prim vs Dijkstra update

new node added u: update nodes vi not in tree

Datastructuren
L Graphs
L Shortest Paths

complexity

adjacency lists

VI <[E[< VP
heap better
minimal [V[?> [V|-Ig|V| [VI]-1g V] findmin
each edge |E| |E| Ig |V| |E| decreasekey

VP [EllgVI [E[+[V]-Ig]V]

heap: better for small number of edges
(or use better priority queue)

Datastructuren
L Graphs
L Shortest Paths

distance vs. bottleneck

Datastructuren
L Graphs
L Shortest Paths

all pairs

L¥(i,j) = min(L*1(1,5), L*1(H, k) + L1 (k,5))

nodes 1,2,..., n
Lk path via nodes <k

1% only single edges ~ adjacency matrix

Datastructuren
L Graphs
L Shortest Paths

all pairs shortest distance

L*(,3) = min(L*1(4,5), L1, k) + L*1(k,5))

Floyd-Warshall

// initially dist equals the adjacency matrix
for each edge (i,j)
do mnext[i,j]l =i
od
for k from 1 to n
do for i from 1 to n
do for j from 1 to n
do if dist[i,k] + distlk,j] < dist[i,j]
thendist[i, j] dist[i,k] + distl[k,j]
next[i,]j] next [i,k]

fi
od
od

od

Datastructuren
L Graphs
L Shortest Paths

Floyd example

partial result A3, and distances via node 4
1 2 3 4 1 2 3 4
1/0 2 1 6 1) 6+0 6—1 6
A% 21 3 0 1 4 21 4—-2 . 4—1 4
3 1 0 5 3 540 .
4\—2 0 —1 4 0 —1

Datastructuren
L Graphs
L Shortest Paths

path reconstruction

~ Path-reconstruction ____

Path(u, v)
if next[u] [v] = null
thenreturn []
fi
path = [v]
while u !'= v
do v = next[u] [v]
path.insert_at_end(v)
od
return path

Datastructuren
L Graphs
L Shortest Paths

transitive closure

Warshall

// initially conn equals the adjacency matrix
// with additionally 1=true on the diagonal
for k from 1 to n
do for i from 1 to n
do for j from 1 to n
do conn[i,j] = conn[i,j] or (conn[i,k] and connl[k,j])
od
od
od

Datastructuren
L Graphs
LTopological Sort

Contents

Graphs

m Topological Sort

Datastructuren

LGraphs

LTopological Sort

topological sorting

Let G = (V, E) be a directed graph.

A topological ordering [or sort] of G is an ordering (v1,...,vn) of
V, such that if (vi,vj) € E then 1 <j.

Datastructuren
L Graphs
LTopological Sort

topological sorting

finding a topological sort:

m depth-first search post-order

m source removal Kahn's algorithm

1 pick node without incoming edges
2 remove that node with outgoing edges. go to step 1.

Datastructuren

LGraphs

LTopological Sort

DFS application: topological sort

pre,post

Datastructuren
L Graphs
LTopological Sort

end.

2023-11-09

	Graphs
	Representation
	Graph traversal
	Disjoint Sets, ADT Union-Find
	Minimal Spanning Trees
	Shortest Paths
	Topological Sort

