
Datastructuren

Datastructuren
Data Structures

Hendrik Jan Hoogeboom

Informatica – LIACS
Universiteit Leiden

najaar 2023



Datastructuren

Table of Contents I

1 Basic Data Structures

2 Tree Traversal

3 Binary Search Trees

4 Balancing Binary Trees

5 Priority Queues

6 B-Trees

7 Graphs

8 Hash Tables

9 Data Compression

10 Pattern Matching



Datastructuren

Balancing Binary Trees

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees



Datastructuren

Balancing Binary Trees

binary trees

accessing average node
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Balancing Binary Trees

stl container classes

helper: pair

sequences: contiguous: array (fixed length),
vector (flexible length),
deque (double ended),
linked: forward list (single), list (double)

adaptors: based on one of the sequences:
stack (lifo), queue (fifo),
based on binary heap: priority queue

associative: based on balanced trees:
set, map, multiset, multimap

unordered: based on hash table:
unordered set, unordered map,
unordered multiset,
unordered multimap
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Tree rotation

single rotation

p

q

T1

T2 T3

⇐⇒ p

q

T1 T2

T3

T1 p ( T2 q T3 ) = ( T1 p T2 ) q T3

note: implementation needs parent (for pointer to root p vs q)



Datastructuren

Balancing Binary Trees

Tree rotation

example
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AVL Trees

balance factor
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AVL Trees

AVL trees

Features:

height balanced binary search tree, logarithmic height and
logarithmic search time.

rebalancing after inserting a key using (at most) one
single/double rotation at the lowest unbalanced node on the
search path to the new key.

rebalancing after deletion might need a rotation at every level
of the search path (bottom-up).
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AVL Trees

Definition

An AVL-tree is a binary search tree in which for each node the
heights of both its subtrees differ by at most one.
The difference in height at a node in a binary tree (right minus
left) is called the balance factor of that node.

BST

balance {-1,0,+1} each node
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AVL Trees

example
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AVL Trees

Fibonacci tree ‘worst’ AVL tree

1

3

2

1

5

2

1

4

1

3

2

1

Fh

Fh−2

Fh−1

aantal knopen: fh = fh−2 + fh−1 + 1 ≈
(
1+

√
5

2

)h



Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree
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Adding a Key to an AVL Tree

adding a key
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Adding a Key to an AVL Tree

adding in left subtree, bottom-up view

a)

p
0/-1

new node

ok, go up

b)

p
+1/0

ok, stop

c)

p
-1/-2

=⇒

rebalance, stop

q
0
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Adding a Key to an AVL Tree

example: adding 11
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Adding a Key to an AVL Tree

double rotation
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Adding a Key to an AVL Tree

double rotation (in one step)
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double at r, right
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Adding a Key to an AVL Tree

example
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Adding a Key to an AVL Tree

rebalance

bottom up

1 0 7→ ±1 (go up)

2 ±1 7→ 0 (done)

3 ±1 7→ ±2 (lowest position of unbalance)

– LL RR single rotation
– LR RL double rotation

(then done)



Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

adding in left subtree, bottom-up view

a)

p
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ok, go up

b)
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ok, stop

c)

p
-1/-2

=⇒

rebalance, stop

q
0



Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

rebalance LL-case
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Adding a Key to an AVL Tree

rebalance LR-cases
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Adding a Key to an AVL Tree

special LR-case
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Adding a Key to an AVL Tree

example: adding 5

1

2
0

3

4
+1/+2

6

0/-1

7

0/-1

9
0/-1

8

10
+1

11

5new

7
0

4
0

2
0

1 3

6
-1

5

9
+1

8 10
+1

11

inbalance at 4, RL-case, double rotation at 4, left



Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

example: adding 6
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deletion (cascade)
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deletion (cases)
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Self-Organizing Trees

move to front heuristics

unordered list: often-searched items move to front for faster access

12 3 6 1 19 16 11

12 3 6 1 19 16 11
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Self-Organizing Trees

splay trees

Simple implementation, no bookkeeping.
self organizing

Any sequence of K operations (insert, find) has an amortized
complexity of O(K log n)

move item to root two levels at a time

zig-zig step differs from bottom-up rotation
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Self-Organizing Trees

splay zig-zag
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Self-Organizing Trees

splay zig-zig
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different order than bottom-up rotations
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Self-Organizing Trees

example splay linear tree
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Self-Organizing Trees

end.
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