
Datastructuren

Datastructuren
Data Structures

Hendrik Jan Hoogeboom

Informatica – LIACS
Universiteit Leiden

najaar 2023

Datastructuren

Table of Contents I

1 Basic Data Structures

2 Tree Traversal

3 Binary Search Trees

4 Balancing Binary Trees

5 Priority Queues

6 B-Trees

7 Graphs

8 Hash Tables

9 Data Compression

10 Pattern Matching

Datastructuren

Balancing Binary Trees

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

Datastructuren

Balancing Binary Trees

binary trees

accessing average node

4

2 6

1 3 5 7

O(lg n)

3

2 6

1 4 7

5

O(lg n)
average tree

7

1

2

3

6

5

4

O(n)

Datastructuren

Balancing Binary Trees

stl container classes

helper: pair

sequences: contiguous: array (fixed length),
vector (flexible length),
deque (double ended),
linked: forward list (single), list (double)

adaptors: based on one of the sequences:
stack (lifo), queue (fifo),
based on binary heap: priority queue

associative: based on balanced trees:
set, map, multiset, multimap

unordered: based on hash table:
unordered set, unordered map,
unordered multiset,
unordered multimap

Datastructuren

Balancing Binary Trees

Tree rotation

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

Datastructuren

Balancing Binary Trees

Tree rotation

single rotation

p

q

T1

T2 T3

⇐⇒ p

q

T1 T2

T3

T1 p (T2 q T3) = (T1 p T2) q T3

note: implementation needs parent (for pointer to root p vs q)

Datastructuren

Balancing Binary Trees

Tree rotation

example

1

2

3

4

5

6

7

8

9

10

11

1

2 3

7

4

2

1 3

6

5

9

8 10

11

3

1 2

Datastructuren

Balancing Binary Trees

AVL Trees

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

Datastructuren

Balancing Binary Trees

AVL Trees

balance factor

4

3

2

1

0

depth

35
-1

20

10

5 14

30
-2

26

23

45
+1

39 51

56

3

2 height

Datastructuren

Balancing Binary Trees

AVL Trees

AVL trees

Features:

height balanced binary search tree, logarithmic height and
logarithmic search time.

rebalancing after inserting a key using (at most) one
single/double rotation at the lowest unbalanced node on the
search path to the new key.

rebalancing after deletion might need a rotation at every level
of the search path (bottom-up).

Datastructuren

Balancing Binary Trees

AVL Trees

Definition

An AVL-tree is a binary search tree in which for each node the
heights of both its subtrees differ by at most one.
The difference in height at a node in a binary tree (right minus
left) is called the balance factor of that node.

BST

balance {-1,0,+1} each node

Datastructuren

Balancing Binary Trees

AVL Trees

example

6
+1

3
0

9
+1

2
-1

5
-1

8
-1

11
+1

1 4 7 10 12
+1

13

Datastructuren

Balancing Binary Trees

AVL Trees

Fibonacci tree ‘worst’ AVL tree

1

3

2

1

5

2

1

4

1

3

2

1

Fh

Fh−2

Fh−1

aantal knopen: fh = fh−2 + fh−1 + 1 ≈
(
1+

√
5

2

)h

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

adding a key

1

2
0

3

4
+1/+2

5

6
-1

7
0/+1

8

9
0/+1

10
0/+1

11new

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

adding in left subtree, bottom-up view

a)

p
0/-1

new node

ok, go up

b)

p
+1/0

ok, stop

c)

p
-1/-2

=⇒

rebalance, stop

q
0

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

example: adding 11

1

2
0

3

4
+1/+2

5

6
-1

7
0/+1

8

9
0/+1

10
0/+1

11new

7
0

4
0

2
0

1 3

6
-1

5

9
+1

8 10
+1

11

inbalance at 4, RR-case, single rotation at 4, left

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

double rotation

r

p

q

T1

T2 T3

T4

=⇒

at p, left

r

p

q

T1 T2

T3

T4

=⇒

at r, right

rp

q

T1 T2 T3 T4

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

double rotation (in one step)

r

p

q

T1

T2 T3

T4

=⇒

double at r, right

rp

q

T1 T2 T3 T4

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

example

1

2

3

4

6

7

9

8

10

11

5

1

4

2 3

7

4

2

1 3

6

5

9

8 10

11

1 2 3 4

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

rebalance

bottom up

1 0 7→ ±1 (go up)

2 ±1 7→ 0 (done)

3 ±1 7→ ±2 (lowest position of unbalance)

– LL RR single rotation
– LR RL double rotation

(then done)

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

adding in left subtree, bottom-up view

a)

p
0/-1

new node

ok, go up

b)

p
+1/0

ok, stop

c)

p
-1/-2

=⇒

rebalance, stop

q
0

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

rebalance LL-case

q
-1/-2

p
0/-1

=⇒ q
0

p
0

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

rebalance LR-cases

r
-1/-2

p
0/+1

q
0/± 1

OR

=⇒

r
+1

p
0

q
0

OR

r
0

p
-1

q
0

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

special LR-case

r
-1/-2

p
0/+1

q
new

=⇒

r
0

p
0

q
0

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

example: adding 5

1

2
0

3

4
+1/+2

6

0/-1

7

0/-1

9
0/-1

8

10
+1

11

5new

7
0

4
0

2
0

1 3

6
-1

5

9
+1

8 10
+1

11

inbalance at 4, RL-case, double rotation at 4, left

Datastructuren

Balancing Binary Trees

Adding a Key to an AVL Tree

example: adding 6

10

11

12

13

9
-1/-2

1

2

3
+1/+2

4
+1/+2

7
-1/-2

8

5
0/+1

6new

10

11

12

13

9
-1

1

2

3
+1

7
-1

85
0

64

lowest inbalance at 4, RR-case, single rotation at 4, left

Datastructuren

Balancing Binary Trees

Deletion in an AVL Tree

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

deletion (cascade)

8
-1

5
-1

3
-1

1
+1

2

4

7
-1

6

11
-1

9
+1

10

×

8
-1

5
-1

3
-1

1
+1

2

4

7
-1

6

11
-2

9
+1

10

8
-2

5
-1

3
-1

1
+1

2

4

7-1

6

10
0

9 11
+1

5
0

3
-1

1
+1

2

4

8
0

7
-1

6

10
0

9 11

deletion (cases)

q
0

p
+1/+2

=⇒ q
+1

p
-1

q
+1

p
+1/+2

=⇒ q
0

p
0

p
-1

q
ε

r
+1/+2

=⇒

p
0,+1

q
0

r
0,-1

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

Contents

4 Balancing Binary Trees
Tree rotation
AVL Trees
Adding a Key to an AVL Tree
Deletion in an AVL Tree
Self-Organizing Trees

Splay Trees

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

move to front heuristics

unordered list: often-searched items move to front for faster access

12 3 6 1 19 16 11

12 3 6 1 19 16 11

p

q

T1

T2 T3

⇐⇒
p

q

T1 T2

T3

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

splay trees

Simple implementation, no bookkeeping.
self organizing

Any sequence of K operations (insert, find) has an amortized
complexity of O(K log n)

move item to root two levels at a time

zig-zig step differs from bottom-up rotation

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

splay zig-zag

g2

p1

x

T1

T2 T3

T4

=⇒ gp

x

T1 T2 T3 T4

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

splay zig-zig

g1

p2

x

T1 T2

T3

T4

=⇒

g

p

x

T1

T2

T3 T4

different order than bottom-up rotations

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

example splay linear tree

1

2

3

4

5

6

7

1

2

3

4

5

6

7

2

3

4

5

1

6

7

2

3

4

5

1

6

7

2

3

4

5

6

7

1

Datastructuren

Balancing Binary Trees

Self-Organizing Trees

end.

2023-10-02

	Balancing Binary Trees
	Tree rotation
	AVL Trees
	Adding a Key to an AVL Tree
	Deletion in an AVL Tree
	Self-Organizing Trees

