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Paul Kellam (p.kellam@ucl.ac.uk) 
 

• Key issues in data mining are discussed 
in the context of  modern developments 
in computing and statistics 

• Data mining methods that have been 
commonly-used in gene expression 
analysis are presented with simple 
examples 

• Current and future research issues are 
outlined 

DNA microarray technology has enabled biologists to study all the genes within an 
entire organism to obtain a global view of gene interaction and regulation. This 
technology has great potential in obtaining a deep understanding of biological processes. 
However, to realise such potential requires the use of advanced computational methods. 
In the last chapter, experimental protocols and technical challenges associated with the 
collection of gene expression data were presented, the nature of the data was highlighted, 
and the data standards for storing expression data were discussed. In this chapter, we 
shall introduce some of the most common data mining methods that are being applied to 
the analysis of microarray data and discuss the likely future directions. 

 

 

 



15.1. Data Mining and Intelligent Data Analysis 

Data mining has been defined as the process of discovering knowledge or patterns 
hidden in (often large) datasets. The data mining process is often semi-automatic and 
interactive, but there is a great desire for it to be automatic. The knowledge or patterns 
discovered should be meaningful and interesting from a particular point of view. For 
example, loyalty patterns of previous customers should allow a company to detect among 
the existing customers those likely to defect to its competitors. In the context of DNA 
microarray data, the patterns detected should inform us of the likely functions of genes, 
how genes may be regulated, and how they interact with each other in health and disease 
process. A comprehensive treatment of various issues involved in building data mining 
systems can be found in [Hand2001]. 

15.1.1 Data Analysis 
The job of a data analyst typically involves problem formulation, advice on data 

collection (though it is not uncommon for the analyst to be asked to analyse data which 
have already been collected, especially in the context of data mining), effective data 
analysis, and interpretation and reporting of the findings. Data analysis is about the 
extraction of useful information from data and is often performed by an iterative process 
in which “exploratory analysis” and “confirmatory analysis” are the two principal 
components. 

Exploratory data analysis, or data exploration, resembles the job of a detective: 
understanding the evidence collected, looking for clues, applying relevant background 
knowledge and pursuing and checking the possibilities that clues suggest. This initial 
phase of data examination typically involves and number of steps, namely: 

Data quality checking, processes for determining the levels and types of noise (random 
variation) in the system, processes for dealing with extreme outlying values and 
missing values.  

Data modification, processes for transforming data values (such as the log2 
transformation seen in chapter 14 and processes for error correction. 

Data summary,  defined methods for producing tables and visualistion of summary 
statistic for the data. 

Data dimensionality reduction,  methods for reducing the high dimensionality of the data 
to allow patterns to be identified or other data mining tools to be used. 

Feature selection and extraction methods that allow defining features of the data to be 
identified and significance values applied to such features.  

Clustering methods, such as  hierarchical clustering, which identify potential structures in 
the data the share certain properties. 

Data exploration is not only useful for data understanding, but also helpful in 
generating possibly interesting hypotheses for further investigation, a more 
“confirmatory” procedure for analysing data. Such procedures often assume a potential 
model structure for the data, and may involve estimating the model parameters and 
testing hypotheses about the model.  

 



15.1.2 New Challenges and Opportunities 
Over the last 15 years, we have witnessed two phenomena which have affected the 

work of modern data analysts more than any others. Firstly, the size of machine-readable 
data sets has increased and the problem of  “data explosion” has become apparent. Many 
analysts no longer have the luxury of focusing on problems with a manageable number 
of variables and cases  (say a dozen variables and a few thousand cases); and problems 
involving thousands of variables and millions of cases are quite common, as is evidenced 
in biology throughout this book. 

Secondly, data analysts, armed with traditional statistical packages for data 
exploration, model building, and hypothesis testing, now require more advanced analysis 
capabilities. Computational methods for extracting information from large quantities of 
data, or “data mining” methods, are maturing, e.g. artificial neural networks, Bayesian 
networks, decision trees, genetic algorithms, statistical pattern recognition, support 
vector machines, and visualisation. This combined with improvements in computing 
such as increased computer processing power and larger data storage device capacity 
both at cheaper costs, coupled with networks providing more bandwidth and higher 
reliability, and On-Line Analytic Processing (OLAP) all allow vastly improved analysis 
capabilities.  

These improvements are timely as functional genomics data provides us with a 
problem where traditional mathematical or computational methods are not really suited 
for modelling gene expression data: such data are noisy and high-dimensional with up to 
thousands of variables (genes) but a very limited number of observations (experiments).  

In this chapter we will present some of the most commonly used methods for gene 
expression data exploration, including hierarchical clustering, K-means, and self-
organising maps (SOM).  Also, support vector machines (SVM) have become popular for 
classifying expression data, and we will describe the basic concepts of SVM. 

15.2. Data Mining Methods for Gene Expression Analysis 

To date two main categories of data mining methods have been used to analyse gene 
expression data: clustering and classification. Clustering is about the organisation of a 
collection of unlabeled patterns (data vectors) into clusters based on similarity, so that 
patterns within the same cluster are more similar to each other than they are to a pattern 
belonging to a different cluster. It is important for exploratory data analysis since it will 
often reveal interesting structures of the data, thereby allowing formulation of useful 
hypotheses to test. In the context of gene expression data analysis, clustering methods 
have been used to find clusters of co-expressed/co-regulated genes which can be used to 
distinguish between diseases that a standard pathology might find it difficult to tell apart 
as reported by Alizadeh and colleagues in Nature (2000). 

As early DNA microarray experiments have shown that genes of similar function 
yield similar expression patterns, work on the use of classification techniques to assign 
genes to functions of a known class has increased. Instead of learning functional 
classifications of genes in an unsupervised fashion like clustering, classification 
techniques start with a collection of labelled (pre-classified) expression patterns; the goal 
being to learn a classification model that will be able to classify a new expression pattern. 
Classification has also been extensively used to distinguish (classify) different samples, 



for example, breast cancer samples into distinct groups based on their gene expression 
patterns. We will now explore these methods in more detail. 

15.3. Clustering  

Given a gene expression matrix, clustering methods are often used as the first stage in 
data analysis. The goal of clustering  here is to group sets of genes together that share the 
similar gene expression pattern across a dataset.  

There are three essential steps in a typical pattern clustering activity:  

1) Pattern representation refers to things such as the number of available patterns, the 
number of features available to the clustering algorithm, and for some clustering 
methods the desired number of clusters. Suppose we have a gene expression data 
set with 1000 genes, whose expression levels have been measured for 10 time 
points or 10 different samples. In this case, we would have 1000 available patterns 
and 10 features available for each pattern. One clustering aim would therefore be 
to see how we could group these 1000 patterns using these 10 features into a 
number of natural clusters. 

2) Pattern proximity is usually measured by a distance (dissimilarity) matric or a 
similarity function defined on pairs of patterns. The Euclidean distance is 
probably the most commonly used dissimilarity measure in the context of gene 
expression profiling. On the other hand, a similarity measure such as such as 
Pearson’s correlation or Spearman’s Rank Correlation is also used. For a variety of 
commonly used proximity measures see Box 1. Other distance metrics such as 
Mahalanobis Distance, Chebyshev distance and Canberra metric are described in 
[Webb 99]. 

3) Pattern grouping or clustering methods may be grouped into the following two 
categories: hierarchical and non-hierarchical clustering [Jain1999]. A hierarchical 
clustering procedure involves the construction of a hierarchy or tree-like structure, 
which is basically a nested sequence of partitions, while non-hierarchical or 
partitional procedures end up with a particular number of clusters at a single step.  
Commonly used non-hierarchical clustering algorithms include the K-means 
algorithm, graph-theoretic approaches via the use of minimum spanning trees, 
evolutionary clustering algorithms, simulated annealing based methods as well as 
competitive neural networks such as Self-Organising Maps. 

 

 

 

 

 

 

 

 

 



Box 1: Measures of dissimilarity (distance) between two individual patterns 

A gene expression pattern, x, is represented by a vector of measurements [x1, x2,…, 
xp] (expression levels at p different time points). Many of the clustering techniques 
require some measure of dissimilarity or distance between x and y, the two p-dimensional 
pattern vectors, so it is useful to summarise several commonly used distances. 
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Euclidean distance appears to be the most commonly used measure for a variety of 
applications, including gene expression profiling. Nevertheless it does have the 
undesirable property of giving greater emphasis to larger differences on a single variable. 

City-Block or Manhattan distance 
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This metric uses a distance measure that would be suitable for finding the distances 
between points in a city consisting of a grid of intersecting thoroughfares (hence the 
name). It is a little cheaper computationally than Euclidean distance, so it may be a good 
candidate for applications demanding speedy solutions. 
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The Minkowski distance is a general form of the Euclidean and city block distances: 
the Minkowski distance of the first order is the city-block distance, while the Minkowski 
distance of the second order is the same as the Euclidean distance. The choice of m 
depends on the amount of emphasis placed on the larger differences | xi – yi | 

 

To explain how clustering methods work we will use an artificial dataset of simple 
numbers represented as a distance matrix (Table 15.1). In addition, we will use a 
simple eight gene and six sample log2 ratio gene expression matrix as described in 
Chapter 14 (Fig 15.1a) to show how clustering methods may work on DNA array 
data. This gene expression matrix contains three easily identifiable gene expression 
patterns relative to the reference mRNA source namely: i) non changing, ii) over-
expressed to under-expressed and iii) under-expressed to over-expressed (Fig15.1b). 

 

 

 

 

 

 

 



 1 2 3 4 5 

1 0 1 5 9 8 

2  0 4 8 7 

3   0 3 4 

4    0 2 

5     0 

 Table 15.1.   A dissimilarity matrix for five individuals 

   Arrays    

Genes I II III IV V VI 

1  -3 -3 -1  0  2  3 

2  -2 -2  0  1  2  2 

3  -3 -2  0  1  2  3 

4   3  2  0 -1 -2 -3 

5   2  2  1  0 -2 -3 

6   3  2  1  0 -2 -3 

7   2  2  2  2  2  2 

8– -2 -2 -2 -2 -2 -2 

Figure 15.1a. Gene names are in column 1 (gene 1 to 8) and each gene is colour 
coded per row,  with respect to the figure 15.1b. Arrays (I to VI) are in columns (2-
7) with each feature being a gene expression log2 ratio value (see chapter 14) 
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Figure 15.1b. A graphical representation of the data for 8 genes measured across 6 arrays 
corresponding the gene matrix in Figure 15.1a. 

 



15.3.1. Hierarchical Clustering 
The concept of the hierarchical representation of a data set was primarily developed in 
biology. Therefore it is no surprise that many biologists have found it easier to use 
hierarchical methods to cluster gene expression data. Basically a hierarchical algorithm 
will produce a hierarchical tree or dendrogram representing a nested set of partitions. 
Sectioning the tree at a particular level leads to a partition with a number of disjoint 
clusters. A numerical value, essentially a measure of the distance between two merged 
clusters, is associated with each position up the tree where branches join.  

There are two main classes of algorithm for producing a hierarchical tree. An 
agglomerative algorithm begins with placing each of the n available gene expression values 
across a set of arrays (patterns, also known as the gene expression vector) into an 
individual cluster. The algorithm proceeds to merge the two most similar groups to form 
a new cluster, thereby reducing the number of clusters by one. The algorithm continues 
until all the data fall within a single cluster. A divisive algorithm works the other way 
around: it operates by successively dividing groups beginning with a single group 
containing all the patterns, and continuing until there are n groups, each of a single 
individual. Generally speaking, divisive algorithms are computationally less efficient.  

A typical hierarchical agglomerative clustering algorithm is outlined below: 

1) Place each pattern (gene expression vector) in a separate cluster 

2) Compute the proximity matrix of all the inter-pattern distances for all distinct 
pairs of patterns 

3) Find the most similar pair of clusters using the matrix. Merge these two clusters 
into one, decrement number of clusters by one and update the proximity matrix 
to reflect this merge operation. 

4) If all patterns are in one cluster, stop. Otherwise, go to the above step 2. 

The output of such algorithm is a nested hierarchy of trees that can be cut at a desired 
dissimilarity level forming a partition. Hierarchical agglomerative clustering algorithms 
differ primarily in the way they measure the distance or similarity of two clusters where a 
cluster may consist of only a single object at a time. The most commonly used inter-
cluster measures are: 
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Where dAB is the dissimilarity between two clusters A and B, dij is the dissimilarity 
between two individual patterns i and j, nA and nB are the number of individuals in 
clusters A and B respectively. These three inter-cluster dissimilarity measures are the 
basis of the three of the most popular hierarchical clustering algorithms. The single-linkage 
algorithm uses Equation 15.1: the minimum of the distances between all pairs of patterns 
drawn from the two clusters (one pattern from each cluster). The complete-linkage 
algorithm uses Equation 15.2: the maximum of all pairwise distances between patterns in 
the two clusters. The group-average algorithm uses Equation 15.3:  the average of the 
distances between all pairs of individuals that are made up of one individual from each 



cluster. To see how these algorithms work, we shall apply them to the artificial data set 
first, and then to the illustrative gene expression data set. 

 

Single Linkage Clustering 
 

From Table 15.1 it is clear that the closest two clusters (which contain a single object 
each at this stage) are those containing the individuals 1 and 2. These are merged to form 
a new cluster {1,2}. The distances between this new cluster and the three remaining 
clusters are calculated according to equation 15.1 as follows: 

 

                                       d(12)3 = min(d13, d23) =  4 

                                       d(12)4 = min(d14, d24) =  8 

                                       d(12)5 = min(d15, d25) =  7 

 

This gives the new dissimilarity matrix: 

 {1,2} 3 4 5 

{1,2} 0 4 8 7 

3  0 3 4 

4   0 2 

5    0 

 
The closest two clusters are now those containing individuals 4 and 5, so these are 

merged to form a new cluster {4,5}. We now have three clusters: {1,2}, 3, {4,5}. The 
distances between the new cluster and the other two clusters are then calculated: 

 

                                       d(45)3 = min(d43, d53) =  3 

                                       d(45)(12) = min(d14, d24, d15, d25) =  7 

 

These lead to the following new dissimilarity matrix: 

 {1,2} 3 {4,5}

{1,2} 0 4 7 

3  0 3 

{4,5}   0 

 

The closest two clusters are those containing 3 and {4,5}, so these are merged to 
form a new cluster {3,4,5}. The distance between the new cluster and the other 
remaining cluster {1,2} is calculated to be 4, which results in the following new 
dissimilarity matrix: 



 {1,2} {3,4,5}

{1,2} 0 4 

{3,4,5}  0 

 
Finally, merge of the two clusters at this stage will form a single group containing all 

five individuals. The dendrogram illustrating this series of mergers is given in Figure 
15.2a 
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Figure 15.2: Dendrograms from single-linkage (a) and complete-linkage clustering (b) 

 

Complete Linkage Clustering 

As with single linkage this clustering approach begins by merging clusters containing 
individuals 1 and 2 into a new cluster {1,2}. The dissimilarities between this cluster and 
the three remaining clusters are calculated according to equation 15.2 as follows: 

                                       d(12)3 = max(d13, d23) =  5 

                                       d(12)4 = max(d14, d24) =  9 

                                       d(12)5 = max(d15, d25) =  8 

This gives the different dissimilarity matrix: 

 {1,2} 3 4 5 

{1,2} 0 5 9 8 

3  0 3 4 

4   0 2 

5    0 

The similar process takes place as described above for the single linkage algorithm. The 
final complete-link dendrogram is shown in Figure 15.2b. In this example the tree 
structure is the same regardless of the linkage method used. The readers are encouraged 



to apply the group-average algorithm to this data set and work out the corresponding 
dendrogram. 

 

Clustering gene expression data 

Here we would like to show how clustering algorithms such as single-linkage may be 
applied to the gene expression data set as described in Figures 15.1a and 15.1b. First, we 
calculate the Euclidean distances between each gene pairs using the gene expression 
profiles in Figure 15.1a as follows: 
 

Gene Pair Array 
I 

Array 
II 

Array 
III 

Array 
IV 

Array 
V 

Array 
VI 

Σ of values √ of Σ = 
distance (de

) 

(gene 1-2)2   1 1 1 1 0 1 5 2.36 
(gene 2-3)2   1 0 0 0 0 1 2 1.41 
(gene 3-4)2   36 16 0 4 16 36 108 10.39 
•         
•         
(gene 1-3)2   0 1 1 1 0 0 3 1.73 
(gene 2-4)2   25 16 0 4 16 25 88 9.27 
•         
•         
(gene 1-7)2   25 25 9 4 0 1 64 8 
(gene 2-8)2   0 0 4 9 16 16 45 6.7 
(gene 1-8)2   1 1 1 4 16 48 48 6.93 

              
The corresponding distance matrix is then shown in Table 15.2. 

 

 Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 

Gene 1 0 2.36   1.73 10.72 10.29 10.81 8.00 6.92 
Gene 2  0 1.41 9.27 8.66 9.16 6.08 6.70 
Gene 3   0 10.39 9.75 10.30 6.86 7.41 
Gene 4    0 1.73 1.41 7.41 6.86 
Gene 5     0 1.00 6.86 6.78 
Gene 6      0 6.86 7.42 
Gene 7       0 2.72 
Gene 8        0 

 
Table 15.2.  Gene expression distance metrix 

 

Now let us see how the single-linkage method may be applied to this case. The closest 
two clusters (which contain a single object each at this stage) are those containing genes 5 
and 6. These are merged to form a new cluster {5, 6}. The distances between this new 
cluster and the six remaining clusters are calculated according to Equation 15.1 as 
follows: 

                                       d(56)1 = min(d15, d16) =  10.29 

                                       d(56)2 = min(d25, d26) =  8.66 

                                       . . . 



                                       d(56)8 = min(d58, d68) =  6.78 

This gives the new dissimilarity matrix below where genes 5 and 6 are merged and the 
distances recalculated as per the single linkage metric: 

 Gene 1 Gene 2 Gene 3 Gene 4 Gene {5,6} Gene 7 Gene 8 

Gene 1 0 2.36   1.73 10.72 10.29 8.00 6.92 
Gene 2  0   1.41 9.27 8.66 6.08 6.70 
Gene 3   0 10.39 9.75 6.86 7.41 
Gene 4    0 1.41 7.41 6.86 
Gene {5,6}     0 6.86 6.78 
Gene 7      0 9.80 
Gene 8       0 
 
The process of merging the two least dissimilar gene vectors and recalculating the 
distance matrix is continued until all genes are merged and plotted as a dendrogram. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 15.3.  The Gene Expression dendrogram. 
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     Interpretation of the dendrogram in Fig 15.3 is greatly aided by displaying the log2 
ratio gene expression values as a coloured block diagram, where each row represents a 
gene across the columns of samples. The colour of each row/column block (feature) is 
related to the actual log2 ratio as shown by the colour range at the bottom of Figure 15.3. 
The data is taken from figure 15.1a and represents in shades of green and red the same 
information as plotted in Figure 15.1b. From this it is relatively easy to see the gene 
expression patterns that lead to the dendrogram structure derived from the single linkage 
of the gene expression Euclidean distances. Consistent with the known gene expression 
patterns in Figure 15.1b the 8 genes split into 3 groups in the dendrogram. 

A challenging issue with hierarchical clustering is how to decide the optimal partition 
from the hierarchy, i.e. what is the best number of groups? One approach is to select a 
partition that best fits the data in some sense, and there are many methods that have 
been suggested in the literature [Everitt93]. It has also been found that the single-link 
algorithm tends to exhibit the so-called chaining effect: it has a tendency to cluster 
together at a relatively low level objects linked by chains of intermediates. As such, the 
method is appropriate if one is looking for “optimally” connected clusters rather than for 
homogeneous spherical clusters. The complete-link algorithm, on the other hand, tends 
to produce clusters that tightly bound or compact, and has been found to produce more 
useful hierarchies in many applications than the single-link algorithm [Jain99]. The 
group-average algorithm is also widely-used. Detailed discussion and practical examples 
of how these algorithms work can be found in [Jain99,Webb99]. 

 
15.3.2. K-Means 

A non-hierarchical or partitional clustering algorithm produces a single partition of 
the data instead of a clustering structure such as the dendrogram. This type of algorithm 
has advantages in applications involving large data sets where the construction of 
dendrograms is computationally prohibitive. These algorithms usually obtain clusters by 
optimising a criterion function, of which the square error is the most commonly used. K-
means is the best-known partitional algorithm employing such a criterion where the 
square error for each cluster j, [j= 1,2, …K], is the sum of the squared Euclidean 
distances between each pattern xi

(j) in the cluster j and its centre, or mean vector, of  the 
cluster, m(j) 
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Where Ej  is refereed to as the within-cluster variation or sum of squares for cluster j, nj  is 
the number of patterns within cluster j, and )(, j

i mxd  is the Euclidean distance from 
pattern xi to the centre of the cluster to which it is assigned. Therefore the total square 
error for the entire clustering with K clusters is the sum of the within-cluster sum of 
squares: 
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Basically the K-means algorithm starts with an initial partition with a fixed number of 
clusters and cluster centers, and proceeds with assigning each pattern to its closest cluster 
centre so as to reduce the square error between them. This is repeated until convergence 
is achieved, e.g. there is no reassignment of any pattern from one cluster to another, or 
the squared error ceases to decrease significantly after certain number of iterations. 

Here is a view of the K-means algorithm: 

1) Choose K cluster centers to coincide with K randomly-chosen patterns. 
Repeat the following steps until the cluster membership is stable 

2) Assign each pattern to its closest cluster center 

3) Compute the new cluster centers using the new cluster memberships 

4) Repeat the above two steps until a convergence criterion is satisfied  

5)  If desirable, adjust the number of clusters by merging and splitting existing 
clusters 

It should be noted that the last step is not an essential part of the K-means algorithm, 
but it has been included in some of the most well-known systems, e.g, in ISODATA 
[Webb99]. The adjustment of the number of clusters may be desirable if certain 
conditions are met. For example, if a cluster has too many patterns and an unusually 
large variance along the feature with the largest spread, it is probably a good idea to split 
the cluster. On the other hand, if two cluster centres are sufficiently close, they should 
perhaps be merged. 

Let us have a look at how this algorithm works with a simple example. Consider the 
two-dimensional data as shown in Figure 15.4 where there are six patterns. Suppose we 
set K (the number of clusters) to 2 and choose two patterns from the data set as initial 
cluster centre vectors. Those selected are points 5 and 6. We now apply the algorithm to 
the data set and allocate individuals to clusters A and B represented by the initial vectors 
5 and 6 respectively. It is clear that individuals 1, 2, 3, 4, 5 are allocated to cluster A and  
individual 6 to cluster B. New centres (means) are then calculated with (2,2) for cluster A 
and (4,3) for cluster B, and the sum of within-cluster sum-of-squares is calculated using 
equation 15.5,  which gives 6: 

 [(1-2)2 + (1-2)2] + [(2-2)2 + (1-2)2] + [(2-2)2 + (2-2)2] + [(2-2)2 + (3-2)2] + [(3-2)2 + (3-2)2] 
+ [(4-4)2 + (3-3)2] =  2 +1 +0 + 1 + 2 + 0 = 6. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.4:  Sample data for K-Means 
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The results of this iteration are summarised in Table 15.3 in Step 1. This process is 
then repeated, using the new cluster centres for re-grouping individuals. This leads to the 
assignment of individuals 1, 2, 3, and 4 to cluster A and 5 and 6 to cluster B. The sum of 
within-cluster sum-of-squares is now reduced to 4. A third iteration produces no change 
in the cluster membership or the within-cluster sum-of-squares. The algorithm 
terminates here. 
                

 Cluster A   Cluster B            E 
Step Membership Centre Membership Centre  

1 1,2,3,4,5 (2,2) 6 (4,3) 6 
2 1,2,3,4 (7/4, 7/4) 5,6 (3.5,3) 4 
3 1,2,3,4 (7/4, 7/4) 5,6 (3.5,3) 4 

 
Table 15.3. Summary of k-means iterations 

 

The K-means algorithm is popular because it is easy to understand, easy to 
implement, and has a good time complexity. However, the algorithm can still take a 
considerable time if the number of patterns involved is very large and the number of 
clusters is substantial as with some of the large-scale gene expression applications. 
Another problem is that it is sensitive to the initial partition – the selection of the initial 
patterns, and may converge to a local minimum of the criterion function value if the initial 
partition is not properly chosen. A possible remedy is to run the algorithm with a 
number of different initial partitions. If they all lead to the same final partition, this 
implies that the global minimum of the square error has been achieved. However, this 
can be time-consuming, and may not always work. 

15.3.3. Self-Organising Maps 
The self-organising map (SOM) algorithm was proposed by Teuvo Kohonen in 1981. 

Apart from being used in a wide variety of fields, the SOM offers an interesting tool for 
exploratory data analysis, particularly for partitional clustering and visualisation. It is 
capable of representing high-dimensional data in a low dimensional space (often a two or 
one dimensional array) that preserves the structure of the original data.  

A self-organising network consists of a set of input nodes V = {v1, v2, …, vN}, a set of 
output nodes C = {c1, c2, …, cM}, a set of weight parameters W = {w11, w12, …, wij, …, 
wNM} (1 ≤ i ≤ N, 1 ≤ j ≤ M, 0 ≤ wij ≤ 1), and a map topology that defines the distances 
between any given two output nodes. The input nodes represent an N-dimensional 
vector, e.g. a single gene’s expression level at N time points. Figure 15.5 is an illustration 
of how the gene expression example in Figure 15.1b may be analysed using SOM. In this 
case, each gene is expressed at six time points, therefore there are six input nodes. The 
output nodes in SOM are usually arranged in a 2-dimensional array to form a “map”. In 
this illustrative example, there are 20 output nodes on the map although the most 
appropriate number of output nodes usually needs to be determined via experimentation. 

Each input node is fully connected to every output node via a variable connection. A 
weight parameter is associated with each of these connections, and the weights between 
the input nodes and output nodes are iteratively changed during the learning phase until 
a termination criterion is satisfied. For each input vector v, there is one associated winner 
node on the output map. A winner node is an output node that has minimum distance to 
the input vector. This can be seen for the output map for winner node corresponding to 
gene 1 in Figure 15.5 (addendum). 



Here is the sketch of the SOM algorithm: 

1) Initialise the topology and size of the output map (M) 

2) Initialise the connection weights to random values over the interval [0, 1] and 
normalise both the input vectors and the connected weight vectors. Initialise 
the gain value η (the learning rate) and the neighbourhood size r. 

3) Repeat until convergence: 

• Present a new input vector v 

• Calculate the Euclidean distance between the input vector and each 
node on the output map, and designate the node with the minimum 
distance as the winner node c 
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• Update weights W, learning rate η and Nc, the neighbourhood 
surrounding the winner node c, in such way that the vectors 
represented by output nodes are similar if they are located in a small 
neighbourhood. For each node j ∈ Nc, perform the following: 

                         ][ )()()( old
ji

old
j

new
j wvww −+= η                                                  (15.7) 

• Decrease both the neighbourhood size and the learning rate. 
 

The neighbourhood set Nc is a set of nodes that surround the winner node c. These 
nodes in Nc are affected with weight modifications, apart from those changes made to 
the winner node, as defined in the algorithm. These weight changes are made to increase 
the matching between the nodes in Nc and the corresponding input vectors. As the 
update of weight parameters proceeds, the size of the neighbourhood set is slowly 
decreased to a predefined limit, for instance, a single node. This process leads to one of 
the most important properties of SOM that similar input vectors are mapped to 
geometrically close winner nodes on the output map. This is called neighbourhood 
preservations, which has turned out to be very useful for clustering similar data patterns. 
Going back to Figure 15.5, we can see that the output map status at time t and the final 
map when the computational process has ended. It becomes clear that there are three 
distinctive clusters on the output map: {1,2,3}, {4,5,6} and {7,8}. 

It should be noted that for illustrative purpose, each gene profile in this example has 
been mapped onto a distinctive node on the output map. This should not always be the 
case. As long as two gene profile vectors are sufficiently similar, they may be mapped 
onto the same node on the output map.  

It is not always straightforward to visually inspect the projected data on the two-
dimensional output map in order to decide the number and size of natural clusters. 
Therefore, careful analysis or post-processing of output maps is crucial to the partition of 
the original data set. Like the K-means algorithm, the SOM produces a sub-optimal 
partition if the initial weights are not chosen properly. Moreover, its convergence is 
controlled by various parameters such as the learning rate, the size and shape of the 
neighbourhood in which learning takes place. Consequently, the algorithm may not be 
very stable in that a particular input pattern may produce different winner nodes on the 
output map at different iterations.  



15.3.4. Discussion 

Different clustering algorithms may produce different clusters from the same data set.  
Some may fail to detect obvious clusters, while many will always be able to produce 
clusters even when there is no natural grouping in the data. This is because each 
algorithm implicitly forces a structure on the given data. Thus it is extremely important 
to emphasise that cluster analysis is usually one of the first steps in an analysis. Accepting 
the results of a cluster algorithm without careful analysis and follow-up study can lead to 
misleading results. The validation of clustering results is difficult. There is no optimal 
strategy for cluster interpretation, although a few formal approaches have been proposed 
such as the use of “measures of distortion” and the use of “internal criteria measures” to 
determine the number of clusters [Webb99]. The application scope of these methods is 
rather limited. Relevant domain knowledge such as biological information about the 
genes and associated proteins in a cluster can help check the consistency between the 
clustering findings and what has already known and remains one of the most important 
ways of validating the results. 

Hierarchical clustering, K-means and SOM are probably the most commonly used 
clustering methods for gene expression analysis. By no means should they be considered 
the only ones worth using. The global search and optimisation methods such as genetic 
algorithms or simulated annealing can find the optimal solution to the square error 
criterion, and have already demonstrated certain advantages. Finally, fuzzy clustering may 
have much to offer as well. Since a gene may have multiple functional roles in various 
pathways, it can in effect be the member of more than one cluster. 

 
15.4   Classification 
The task of classification exists in a wide variety of domains. In medical diagnosis, there 

may exist many cases that correspond to several diseases, together with their associated 
symptoms. We would like to know whether there are any diagnostic rules underlying 
these cases that would allow us to distinguish between these diseases. In credit scoring, a 
company may use information regarding thousands of existing customers to decide 
whether any new customer should be given a particular credit status. This information 
can include a variety of financial and personal data. In the gene expression settings, we 
might want to predict the unknown functions of certain genes, given a group of genes 
whose functional classes are already known. In all these examples, there are the following 
common themes. First, we have a set of cases, e.g. patients, customers, or genes. Second, 
we are interested in assigning each new case to one of the pre-defined classes, e.g. 
different disease categories, credit status, or gene function classes. Third, there is a set of 
features on which the classification decision is based, e.g. a set of symptoms, personal or 
financial information, or gene expression level at different time points. Essentially we are 
interested in how to construct a classification procedure from a set of cases whose 
classes are known so that such a procedure can be used to classify new cases. 

The objective of learning classification models from sample data is to be able to 
classify new data successfully, with the corresponding error rates as low as possible. 
Often one would want to split all the available data randomly into two groups: one for 
designing the classification model, and the other for testing the model accuracy. 
Traditionally for a single application of the training-and-testing method, the proportions 
of the data used for training and testing are approximately a 2/3, 1/3 split. However, if 
only a small number of cases are available, such a split would have problems since this 
will leave one with either insufficient training or testing cases. A more suitable way of 



dealing with such situations would be the use of resampling techniques such as cross-
validation or bootstrapping. Take the k-fold cross-validation as an example; the cases are 
randomly partitioned into k mutually exclusive test partitions of roughly equal size. For 
each of the k test partitions, all cases not found in this partition are used for training, and 
the corresponding classifier is tested on this test partition. The average error rates over all 
k partitions are then the cross-validated error rate. In this way, we have made the full use 
of the limited number of cases, for testing as well as training. The 10-fold cross-
validation method appears to be one of the most commonly used. 

There have been many classification methods proposed in the statistical, artificial 
intelligence and pattern recognition communities. Commonly-used methods include 
Bayesian classifiers, linear discriminant analysis, nearest neighbour classification, 
classification tree, regression tree, neural networks, genetic algorithms, and more 
recently, support vector machines. Detailed discussions of most of these topics may be 
found in [Hand2001, Webb99]. 

 

15.4.1. Support Vector Machines (SVM) 

Over the last few years, the SVM has been established as one of preferred approaches 
to many problems in pattern recognition and regression estimation, including 
handwritten digit recognition, object recognition, speaker identification, face detection, 
text mining, time series predictions, and gene expression classification. In most cases, 
SVM generalisation performances have been found to be either equal to or much better 
than that of the conventional methods. This is largely due to the SVM’s ability to achieve 
the right balance between the accuracy attained on a particular training set, and the 
capacity of the learning machine, that is, the ability of the machine to learn any training set 
without error. Statistical learning theory [Vapnik 1995] shows that it is crucial to restrict 
the class of functions that the learning machine can implement to one with a suitable 
capacity for the amount of training data available. 

Suppose we are interested in finding out how to separate a set of training data vectors 
that belong to two distinct classes. If the data are separable in the input space, there may 
exist many hyperplanes that can do such a separation, but we are interested in finding the 
optimal hyperplane classifier – the one with the maximal margin of separation between 
the two classes. Without going into full details the maximal margin of separation can be 
uniquely constructed by solving a constrained quadratic optimisation problem involving 
support vectors, a small subset of patterns that that lie on the margin. The support vectors, 
often just a small percentage of the total number of training patterns, contain all relevant 
information about the classification problem. For the illustration of these concepts a 
simple partitioning of a data set into ‘+’ and ‘-’ classes is shown in Figure 15.6. The 
corresponding linear SVMs can be easily constructed to separate the two classes. 

When the two classes are not separable in the input space, the support vector machine 
can be extended to derive non-linear decision rules using so-called kernel functions. Kernel 
functions in this context are meant to be those that map the input data into some feature 
space. The key idea is to map the training data nonlinearly into a high-dimensional 
feature space, and then construct a (linear) separating hyperplane with maximum margin 
there. This yields a non-linear decision boundary in input space the concept of which is 
shown in Figure 15.7. The development of SVM began with the consideration of two 
classes problems, but have recently been extended to multi-class problems. 

 

 



 

 

 

 

 

 

 

 

Figure 15.6.   Hyperplanes and support vectors 
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Support Vector Machines offer a novel approach to classification. SVM training 
always finds a global minimum, while its neural network competitors may get stuck with 
a local minimum. It has simple geometric interpretation and it can be analysed 
theoretically using concepts from statistical learning theory.  It has also found much 
success with many practical problems. However, it should be noted that currently there is 
no established theory that can guarantee that a given family of SVMs will have high 
accuracy on a given problem. SVM is very much characterised by the selection of its 
kernel, and it is not always easy to choose a kernel function that is most suited to the 
classification problem in hand. Computational efficiency is also a concern for large-scale 
applications. A detailed introduction of the SVM can be found in [Cristianini 2000]. 

15.4.2. Discussion 
Classification, or discriminant analysis, is a well-researched subject with a vast 

literature. However, it is not always easy to decide the most suitable method for a 
classification task in hand. Given that most of these methods included in many of the 
commonly-used statistical or data mining packages, performance comparison of these 
methods on a given problem has been made easier. It is perhaps useful to point out that 
predictive accuracy on unseen test data is not the only, or even the most important, 
criterion for assessing the performance of a classification system. Other important 
factors in deciding that one method is preferable to another include computational 
efficiency, misclassification cost, and the interpretability of the classification models. 
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Much more work is needed to study the relative strengths and weaknesses of the various 
methods.  

15.5. Conclusion and Future Research 

While there are many statistical, data mining, or new gene expression data analysis 
tools that can be relatively easily used for clustering, classification and visualisation, we 
will witness very intensive research effort on the construction of networks for 
understanding gene interaction and regulation. Following the clustering of potentially co-
expressed genes, it is desirable to develop a computational model that uses the 
expression data of these genes and relevant biological knowledge to understand 
interactions and regulation of these genes, for example, how the proteins of the 
expressed genes in a cluster interact in a functional module.   Although the work in this 
relatively new area of functional genomics, network modelling, has begun more recently, a 
variety of approaches have already been proposed. These range from the Boolean 
network to Bayesian network, and from time series modelling to the learning of such 
networks from the literature. The development of most of these approaches is still at an 
early stage, and it is often very difficult to compare them [D’haeseleer2000]. 

Major breakthrough in this area will not come by easily. This will require a truly 
interdisciplinary effort in which experimentalists, bioinformaticians, computer scientists 
and mathematicians work closely together. A much closer integration of network 
modelling with other data pre-processing activities as well as with the experimental 
design of microarrays will be necessary. It will also require much more experience in 
constructing and comparing gene networks using different methods for the same 
expression data. Last but not least, the timely and dynamic use of various kinds of 
relevant information such as genes, proteins, their relationships, diseases, patients, and 
clinical data, which may exist in various bioinformatics resources, medical databases, 
scientific literature, and a variety of web sites will greatly aid network modelling. 
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Figure 15.5:  Self Organising Map 
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