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The advent of the genome project has vastly increased
our knowledge of the genomic sequences of humans and
other organisms, as well as the genes that they encode.
Various techniques have been developed to exploit this
growing body of data, including serial analysis of gene
expression (SAGE)1, oligonucleotide arrays2 and cDNA
microarrays3,4, that provide rapid, parallel surveys of
gene-expression patterns for hundreds or thousands of
genes in a single assay. These transcriptional profiling
techniques promise a wealth of data that can be used 
to develop a more complete understanding of gene 
function, regulation and interactions.

The most powerful applications of transcriptional
profiling involve the study of patterns of gene expres-
sion across many experiments that survey a wide array
of cellular responses, phenotypes and conditions. The
simplest way to identify genes of potential interest
through several related experiments is to search for
those that are consistently either up- or downregulated.
To that end, a simple statistical analysis of gene-expres-
sion levels will suffice. However, identifying patterns of
gene expression and grouping genes into expression
classes might provide much greater insight into their
biological function and relevance. Several techniques
have been used for the analysis of gene-expression data,
including hierarchical clustering5–9, mutual informa-
tion5,10 and self-organizing maps (SOMs)11,12.

The implementation of a successful programme of
expression analysis requires the development of various
laboratory protocols, as well as the development of data-
base and software tools for efficient data collection and
analysis. Although detailed laboratory protocols have
been published13,14, the computational tools necessary to
analyse the data are rapidly evolving and no clear consen-
sus exists as to the best method for revealing patterns of
gene expression. Indeed, it is becoming increasingly clear
that there might never be a ‘best’ approach and that the
application of various techniques will allow different
aspects of the data to be explored. Furthermore, without
a more complete understanding of the underlying biolo-
gy, particularly of gene regulation, there might never be a
single technique that will allow us to find all the relation-
ships in the data. Consequently, choosing the appropriate
algorithms for analysis is a crucial element of the experi-
mental design. The purpose of this review is to provide a
general overview of some existing computational
approaches. This review is not comprehensive, as new,
more sophisticated techniques are rapidly being devel-
oped, but instead represents a tutorial on some of the
more basic tools. Although the focus here is on spotted
DNA microarrays, the techniques described are generally
applicable to expression data generated using oligonu-
cleotide arrays,Affymetrix GeneChipsTM, or SAGE, pro-
vided the data is presented in an appropriate format.
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Indices (TGI)16 (TIGR is The Insititute for Genomic
Research), the STACK database17 and the Database of
Transcribed Sequences (DoTS) (see links box). Each
database attempts to group ESTs from the same gene
and to provide a common annotation. Although the
precise approaches taken by the databases vary, they all
generally provide high-quality annotation for the
cDNAs represented in the public databases. Regardless
of which resource is used to select clones, the cDNAs
being arrayed should have their sequences verified to
validate the clone identities. The consensus emerging in
the community is that stable descriptors, either acces-
sion numbers or DNA sequence, should be used as the
primary identifier for arrayed cDNA clones.

For other array-based assays, such as pre-spotted fil-
ter arrays and Affymetrix GeneChipsTM (REF. 2), the
researcher has little, if any, control over the probe con-
tent of the chip. These arrays do have the advantage of
providing a platform that can be used to more easily
compare results between laboratories. However, at least
in the case of Affymetrix GeneChipsTM, the lack of pre-
cise knowledge of the probe sequences used to represent
each gene forces users to rely on the annotation provid-
ed by the manufacturer.

After clone selection, amplification and purifica-
tion, the probes are loaded in microtiter plates into an
arraying robot and are mechanically spotted onto
chemically modified glass slides. The robotic arrayers
provide a reproducible and precise mathematical map
from spots on the arrays to wells in the microtiter
plates, and therefore to the cDNA clones and the genes
that they represent.

One important element for assuring data quality,
and maximizing opportunities for comparison of
expression data between experiments, is the establish-
ment and use of an integrated laboratory information
management system (LIMS) database to track all
aspects of the process. Early in the process, various data
must be tracked, including clone selection, slide infor-
mation and scanner settings. Although many arraying
labs have developed their own internal relational data-
bases, there are several commercially available products,
as well as published prototypes, available from the
National Center for Biotechnology Information
(NCBI)18 and Stanford19 (see links box at end).

Data collection and normalization
Once a collection of microarray slides is printed, each
slide represents a potential experiment. The arrayed
genes are probes that can be used to query pooled, differ-
entially labelled targets derived from RNA samples from
different cellular phenotypes to determine the relative
expression levels of each gene. The two RNA samples
from the tissues of interest are typically used to generate
first-strand cDNA targets labelled with the fluorescent
dyes Cy3 and Cy5. These are then purified, pooled and
hybridized to the arrays. After hybridization, slides are
scanned and independent images for the control and
query channels are generated. These images must then
be analysed to identify the arrayed spots and to measure
the relative fluorescence intensities for each element.

Selecting the array probes
The first step in any microarray assay is starting with a
well-characterized and annotated set of hybridization
probes (the sequences that are arranged on the micro-
array). For prokaryotes and simple eukaryotes, such as
yeast, this is most easily accomplished by designing PCR
primers to amplify gene-specific probes directly from
genomic DNA. In most eukaryotic genomes, the large
number of genes, the existence of introns and the lack of
a complete genome sequence, makes direct amplification
impractical. In these species, the EST data collected in
the public DNA sequence databases are a valuable repre-
sentation of the transcribed portion of the genome, and
the cDNA clones from which the ESTs are derived have
become the primary reagents for expression analysis.

However, clone selection is a significant challenge;
there are more than three million human ESTs in the
dbEST database, from which a single representative
clone needs to be selected for each gene included in the
array. There are several publicly available analyses of
human ESTs, including UniGene15 and TIGR Gene

Box 1 | Normalization

There are three widely used techniques that can be used to normalize gene-expression
data from a single array hybridization. All of these assume that all (or most) of the
genes in the array, some subset of genes, or a set of exogenous controls that have been
‘spiked’ into the RNA before labelling, should have an average expression ratio equal to
one. The normalization factor is then used to adjust the data to compensate for
experimental variability and to ‘balance’ the fluorescence signals from the two samples
being compared.

Total intensity normalization
Total intensity normalization data relies on the assumption that the quantity of initial
mRNA is the same for both labelled samples. Furthermore, one assumes that some
genes are upregulated in the query sample relative to the control and that others are
downregulated. For the hundreds or thousands of genes in the array, these changes
should balance out so that the total quantity of RNA hybridizing to the array from each
sample is the same. Consequently, the total integrated intensity computed for all the
elements in the array should be the same in both the Cy3 and Cy5 channels. Under this
assumption, a normalization factor can be calculated and used to re-scale the intensity
for each gene in the array.

Normalization using regression techniques
For mRNA derived from closely related samples, a significant fraction of the assayed
genes would be expected to be expressed at similar levels. In a scatterplot of Cy5 versus
Cy3 intensities (or their logarithms), these genes would cluster along a straight line, the
slope of which would be one if the labelling and detection efficiencies were the same for
both samples. Normalization of these data is equivalent to calculating the best-fit slope
using regression techniques27 and adjusting the intensities so that the calculated slope
is one. In many experiments, the intensities are nonlinear, and local regression
techniques are more suitable, such as LOWESS (LOcally WEighted Scatterplot
Smoothing) regression29.

Normalization using ratio statistics
A third normalization option is a method based on the ratio statistics described by
Chen et al.20. They assume that although individual genes might be up- or
downregulated, in closely related cells, the total quantity of RNA produced is
approximately the same for essential genes, such as ‘housekeeping genes’. Using this
assumption, they develop an approximate probability density for the ratio T

k
= R

k
/G

k

(where R
k

and G
k

are, respectively, the measured red and green intensities for the kth
array element). They then describe how this can be used in an iterative process that
normalizes the mean expression ratio to one and calculates confidence limits that can
be used to identify differentially expressed genes.
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of 2, whereas those downregulated by the same factor
have an expression ratio of one-half (0.5) — downregu-
lated genes are ‘squashed’between 1 and 0. By contrast, a
gene upregulated by a factor of 2 has a log

2
(ratio) of 1,

whereas a gene downregulated by a factor of 2 has a
log

2
(ratio) of –1, and a gene expressed at a constant level

(with a ratio of 1) has a log
2
(ratio) of 0 (FIG. 1).

At this point in the analysis of a single experiment, we
typically look for genes that are differentially expressed.
Most published studies have used a post-normalization
cut-off of twofold increase or decrease in measured level
to define differential expression, although there is no
firm theoretical basis for selecting this level as significant.
Alternatively, the approach defined by Chen et al.20 pro-
vides confidence intervals that can be used to identify
differentially expressed genes.

It should be noted that there are disadvantages to
using only expression ratios for data analysis. Although
ratios can help to reveal some patterns in the data, they
remove all information about the absolute gene-expres-
sion levels.Various parameters depend on the measured
intensity, including the confidence limits that are placed
on any microarray measurement. Although most of the
techniques developed for analysis of microarray data
use ratios, many of them can be adapted for use with
measured intensities.

Most commercially available microarray scanner manu-
facturers provide software that handles image process-
ing; there are several additional image-processing pack-
ages available (see links box at end).

After image processing, it is necessary to normalize
the relative fluorescence intensities in each of the two
scanned channels. Normalization adjusts for differ-
ences in labelling and detection efficiencies for the flu-
orescent labels and for differences in the quantity of
initial RNA from the two samples examined in the
assay. These problems can cause a shift in the average
ratio of Cy5 to Cy3 and the intensities must be re-
scaled before an experiment can be properly analysed.
Three normalization algorithms are described in BOX 1.
There are several sophisticated, nonlinear approaches
to normalization that correct, for example, for varia-
tion between the individual spotting pens and for non-
linear relationships between the dye intensities.

After normalization, the data for each gene are typi-
cally reported as an ‘expression ratio’ or as the logarithm
of the expression ratio. The expression ratio is simply the
normalized value of the expression level for a particular
gene in the query sample divided by its normalized value
for the control. The advantage of using the logarithm of
the expression ratio is simple to understand. Genes that
are upregulated by a factor of 2 have an expression ratio
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Figure 1 | Data normalization. a | A histogram representing the distribution of log2(ratio) values for a ‘self–self’ hybridization, in which the measured Cy5 intensity 
is generally less than the measured Cy3 intensity. Consequently, the log2(ratio) histogram is centred to the left of zero (as are, indeed, the vast majority of the data). 
b | The same data set shown before (red) and after (blue) normalization to illustrate how the data are transformed. The normalized distribution, shown in blue, is
shifted and centred about zero. The perceived change in the shape of the distribution is an artefact of the process of placing data into ‘bins’ when making the
histogram. Scatter plots before (red) and after (blue) normalization of the c | measured intensities and d | log(intensities) also illustrate the transformation of the data.
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CLUSTER ANALYSIS 

The term ‘cluster analysis’
actually encompasses several
different classification
algorithms that can be used to
develop taxonomies (typically
as part of exploratory data
analysis). Note that in this
classification, the higher the
level of aggregation, the less
similar are members in the
respective class.

expression, each experiment represents a separate, dis-
tinct axis in space and the log

2
(ratio) measured for that

gene in that experiment represents its geometric coor-
dinate. For example, if we have three experiments, the
log

2
(ratio) for a given gene in experiment 1 is its x-

coordinate, the log
2
(ratio) in experiment 2 is its y-

coordinate, and the log
2
(ratio) in experiment 3 is its z-

coordinate. So, we can represent all the information we
have about that gene by a point in x–y–z-expression
space. A second gene, with nearly the same log

2
(ratio)

values for each experiment will be represented by a
(spatially) nearby point in expression space; a gene
with a very different pattern of expression will be far
from our original gene. The generalization to more
experiments is straightforward (although harder to
draw): the dimensionality of expression space grows to
be equal to the number of experiments. In this way,
expression data can be represented in n-dimensional
expression space, where n is the number of experi-
ments, and where each gene-expression vector is rep-
resented as a single point in that space.

Having been provided with a means of measuring
distance between genes, clustering algorithms sort the
data and group genes together on the basis of their sepa-
ration in expression space. It should also be noted that if
we are interested in clustering experiments, we could
represent each experiment as an ‘experiment vector’
consisting of the expression values for each gene; these
define an ‘experiment space’, the dimensionality of
which is equal to the number of genes assayed in each
experiment. Again, by defining distances appropriately,
we could apply any of the clustering algorithms defined
here to analyse and group experiments.

To interpret the results from any analysis of multiple
experiments, it is helpful to have an intuitive visual rep-
resentation. A commonly used approach relies on the
creation of an expression matrix in which each column
of the matrix represents a single experiment and each
row represents the expression vector for a particular
gene. Colouring each of the matrix elements on the basis
of its expression value creates a visual representation of
gene-expression patterns across the collection of experi-
ments. There are countless ways in which the expression
matrix can be coloured and presented. The most com-
monly used method colours genes on the basis of their
log

2
(ratio) in each experiment, with log

2
(ratio) values

close to zero coloured black, those with log
2
(ratio) values

greater than zero coloured red, and those with negative
values coloured green. For each element in the matrix,
the relative intensity represents the relative expression,
with brighter elements being more highly differentially
expressed. For any particular group of experiments, the
expression matrix generally appears without any appar-
ent pattern or order. Programmes designed to cluster
data generally re-order the rows, or columns, or both,
such that patterns of expression become visually appar-
ent when presented in this fashion.

Before clustering the data, there are two further ques-
tions that need to be considered: first, should the data be
adjusted in some way to enhance certain relationships?
And second, what distance measure should be used to

The true power of microarray analysis does not
come from the analysis of single experiments, but
rather, from the analysis of many hybridizations to iden-
tify common patterns of gene expression. Based on our
understanding of cellular processes, genes that are con-
tained in a particular pathway, or that respond to a com-
mon environmental challenge, should be co-regulated
and consequently, should show similar patterns of
expression. Our goal then is to identify genes that show
similar patterns of expression and there exists a large
group of statistical methods, generally referred to as
‘CLUSTER ANALYSIS’, that can be used to achieve this. Before
comparing the clustering methods, I first discuss a
mathematical definition for what we mean by ‘similar’,
in the context of gene expression.

Comparing expression data
For expression data, we can begin to address the prob-
lem of ‘similarity’ mathematically by defining an
‘expression vector’ for each gene that represents its
location in ‘expression space’. In this view of gene

Box 2 | Distance metrics

In any clustering algorithm, the calculation of a ‘distance’ between any two objects is
fundamental to placing them into groups. Analysis of microarray data is no different in
that finding clusters of similar genes relies on finding and grouping those that are
‘close’ to each other. To do this, we rely on defining a distance between each gene-
expression vector. There are various methods for measuring distance; these typically
fall into two general classes: metric and semi-metric.

Metric distances
To be classified as ‘metric’, a distance measure d

ij
between two vectors, i and j, must obey

several rules:
• The distance must be positive definite, d

ij
≥ 0 (that is, it must be zero or positive).

• The distance must be symmetric, d
ij

= d
ji
, so that the distance from i to j is the same as

the distance from j to i.

• An object is zero distance from itself, d
ii

= 0.

• When considering three objects, i, j and k, the distance from i to k is always less than
or equal to the sum of the distance from i to j, and the distance from j to k, d

ik
≤ d

ij

+ d
jk
. This is sometimes called the ‘triangle’ rule.

The most common metric distance is Euclidean distance, which is a generalization of
the familiar Pythagorean theorem. In a three-dimensional space, the Euclidean
distance, d

12
, between two points, (x

1
,x

2
,x

3
) and (y

1
,y

2
,y

3
) is given by EQN 1:

where (x
1
,x

2
,x

3
) are the usual Cartesian coordinates (x,y,z). The generalization of this to

higher-dimensional expression spaces is straightforward. For our n-dimensional
expression vectors, the Euclidean distance is given by EQN 2:

where xi and yi are the measured expression values, respectively, for genes X and Y in
experiment i, and the summation runs over the n experiments under analysis.

Semi-metric distances
Distance measures that obey the first three consistency rules, but fail to maintain the
triangle rule are referred to as semi-metric. There are a large number of semi-metric
distance metrics and these are often used in expression analysis. Mathematical
descriptions of various distance metrics are available as supplementary material (see
supplementary Box 1 online).

d12 = (x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2 , (1)

d = (xi – yi)
2 ,

i=1

n
∑ (2)
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Clustering algorithms
Various clustering techniques have been applied to the
identification of patterns in gene-expression data. Most
cluster analysis techniques are hierarchical; the resultant
classification has an increasing number of nested classes
and the result resembles a phylogenetic classification.
Non-hierarchical clustering techniques also exist, such
as k-means clustering, which simply partition objects
into different clusters without trying to specify the rela-
tionship between individual elements. Clustering tech-
niques can further be classified as divisive or agglomera-
tive. A divisive method begins with all elements in one
cluster that is gradually broken down into smaller and
smaller clusters. Agglomerative techniques start with
(usually) single-member clusters and gradually fuse
them together. Finally, clustering can be either super-
vised or unsupervised. Supervised methods use existing
biological information about specific genes that are
functionally related to ‘guide’ the clustering algorithm.
However, most methods are unsupervised and these are
dealt with first.

Although cluster analysis techniques are extremely
powerful, great care must be taken in applying this fam-
ily of techniques. Even though the methods used are
objective in the sense that the algorithms are well
defined and reproducible, they are still subjective in the
sense that selecting different algorithms, different nor-
malizations, or different distance metrics, will place dif-
ferent objects into different clusters. Furthermore, clus-
tering unrelated data will still produce clusters, although
they might not be biologically meaningful. The chal-
lenge is therefore to select the data and to apply the algo-
rithms appropriately so that the classification that arises
partitions data sensibly.

Hierarchical clustering. Hierarchical clustering has the
advantage that it is simple and the result can be easily
visualized13. It has become one of the most widely
used techniques for the analysis of gene-expression
data. Hierarchical clustering is an agglomerative
approach in which single expression profiles are
joined to form groups, which are further joined until
the process has been carried to completion, forming a
single hierarchical tree. The process of hierarchical
clustering proceeds in a simple manner. First, the
pairwise distance matrix is calculated for all of the
genes to be clustered. Second, the distance matrix is
searched for the two most similar genes (see above) or
clusters; initially each cluster consists of a single gene.
This is the first true stage in the ‘clustering’ process. If
several pairs have the same separation distance, a pre-
determined rule is used to decide between alterna-
tives. Third, the two selected clusters are merged to
produce a new cluster that now contains at least two
objects. Fourth, the distances are calculated between
this new cluster and all other clusters. There is no
need to calculate all distances as only those involving
the new cluster have changed. Last, steps 2–4 are
repeated until all objects are in one cluster. There are
several variations on hierarchical clustering (BOX 3)

that differ in the rules governing how distances are

group together related genes? In many microarray exper-
iments, the data analysis can be dominated by the vari-
ables that have the largest values, obscuring other,
important differences. One way to circumvent this prob-
lem is to adjust or re-scale the data and there are several
methods in common use with microarray data. For
example, each vector can be re-scaled so that the average
expression of each gene is zero — a process referred to as
‘mean centring’. In this process, the basal expression level
of a gene is subtracted from each experimental measure-
ment. This has the effect of enhancing the variation of
the expression pattern of each gene across experiments,
without regard to whether the gene is primarily up- or
downregulated. This is particularly useful for the analysis
of time-course experiments, in which one might like to
find genes that show similar variation around their basal
expression level. The data can also be adjusted so that the
minimum and maximum are ±1, or so that the ‘length’
of each expression vector is one.

The manner in which we measure distance between
gene-expression vectors also has a profound effect on
the clusters that are produced. (Several distance metrics
are reviewed in BOX 2 and supplementary Box 1 online;
others have been proposed21.)

CENTROID 

The centroid of a cluster is the
weighted average point in the
multidimensional space; in a
sense, it is the centre of gravity
for the respective cluster.

Box 3 | Hierarchical clustering algorithms

There are various hierarchical clustering algorithms30 that can be applied to microarray
data analysis5–9,21. These differ in the manner in which distances are calculated between
the growing clusters and the remaining members of the data set, including other
clusters. Clustering algorithms include, but are not limited to:
• Single-linkage clustering. The distance between two clusters, i and j, is calculated as

the minimum distance between a member of cluster i and a member of cluster j.
Consequently, this technique is also referred to as the minimum, or nearest-
neighbour, method. This method tends to produce clusters that are ‘loose’ because
clusters can be joined if any two members are close together. In particular, this
method often results in ‘chaining’, or the sequential addition of single samples to an
existing cluster. This produces trees with many long, single-addition branches
representing clusters that have grown by accretion.

• Complete-linkage clustering. Complete-linkage clustering is also known as the
maximum or furthest-neighbour method. The distance between two clusters is
calculated as the greatest distance between members of the relevant clusters. Not
surprisingly, this method tends to produce very compact clusters of elements and the
clusters are often very similar in size.

• Average-linkage clustering. The distance between clusters is calculated using average
values. There are, in fact, various methods for calculating averages. The most
common is the unweighted pair-group method average (UPGMA). The average
distance is calculated from the distance between each point in a cluster and all other
points in another cluster. The two clusters with the lowest average distance are joined
together to form a new cluster. Related methods substitute the CENTROID or the
median for the average.

• Weighted pair-group average. This method is identical to UPGMA, except that in the
computations, the size of the respective clusters (that is, the number of objects
contained in them) is used as a weight. This method (rather than UPGMA) should be
used when the cluster sizes are suspected to be greatly uneven.

• Within-groups clustering. This is similar to UPGMA except that clusters are merged
and a cluster average is used for further calculations rather than the individual cluster
elements. This tends to produce tighter clusters than UPGMA.

• Ward’s method. Cluster membership is determined by calculating the total sum of
squared deviations from the mean of a cluster and joining clusters in such a manner
that it produces the smallest possible increase in the sum of squared errors31.
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DENDROGRAM 

A branching ‘tree’ diagram
representing a hierarchy of
categories on the basis of degree
of similarity or number of
shared characteristics, especially
in biological taxonomy. The
results of hierarchical clustering
are presented as dendrograms,
in which the distance along the
tree from one element to the
next represents their relative
degree of similarity.

NEURAL NETWORKS

Neural networks are analytic
techniques modelled after the
(proposed) processes of
learning in cognitive systems
and the neurological functions
of the brain. Neural networks
use a data ‘training set’ to build
rules capable of making
predictions or classifications 
on data sets.

hierarchical methods22. In k-means clustering, objects
are partitioned into a fixed number (k) of clusters, such
that the clusters are internally similar but externally dis-
similar; no DENDROGRAMS are produced (but one could
use hierarchical techniques on each of the data parti-
tions after they are constructed). The process involved
in k-means clustering is conceptually simple, but can be
computationally intensive. First, all initial objects are
randomly assigned to one of k clusters (where k is speci-
fied by the user). Second, an average expression vector is
then calculated for each cluster and this is used to com-
pute the distances between clusters. Third, using an iter-
ative method, objects are moved between clusters and
intra- and inter-cluster distances are measured with
each move. Objects are allowed to remain in the new
cluster only if they are closer to it than to their previous
cluster. Fourth, after each move, the expression vectors
for each cluster are recalculated. Last, the shuffling pro-
ceeds until moving any more objects would make the
clusters more variable, increasing intra-cluster distances
and decreasing inter-cluster dissimilarity.

Some implementations of k-means clustering allow
not only the number of clusters, but also seed cases (or
genes) for each cluster, to be specified. This has the
potential to allow, for example, use of previous knowl-
edge of the system to help define the cluster output. For
example, an attempt to classify patients with two mor-
phologically similar but clinically distinct diseases using
microarray expression patterns can be imagined. By
using k-means clustering on experiments with k = 2, the
data will be partitioned into two groups. The challenge
then faced is to determine whether there are really only
two distinct groups represented in the data or not. In
this case, k-means clustering is particularly useful with
other techniques, such as principal component analysis
(PCA, described below). PCA allows visual estimation
of the number of clusters represented in the data. This
can be used to specify k and to group genes (or experi-
ments) into related clusters.

Self-organizing maps. A self-organizing map (SOM) is a
NEURAL-NETWORK-based divisive clustering approach11. A
SOM assigns genes to a series of partitions on the basis of
the similarity of their expression vectors to reference vec-
tors that are defined for each partition. It is the process of
defining these reference vectors that distinguishes SOMs
from k-means clustering. Before initiating the analysis,
the user defines a geometric configuration for the parti-
tions, typically a two-dimensional rectangular or hexag-
onal grid. Random vectors are generated for each parti-
tion, but before genes can be assigned to partitions, the
vectors are first ‘trained’ using an iterative process that
continues until convergence so that the data are most
effectively separated. First, random vectors are con-
structed and assigned to each partition. Second, a gene is
picked at random and, using a selected distance metric,
the reference vector that is closest to the gene is identi-
fied. Third, the reference vector is then adjusted so that it
is more similar to the vector of the assigned gene. The
reference vectors that are nearby on the two-dimensional
grid are also adjusted so that they are more similar to the

measured between clusters as they are constructed.
Each of these will produce slightly different results, as
will any of the algorithms if the distance metric is
changed. Typically for gene-expression data, average-
linkage clustering gives acceptable results.

One potential problem with many hierarchical clus-
tering methods is that, as clusters grow in size, the
expression vector that represents the cluster might no
longer represent any of the genes in the cluster.
Consequently, as clustering progresses, the actual
expression patterns of the genes themselves become less
relevant. Furthermore, if a bad assignment is made
early in the process, it cannot be corrected. An alterna-
tive, which can avoid these artefacts, is to use a divisive
clustering approach, such as k-means or self-organizing
maps, to partition data (either genes or experiments)
into groups that have similar expression patterns.

k-means clustering. If there is advanced knowledge
about the number of clusters that should be represented
in the data, k-means clustering is a good alternative to
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Figure 2 | A synthetic gene-expression data set. This data set provides an opportunity to
evaluate how various clustering algorithms reveal different features of the data. a | Nine distinct
gene-expression patterns were created with log2(ratio) expression measures defined for ten
experiments. b | For each expression pattern, 50 additional genes were generated,
representing variations on the basic patterns.
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FACTOR ANALYSIS 

Factor analysis is a data
reduction and exploratory
method similar to pincipal
component analysis. Factor
analysis techniques seek to
reduce the number of variables
and to detect structure in the
relationships between elements
in an analysis.

Principal component analysis. An analysis of micro-
array data is a search for genes that have similar, corre-
lated patterns of expression. This indicates that some of
the data might contain redundant information. For
example, if a group of experiments were more closely
related than we had expected, we could ignore some of
the redundant experiments, or use some average of the
information without loss of information.

PCA (also called singular value decomposition) is
a mathematical technique that exploits these factors
to pick out patterns in the data, while reducing the
effective dimensionality of gene-expression space
without significant loss of information23. PCA is one
of a family of related techniques that include FACTOR

ANALYSIS and PRINCIPAL COORDINATE ANALYSIS that provide a
‘projection’ of complex data sets onto a reduced, easily
visualized space.

Although the mathematics is complex, the basic
principles are straightforward. Imagine taking a three-
dimensional cloud of data points and rotating it so that
you can view it from different perspectives. You might
imagine that certain views would allow you to better
separate the data into groups than other views. PCA
finds those views that give you the best separation of
the data. This technique can be applied to both genes
and experiments as a means of classification.

In most implementations of PCA, it is difficult to
define accurately the precise boundaries of distinct clus-
ters in the data, or to define genes (or experiments)
belonging to each cluster. However, PCA is a powerful
technique for the analysis of gene-expression data when
used with another classification technique, such as k-
means clustering or SOMs, that requires the user to
specify the number of clusters.

Analysis of a demonstration data set
The performance of these varied algorithms, normaliza-
tion strategies and distance metrics is best shown by
examining a demonstration data set (FIG. 2). Although
this sample data set does not reflect the complexity of
real biological data, its analysis can help to provide an
understanding of how the data are handled and inter-
preted by the various methods.

The first analysis involves the three most com-
monly used variations on hierarchical clustering
using a Euclidean distance metric without any data
filtering (FIG. 3). Each performed quite well with
respect to grouping together genes from a single
expression class, although the branch lengths pro-
duced by each algorithm, and the structures of the
individual clusters, differ quite a bit. It should be
noted that, relative to the other algorithms, single-
linkage clustering places expression group ‘H’ differ-
ently with respect to the other expression groups on
the tree. The difference is due to the manner in which
the growing clusters are linked together. In single-
linkage clustering, growing clusters are joined on the
basis of the distance between the closest members of
their two respective clusters, whereas complete link-
age uses the greatest distance between any two mem-
bers of the groups and average linkage uses a group

vector of the assigned gene. Fourth, steps 2 and 3 are iter-
ated several thousand times, decreasing the amount by
which the reference vectors are adjusted and increasing
the stringency used to define closeness in each step. As
the process continues, the reference vectors converge to
fixed values. Last, the genes are mapped to the relevant
partitions depending on the reference vector to which
they are most similar.

In choosing the geometric configuration for the clus-
ters, the user is, effectively, specifying the number of par-
titions into which the data is to be divided. As with k-
means clustering, the user has to rely on some other
source of information, such as PCA, to determine the
number of clusters that best represents the available data.

a b c

Figure 3 | Hierarchical clustering. Genes in the demonstration data set were subjected to 
a | average-linkage, b | complete-linkage and c | single-linkage hierarchical clustering using a
Euclidean distance metric and gene-expression families (A–J) that were colour coded for
comparison. Genes that are upregulated appear in red, and those that are downregulated
appear in green, with the relative log2(ratio) reflected by the intensity of the colour. This
method of clustering groups genes by reordering the expression matrix allows patterns to 
be easily visualized.
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PRINCIPAL COORDINATE

ANALYSIS 

Like principal component
analysis, principal coordinate
analysis seeks to reduce the
dimensionality of a spatial
representation of a data set by
creating new coordinate axes
that are a combination of the
originals, and projecting the
data onto those new axes.

data set is analysed by k-means clustering, using k = 5, as
one might expect from the PCA results, gene-expression
groups B, D and E form one cluster, C, F and G form
another, and A, H and J remain as distinct groups (see
supplementary Figure 1 online). The results from this k-
means analysis are also consistent with the results of
hierarchical clustering in that genes that consistently up-
or downregulated are grouped together, whereas those
that vary around zero appear separately from these.

If, however, we were looking at time-course data
and wanted to identify genes with expression levels that
varied in a time-regulated fashion, this analysis would
not have allowed such variations to be identified. One
way to help identify coordinated fluctuations in the
data is to first ‘centre’ the gene-expression vectors by
subtracting the average across all experiments from
each data point (FIG. 5). The results from both PCA and
average-linkage clustering reflect this data ‘filtering’. In
the hierarchical clustering, genes with similar changes
relative to their baseline expression patterns are
grouped. The ‘constant’ A, B and C genes are now
placed in a single cluster even though, in the original
data, B genes were generally upregulated and C genes
were generally downregulated. Similarly, the D  and G
genes cluster together, as do the E- and F-gene groups.
Although the H and J groups appear next to each other
in the dendrogram, they remain as separate groups,
distinct from the others.

Although this data set does not reflect the full com-
plexity of the real data sets, this analysis helps to show
some of the complexity in the analysis of real microarray
expression data. There often is no ‘correct’ way to analyse
any data set; the application of various techniques,
including algorithms and data filters, can help to reveal
different features in the data. One must remember that
the results of any analysis have to be evaluated in the
context of other biological knowledge.

Supervised methods
The techniques discussed so far are unsupervised
methods for identifying patterns of gene expression.
Supervised methods represent a powerful alternative
that can be applied if one has some previous informa-
tion about which genes are expected to cluster togeth-
er. One widely used example is the support vector
machine (SVM)24. SVMs use a training set in which
genes known to be related by, for example function,
are provided as positive examples and genes known
not to be members of that class are negative examples.
These are combined into a set of training examples
that is used by the SVM to learn to distinguish
between members and non-members of the class on
the basis of expression data. Having learned the
expression features of the class, the SVM can then be
used to recognize and classify the genes in the data set
on the basis of their expression. In this way, SVMs use
biological information to determine expression fea-
tures that are characteristic of a group and to assign
genes to that group. The SVM can also identify genes
in the training set that are outliers or that have been
previously assigned to the incorrect class.

average (BOX 3). Without a biological basis for inter-
preting these results, there is no way to decide which
grouping is right and which is wrong. Depending on
the actual experiment, any of the three approaches
might provide a ‘correct’ order. As average-linkage
clustering is the most commonly used approach, and
because it grouped genes together in expression
groups as well as the others, we will use this method
as the basis for comparison with the non-hierarchical
clustering algorithms.

Average-linkage clustering and PCA applied to the
same data set are shown in FIG. 4. The nine groups of
genes found in the hierarchical clustering can be clearly
seen in the PCA analysis, although without previous
knowledge of the results of the hierarchical analysis, one
might argue that the data set only contains five distinct
groups of genes. Application of k-means clustering and
SOM analysis to this data set with more than five clusters
produces five principal groups of genes with small num-
bers of genes assigned to the remaining groups. If the

a b

Figure 4 | Principal component analysis. The same demonstration data set was analysed
using a | hierarchical (average-linkage) clustering and b | principal component analysis using
Euclidean distance, to show how each treats the data, with genes colour coded on the basis
of hierarchical clustering results for comparison.
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HYPERPLANE

A hyperplane is an N-
dimensional analogy of a line or
plane, which divides an ‘N + 1’
dimensional space into two.

KERNEL FUNCTION 

In support vector machines, the
kernel function is a
generalization of the distance
metric; it measures the distance
between two expression vectors
as the data are projected into
higher-dimensional space.

‘KERNEL FUNCTION’, and the data can then be separated into
two classes. For some data sets, SVMs might not achieve
clean separation, either because of errors in classifica-
tion in the training set, or noise in the data, or an
improperly chosen kernel function. For this reason,
most implementations also allow users to specify a ‘soft
margin’ that allows some training examples to fall on
the wrong side of the separating hyperplane.
Completely specifying a SVM therefore requires specify-
ing both the kernel function and the magnitude of the
penalty to be applied for violating the soft margin.

As with the other techniques described here, this is
one of the challenges of using SVMs. It is often difficult
to choose the best kernel function, parameters and
penalties. Different parameters often yield completely
different classifications. It is therefore often necessary to
successively increase kernel complexity until an appro-
priate classification is achieved24.

SVMs are one of a group of supervised algorithms
that have been applied to the classification of gene-
expression patterns. Although they might be of use in
the identification of genes that share related expres-
sion patterns, an application of potentially greater
impact is the use of supervised methods for the classi-
fication of samples25–27. If we measure gene-expression
patterns using RNAs collected from various patients
for which there is, for example, disease-stage classifi-
cation or survival data, we can use the microarray
data to ‘train’ an algorithm that can then be applied to
the classification of other previously unclassified sam-
ples. This approach could lead to the development of
‘molecular expression fingerprinting’ for disease clas-
sification. In cancer diagnosis, the ability to produce a
molecular expression fingerprint of each tumour
might prove to be extremely important as histologi-
cally similar tumours might in fact be the result of
substantially different genetic changes, which might
profoundly influence the progression of the tumour
and its response to treatment.

Discussion and conclusions
Microarray expression analysis offers an opportunity
to generate functional data on a genome-wide scale
and consequently, should provide much-needed data
for the biological interpretation of genes and their
functions. It has also shown promise for classifying
physiological and disease states. As the discussion pre-
sented here should show, the careful handling and
interpretation of microarray expression data is not yet
an exact science.

The hypothesis behind using clustering techniques
is that genes in a cluster must share some common
function or regulatory elements. However, classifica-
tions based on clustering algorithms are dependent on
the particular methods used, the manner in which the
data are normalized within and across experiments,
and the manner in which we measure similarity; any
and all of these factors can have a tremendous effect
on the outcome of any analysis. Consequently, there is
no such thing as a single correct classification,
although different techniques might be more or less

As discussed previously, gene-expression data can be
thought of as an m-dimensional space, in which expres-
sion vectors are represented as points in that space. An
SVM is a binary classifier that attempts to separate genes
into two classes (in the positive training set, or outside
it) by defining an optimal HYPERPLANE separating class
members from non-members. However, for most real
examples, there is no simple solution to this problem in
expression space. SVM solves the problem by mapping
the gene-expression vectors from expression space into
a higher-dimensional ‘feature space’, in which distance is
measured using a mathematical function known as a
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Figure 5 | The effect of data filtering. Application of various data filters or changes in the
distance metric can change the results derived from any clustering algorithm. a | Mean
centring of the data removes ‘constant’ expression, which reveals changes in expression
patterns for the nine gene families across the ten experiments. The changes can be seen in the
results of b | principal component analysis and c | average-linkage hierarchical clustering.
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Finally, new means for studying gene and protein
expression are continuing to be developed, as are the
tools for data analysis and its applications. Many of the
techniques applied to the analysis of microarray data
will be applicable to the data sets provided by these new
techniques and will allow the interactions represented in
those data to be explored. As with microarray analysis,
these explorations will provide hypotheses that can be
tested in the laboratory using more standard biological
and biochemical methods.

appropriate for different data sets. Furthermore, the
application of more than one technique to the anal-
ysis of a particular data set might illuminate different
relationships between the data. For example, a tech-
nique that allows us to find cell-cycle-regulated genes
might obscure the expression response to whatever
technique was used to synchronize the cells. As with
experimental design, analysis techniques must be
selected and tuned to best show the relationships in
the data. Cluster analysis does not give absolute
answers. Instead, these are data-mining techniques
that allow relationships in the data to be explored.
Some of the most exciting and promising applications
are those that classify human disease states using 
patterns of gene expression25–27.

The tools and techniques described here are by no
means comprehensive and many new algorithms and
software tools are under development. As the analysis
presented here has shown, the ultimate guide to the use
and applicability of any laboratory technique or data
analysis method must be our biological understanding.
If an analysis provides insight into the data that is con-
sistent with our understanding of the system under
study, then any extension it provides is more likely to be
valid (for example, by classifying novel genes that might
be involved in a known pathway).
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