On Large-Scale Airline Crew Pairing Generation

Divyam Aggarwal
Mechanical & Industrial Engineering Department
Indian Institute of Technology Roorkee
Roorkee, Uttarakhand- 247667, India
daggarwal @me.iitr.ac.in

Michael Emmerich
Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
m.t.m.emmerich@liacs.leidenuniv.nl

Abstract—Crew operating cost is the second largest cost
component of an airlines’ total operating cost (second only to
the fuel cost) and even marginal cost savings here may amount
to millions of dollars, annually. Towards it, a crew needs to be
efficiently assigned a sequence of flights starting and ending at
the same crew base (a crew pairing). The challenge for an airline
is to generate crew pairings which completely cover a finite set
of flights over a particular time window, with minimum cost,
while satisfying multiple legality constraints linked to airlines’
own regulations, labor laws, and government safety rules etc.
The success in solving the associated constrained optimization
problem largely depends on solving NP-complete subproblems,
linked to the generation of a feasible solution (legal crew pairings
covering all flights) and generation of pairings with reasonable
cost-quality. In an attempt to address these subproblems in a
computationally- and time-efficient manner, the contributions of
this paper relate to the use and characterization of network
structure for pairing generation; enhancement of the graph
traversal algorithm, namely Depth-first Search (DFS); its parallel
implementation on multiple processors of a single computer; and
embedding of cost considerations during pairing generation itself
towards boosting the optimizer’s performance subsequently. The
utility of the cited contributions is demonstrated on medium
(~2000 flights) and large (~4000 flights) data sets provided by
GE Aviation.

Index Terms—Airline Scheduling, Crew Scheduling, Crew
Pairing, Crew Pairing Generation, Parallelization, Depth-first
Search.

I. INTRODUCTION

Airline crew scheduling is one of the most important step of
the overall airline scheduling process. This relates to the fact
that crew operating cost is the second largest cost component
of the total operating cost, next to the fuel cost. Unlike
fuel cost, a major part of the crew costs is controllable
and can be minimized by optimizing the crew scheduling

This research is partly supported by MEITY in India (under the grant
MIT-861-MID) & NWO in Netherlands, and partly by General Electric (GE)
Aviation

978-1-5386-2726-6/18/$31.00 ©2018 IEEE

Dhish Kumar Saxena
Mechanical & Industrial Engineering Department
Indian Institute of Technology Roorkee
Roorkee, Uttarakhand- 247667, India
dhishfme @iitr.ac.in

Saaju Paulose
Digital Solutions
General Electric (GE) Aviation
Fort Worth. Texas, USA
saaju.paulose @ge.com

process. Traditionally, crew scheduling process is carried out
by solving two subproblems sequentially, namely, crew pairing
problem, and crew rostering problem. The former deals with
the generation of a set of crew pairings (a crew pairing is
a sequence of flights to be flown by a crew that starts and
ends at the same crew base) to cover a finite number of
flights of an airline in minimum cost possible, and the latter
deals with the assignment of these pairings to specific crew
members. The focus of this paper is on the crew pairing
problem and the readers are referred to [1] for a comprehensive
discussion on crew scheduling process. Crew pairing problem
is an extremely complex combinatorial optimization problem
and belongs to the class of NP-hard problems. Since 1980s,
airliners and researchers from all over the globe have given a
considerable amount of attention towards this problem because
of the two reasons: a small percentage of cost improvement
translates to millions of dollars annually, and presence of
the suboptimal state-of-the-practices. However, in the last two
decades, the number of flight legs and airports to be scheduled
have increased tremendously, leaving the state-of-the-practice
obsolete. With the recent technological advancements, data
handling capacities and the speed of computations have im-
proved significantly, leaving the scope for further improvement
in the current state-of-the-practices in crew pairing problem.
In a crew pairing problem, crew pairings have to satisfy mul-
tiple legality constraints linked to FAA rules and regulations,
labor agreements, government safety regulations etc. These
legality constraints, to some extent, have been discussed in
section III-A in detail. Owing to the presence of these legality
rules, it is required to develop a legal crew pairing generation
approach in order to facilitate legal crew pairings to the
optimization problem. The presence of a hub-and-spoke type
of flight network (used in this research) causes an explosion
in the flight connections at hubs, leading to billions/trillions
of legal pairings. This brings tractability issues in the pairing
generation problem, making it a computationally expensive
and time-consuming process. The exact amount of legal pair-
ings possible for a large-scale problem (say 4000 flight legs)

is not known and may take non-deterministic polynomial time
to complete, making it an NP problem. Given the NP-nature
of the large-scale pairing generation problem, the generation
of an initial feasible solution (covering all flights atleast
once) and the generation of pairings with reasonable cost-
quality are NP-complete problems as it is hard to find the
associated solutions but easy to verify in polynomial time.
After developing a legal pairing generation process, the legal
pairings are facilitated to the optimization problem which is
sometimes modeled as a set-partition problem where each
flight is covered only once, and sometimes as a set-covering
problem where flights are allowed to be covered more than
once. There are two types of optimization approaches: one
approach is to produce all legal pairings ‘offline’ (before pro-
ceeding with optimization phase) and selecting the best subset
from these pre-generated pairings, and the other approach is
to produce the pairings dynamically during the optimization
phase. The scope of this paper is limited to the crew pairing
generation process, and due to the presence of enormous
literature associated with these approaches, readers are referred
to the most recent ones, [2] & [3], for each of these approaches
respectively.

Mostly, in crew pairing literature, pairing generation has
been performed using either row approach, column approach,
or network approach. Some literature studies that used row
approach for pairing generation are [4], [5] and [6]. There are
two types of network-based approaches for pairing generation-
one uses a flight-based network and the other uses a duty-
based network. The flight-based network approach is used
in [7] and [8]. Reference [9] was the first approach to
use a duty-based network for pairing generation. The other
approaches linked to duty-based network, are [10], [11], [12],
[3]. Researchers in [13] presented experiments with both
the network structures, however, they used the duty-based
network for a problem of upto 449 flights and used the
flight-based network for a problem of upto 1744 flights. In
[14], a new approach, called as Knowledge-Based Random
Algorithm (KBRA), is presented to generate pairings. This
approach randomly selects flight legs to start with and then
uses the knowledge of candidate flights of the predecessor
flight in order to generate pairings. A typical solutioning
when implemented on mainframe computers, consumes days
of computing in order to construct acceptable crew schedules
and most of this computing time (25-50%) is consumed
in pairing generation process (e.g. [6], [11]). Hence, it is
imperative to speed up the pairing generation process in order
to improve the crew scheduling time. With the technological
advancements such as the introduction of parallel computing
architectures, researchers have started developing parallel pair-
ing generation approaches. In [15], authors have presented
a master/worker parallel pairing generation algorithm, where
a master processor is used to distribute new flights to idle
worker processors. In [16], authors have developed a new
load balancing scheme to distribute the pairing generation
process among different machines of a cluster and among
multiple processors within the same machine without using a

master processor. This parallel pairing generation algorithm is
employed in [17] and [18]. With these parallel approaches, an
expensive computational environment is required which is not
in the interest of our sponsors. Moreover, the efforts required
to implement such complex concepts in a crew scheduling
framework may prevent the researchers from testing and
developing new ideas, serving as a serious obstacle-to-entry in
this line of research. Hence, instead of a complicated parallel
environment, a straightforward parallelization is proposed in
this paper which may motivate the new researchers to develop
and test new ideas in a simple, yet faster, pairing generation
environment.

The major contributions of this paper are:

o a parallel implementation of the pairing generation ap-
proach by decomposing it into independent subprocesses
w.r.t. each crew base and distributing them on multiple
processors of a single computer;

o a comparative study of the pairing generation process
using two network structures, highlighting their uses and
characteristics; and

« two modifications in the pairing generation approach-
an enhancement of the graph traversal algorithm (DFS)
to generate a feasible solution for warm-starting!, and
embedding of cost considerations to generate pairings
with reasonable cost-quality.

Section II outlines the basic terminology associated with
the crew pairing problem, a comprehensive discussion about
the network structures used for pairing generation, and the
concepts and pseudo-codes of the developed pairing generation
approach. Section III presents the used test-cases and the com-
putational experiments for the developed pairing generation
approach. Section IV concludes this paper by summarizing the
use and characterization of the developed pairing generation
approach.

II. CREW PAIRING GENERATION
A. Basic Terminology

In this section, the basic terminology of crew pairing prob-
lem is discussed. In crew pairing problem, a flight schedule
along with its fleet-type is given as input. This flight schedule
contains all the non-stop flight legs and their associated
attributes such as flights’ departure (arrival) time-stamp?,
departure (arrival) airport, block-time, fleet-type. Block-time
of a flight leg is its actual flying time and is measured as the
time an aircraft takes from the departure gate to the arrival
gate of the airport. In a work day, the sequence of flight legs
flown by a crew member is called a duty period or a duty
in short. In a duty, two flight legs are always separated by
a time interval, called connection-time or sit-time, which is
restricted by a maximum and minimum limit. The sit-time
accounts for the time taken by a crew in changing the aircraft

It means starting the optimization framework using a feasible solution,
covering all flights, instead of a random solution which may or may not
cover all flights.

%It gives information about the time and day of the event.

for its next flight, if required, or a short break. A rest period
also called an overnight rest, is provided at the end of a duty.
This overnight rest is always longer than the sit-time and is
restricted by a minimum and maximum limit. A crew base
or a crew domicile is the home airport of the crew. A crew
pairing is the sequence of flights that starts and ends at the
same crew base. Sometimes, due to flight cancellations or
missing flight connections, the crew needs to be transported
to an airport where they are needed to fly the next scheduled
flight, or sometimes they may end up at an airport which is
not their crew base and needs to be brought back to their
crew base to end their pairing. The crew can be transported
between airports in the same city using road transportation
but if not possible, then the crew is repositioned by traveling
as passengers in a flight and such flights are called deadhead
flights or deadheads in short. Deadheading affects the total
revenue of the airline in two-ways, one by reducing the profits
earned from the passenger seat being wasted, and the other by
paying the crew for the time they did not fly any plane. Hence,
it is desirable for airlines to reduce the number of deadheads
as much as possible in order to increase their total revenue.
The time for which a crew is away from its base station is
called as time away from base (TAFB). An example of a crew
pairing with five flights and two duties is given in Fig. 1.

0800 0910 1025 1325 1500 1945 1010 1235 1420 1850

AIrportA g oo P e R 2 es eeemeiessiiiastieareesirzesaneaeas e
Airport B .. E
g : S :
Source g Destination
S LB ..D
Airport C =)
Bricfingétimc : : Del leffing-tlme
Arport D s ERRE O EORRE RO SO VSN SO SOOI 3 .
P AN)
YT R
Duty Period 1 (Elapsed Time of Duty 1) Duty Period 2
- /
~

Time Away From Base (TAFB)

Fig. 1. An example of a legal crew pairing using flight-based network

B. Network Structure

Conventionally, in the crew scheduling literature, two types
of network structure are used to carry out crew pairing
generation. The first network design is called a flight-based
network (FN) and the other is called a duty-based network
(DN).

1) Flight-based Network: In this network, flights are the
fundamental units of the network and can be represented
in two ways, either using a node or an arc. Traditionally,
an arc-based representation is used for simplifying the
network construction. In this representation of this net-
work, there are two distinct nodes corresponding to each
flight leg, a departure node, and an arrival node. These
nodes are connected using an arc representing the flight
leg. There are two other nodes present in the network,
one is a source node (shown by S) and the other is a
destination node (shown by D). The departure node of
each flight leg that departs from a particular crew base,
is connected to the S node and the arrival node of each

flight leg that ends at the same crew base is connected
to the D node. For a legal flight connection in a pairing,
the arrival airport of the first flight leg should be same
as the departure airport of the second flight leg and the
time interval between both the legs should be within the
minimum and maximum limits of either the sit-time in a
duty period or the overnight rest between the duties. A
connection-arc is used to create a legal flight connection
in the network. As mentioned in [13], it is to be noted
that the overnight rest is a function of multiple attributes
of the preceding duty and the whole pairing. Hence, an
overnight connection-arc is only inserted if the overnight
rest is > and < the minimum and maximum bounds of
the permissible layover time respectively. This overnight
connection-arc is an approximation (not a tight bound)
and it may or may not be legal depending on the other
pairing rules. Fig. 1 shows a sample flight-based network.

2) Duty-based Network: In a duty-based network, a duty
period can also be represented in two ways, either by a
node or an arc. Conventionally, in a duty-based network,
departure time and station, and arrival time and station are
represented by nodes and the arc between them represents
a duty-period. Connection-arcs are inserted between those
nodes which satisfy the conditions for a legal overnight
rest i.e. arrival station of the last flight of the first duty
should be same as the departure station of the first flight
of the second duty and the time interval between two
duties should be within the permissible bound of the
overnight rest. It is known that the overnight rest is a
function of the various attributes of the preceding duty
and the overall pairing. In comparison to the flight-based
network, duty rules are explicitly built in the duty-based
network and hence the latter is superior to the former in
terms of estimating a real overnight connection. Fig. 2
shows a sample duty-based network.

0800 0910 1025 1325 1500 1945 1010 1235 1420 1850
AirportA @ B S e s o

t Rest

AirportB5........ LN EOSUUR PR

gh

g
Source Destination
S

Airport C

Overni

Airport D

Fig. 2. An example of a legal crew pairing using duty-based network

A legal crew pairing is nothing but some S-D path in
both networks. The flight-based network guarantees the flight
connection within a duty period but it does not promise the
legality of other pairing rules such as maximum duty flying
hours and many more. Hence, some of the S-D paths in the
flight-based network may not be legal and the other pairing
rules are required to be checked dynamically during pairing
generation. On the contrary, all duty rules and a majority of the
pairing rules are satisfied by the S-D paths in the duty-based
network, hence, overcoming the limitations of the flight-based
network to a certain extent. This improvement comes at a cost

of high memory-usage due to the presence of a much larger
arcs set. However, some of the rules such as 8-in-24 rule?,
are not addressed even in the duty-based network. Authors in
[13] suggested that such rules may never be enforced using
these network structures unless a multi-labeling procedure or
a constrained shortest path method [20] is used in order to
keep track of the costing and legality rules, hence, leading to
only legal paths/pairings.

In a duty-based network, a duty period can also be
represented with a node and a legal overnight rest with
a connection-arc between two duty nodes. Reference [16]
adopted this type of representation for generating crew pairings
from a duty-based network structure. First, all of the legal
duties are enumerated and then the duty-based network is
built using these legal duties from which legal pairings are
generated. Reference [21] defined a new approach, called a
duty tree approach, to generate all legal duties and to store
them in a memory-efficient way. A compact storage thread is
defined by them in order to store all of the duties, that starts
from the same root node, in a single thread (less memory).
In a duty tree structure, all the flights are represented using
a node and the connections are included between those nodes
that satisfy the condition of a legal sit-time connection within
a duty period. There are multiple properties associated with
this duty tree approach, such as the height of the duty tree,
completeness, exclusiveness, tail-off and many more. Using
the same type of structure, authors in [21] also built a pairing
tree structure, that contains these duties as nodes and overnight
rest period as the connection between these nodes, to generate
legal pairings. Readers are referred to the work in [21] for
acquiring more comprehensive information about the duty tree
and pairing tree structures.

C. Crew Pairing Generation Approach and Enhancements

In this research, pairing generation approaches using both
the network structures is developed.

For the flight-based network structure, a tree-like
representation (flights as nodes and legal connections as
arcs with no cycle present) is used to generate legal pairings.
Several attributes of the flight legs are necessary in order to
evaluate a pairing’s legality and to calculate its cost. A class
object is used to store a flight leg and its associated attributes
as class labels. There are two types of search algorithms
for traversing a network, namely, depth-first search (DFS)
and breadth-first search (BFS). The former traverses along
each branch of the tree whereas the latter searches along
the breadth of the tree and the choice of selection depends
upon the characteristics of the network formed. In the
above-mentioned representation of the flight-based network,
a tree structure is formed and a legal pairing can only be
generated by traversing along the branch (depth) of this tree.
Hence, the DFS algorithm is used for traversing this network.
In DFS, starting from a root node, all the nodes along each

3In this rule, the crew is not permitted to fly more than 8 hrs in a 24-hour
window unless an extra rest is provided in the end.

branch (depth) of the tree are traversed before backtracking®
to the previous node and traversing the next branch of that
node. The pseudo code of a DFS algorithm, adapted for
searching a pairing tree, is shown in Algorithm 1.

Let Cs denotes sit-time constraints, C'r denotes overnight

Algorithm 1: Depth-first Search Algorithm

Input: ParentFlight, PF; Flight Graph, G; PairingStack; and pairing
constraints, C
1 Output: Set of legal pairings, St p
2 Spp=2¢
3 for Child Flight of PF € G do
Add CF to Stack /* CF is Child Flight of PF «/

4
5
6 if —(PF — CF) satisfy all constraints € C— then
7 if —PairingStack = Complete Sequence— then
8 Add PairingStack to St p

9 Remove C'F from PairingStack

10 Backtrack to a previous flight in the PairingStack
1 else

12 ‘ DFS(CF, G, PairingStack, C)

13 end

14 else

15 Remove C'F' from PairingStack

16 Backtrack to a previous flight in the PairingStack

17 end

18 end

rest constraints, C'p denotes all duty constraints, C'» denotes
all pairing constraints, and Scp denotes the set of all crew
bases. A root node in a flight-based network (or duty-based
network) is a flight leg (or duty period) that starts from any
airport in Scop respectively. Let R, and DR, be the set of
all flight nodes and duty nodes that departs from an airport
a respectively. The pseudo code of the sequential pairing
generation algorithm using the flight-based network is shown
in Algorithm 2. First, a flight-based network is constructed
(lines 1-10), and then all legal pairings starting from all root
nodes and for all crew bases are sequentially generated (line
12-25) using the DFS algorithm (line 19).

Similarly, for the duty-based network, a duty tree and a
pairing tree structure, similar to the ones in [21], is used to
generate legal duties and pairings, and the remaining pairing
rules are dynamically checked. A DFS algorithm is used to
traverse this network to search for legal pairings. First, all
legal duties are enumerated using a flight-based network. This
is performed using the same method as given in Algorithm 2
and the only difference here is the use of duty rules instead
of all pairing rules as done in Algorithm 2. All the generated
legal duties are stored in a set, S;cp, which is then used to
construct a duty-based network with a tree-like representation
(duties as nodes and overnight rest as connection-arcs; no
cycles present) along with the overnight rest constraints
as connection-arcs. The pseudo code of this procedure is
given in lines 1-10 of Algorithm 3. The pseudo code for
traversing this duty-based network using DFS is given in
lines 12-36 of Algorithm 3. The legality of the pairings for

“It means going back to the parent node as soon as the child node is
inspected and further traversal is not possible either because of an invalid
solution or the end of the branch has reached.

Algorithm 2: Sequential pairing generation using DFS in
flight-based network

Algorithm 3: Sequential pairing generation using DFS in
duty-based network

/* Generation of flight-based network */
Input: Flight schedule, F'; Cg; and Cr
Output: Flight-based Network, F'N
for f € F do
for f/ € F\f do
if —(f — f’) satisfy constraints € (Cs U Cr)— then
‘ Add a directed edge from f to f'
else
| continue
end
end

T A . I I I SR

10 end
/* Generation of all legal pairings using DFS */
Input: Sop; Ra; FN; and set of other pairing constraints,
C'=(CpUCp)\(Cs UCR)
11 Output: All legal crew pairings, Spcp
12 Spcp=¢
13 for a € Sgp do

14 for f € R, do

15 PairingStack = ¢

16 if —f satisfy pairing-start constraints— then
17 Add f to PairingStack

18 DFS(f, FN, PairingStack, C')
19 Add legal pairings to Sp,cp

20 else

21 | continue

22 end

23 end

24 end

/* Generation of duty-based network */
Input: Spcop; and Cg
Output: Duty-based network, DN
for d € Spcp do
for d’ € SLCD\d do
if —(d — d') satisfy constraints in Cz— then
| Add a directed edge from d to d’
else
| continue
end

I A . N I S I

end
10 end
/* Generation of all legal pairings using DFS «/
Input: S;,cp; DRa; DN, and set of other pairing rules
C'= CP\(CD UCsUCR)
11 Output: All legal crew pairings, S,cp
12 Spcp=2¢
13 for a € Sgp do

14 for d € DR, do

15 PairingStack = ¢

16 if —d satisfy pairing-start constraints— then
17 Add d to PairingStack

18 DFS(d, DN, PairingStack, C')
19 Add legal pairings to Sp,cp

20 else

21 | continue

22 end

23 end

24 end

the remaining pairing rules is examined dynamically inside
the DFS algorithm (line 6 & 7 of Algorithm 1).

This case study is carried out on a real-world large-
scale problem (containing up to 4212 flights). Out of this
problem, two test-cases are developed and are discussed
in section III-A in detail. The number of possible legal
duties for TC-2 is estimated to be 737,184 and the number
of possible legal pairings is expected to be more than a
billion (exact amount not known); leading to tractability
issues. Towards this effect, some serious challenges arise
such as how to speed up the pairing generation process,
how to create a full coverage initial feasible solution, and
how to generate only quality pairings from such a huge
search-space? To address these challenges, following three
modifications in the pairing generation approach are proposed:

Mod. 1: Parallel Pairing Generation

With the technological advancements, the computational
hardware is now capable of multiprocessing (using more than
one CPU in parallel). From the understanding of pairing rules
and network structure, it is inferred that the overall pairing
generation process can be decomposed into independent
subprocesses on the basis of crew base they are starting from.
In this case study, 15 crew bases are present and some of the
pairing rules are a function of the crew base from which the
pairing starts. Hence, the overall pairing generation process
could be decomposed into independent subprocesses on the
basis of each crew base. Using this decomposition and the
multiprocessing capability of the computational machine

used, the legal duty/pairing generation process is sped up by
running 15 independent processes in parallel. Each process
returns a set of legal crew duties/pairings starting from a
particular crew base. The pseudo code for parallelization of
the sequential algorithms (Algorithms 2& 3) is shown in
Algorithm 4.

Algorithm 4: Parallel Algorithm

Input: Scp; Independent subprocesses, SubP = {SubP,Va € Scp}
1 Output: Combined Set, C'S
2 CS=¢
3 for a € Scp in parallel do
4 Send SubP, to a randomly chosen idle thread
Add resultant sets from each SubP, to C'S

5
¢ end

Mod. 2: Variable-Backtrack Modification in DFS

An offline® enumeration of all legal pairings for TC-2 (4212
flight problem, given in section III-A) is not advisable
as it may not terminate in a finite time. Hence, it is not
possible to generate a feasible solution (a set of pairings
that covers all the flights atleast once) in a short time using
the original-DFS. But sometimes, this feasible solution is
required to warm-start the optimization process. To generate
a feasible solution in a short time, original-DFS is enhanced
by varying the step-length of backtrack so as to cover more
number of unique flight nodes. To explain the working of
the enhanced-DFS, an example is presented in fig. 3. Let us

51t means generating legal pairings before proceeding with the optimization
process.

assume that the PairingStack has a legal pairing sequence:
1 -2 — 3 — 5 — 8 before backtracking and it is not
possible to traverse further as the branch end is reached. Now,

ONRO)

Legal Pairing Sequence
using Original DFS

Pairing Tree Legal Pairing Sequence

using Enhanced DFS

Fig. 3. Enhanced-DFS Algorithm

with a backtrack step-length Spr = 2, the enhanced-DFS
(B) backtracks to the flight node 2 instead of flight node
5 which happens in case of original-DFS (A), as shown in
fig. 3. After backtracking and further traversal, the next legal
pairing sequences obtained in both the DFSs’ are as follows:

¢ Original-DFS (right pairing): 1 -2 -3 =5 —9
o Enhanced-DFS (left pairing): 1 -2 —+4 -7 — 11

On comparing these legal pairings with the previous legal
pairing, it is clear that new legal pairing generated using
enhanced-DFS covers more unique nodes than the new legal
pairing generated using original-DFS. Note that the backtrack
step-length is measured from the start of the Stack i.e. if
Spr = 2 then the DFS will backtrack to the node 2 and
will explore its child branches. In addition to this, the pairing
generation process is repeated by varying the backtrack
step-length Spr from O to a finite limit (say 5) until all
unique flights are covered atleast once.

Mod. 3: Cost constrained Pairing Generation

To promote an efficient search in a huge search-space, it is
imperative to reduce it to a manageable size. For search-space
reduction, it is required to identify a pairing’s feature that
could help in quantifying its quality. From the understanding
of the costing rules, it is found that the excess-pay cost
component (explained in section III-A) is the most important
KPI ©. It is the cost of a crew’s non-productive hours (other
than the flying, hotel and meal costs) and is required to be as
minimum as possible (ideally 0). In this module, legal pairings
being generated are filtered using a constraint on excess-pay
during the DFS search (after line 7 in Algorithm 1). Pairings,
satisfying excess-pay constraint, are added to the final set
of legal pairings. The constraint upper bound could also be
varied in order to ensure the presence of pairings with various
cost quality.

%Key Performance Indicator.

III. COMPUTATIONAL EXPERIMENTS
A. Airline Data

In this paper, all computations are demonstrated using
a real-world airline crew pairing problem (defined by GE
Aviation). From the given weekly flight schedule, two test-
cases are developed- a medium-scale test-case (TC-1, 1820
flights) and a large-scale test-case (TC-2, 4212 flights), and
this client’s operations involve 15 crew bases. In the provided
flight schedule, each flight leg is associated with following
attributes: departure/arrival date and time, departure/arrival
city, aircraft fleet type, and flight block-time. These test-cases
involve several legality constraints which must be satisfied by
a crew pairing to be ‘Operational’ or ‘Legal’, and some of
these are as follows:

o Start-city and End-city Constraints: 1°¢ flight of a pairing
should start from a crew-base only and last flight of the
pairing should end at the same crew-base.

o Connection-city Constraint: For connection between
flights, departure city of an outgoing flight should be
same as arrival city of the incoming flight.

o Sit-time & Rest-time Constraints: Sit-time between two
consecutive flights in a crew duty and the rest-time
between two consecutive crew duties in a pairing should
be restricted by minimum and maximum limits.

e Duty Constraints: Number of duties in a pairing is
restricted by a maximum limit. Also, number of flights in
a duty, duty elapsed-time, and duty flying-time should be
restricted by minimum and maximum limits, and these
limits vary according to the duty start-time.

o Special Constraints: Some special rules such as pairing
starting from a crew-base cannot overnight in the same-
city airports etc., are used to optimize the crew utilization.

A complicated set of costing rules is defined by GE Aviation
to calculate a pairing’s cost. These costing rules are as follows:
o Excess-Pay: It is the pay of minimum guaranteed hours
minus the cost of actual flying hours. It is the cost of non-
productive hours of a crew in a pairing. The guaranteed
pay of the pairing is calculated as the maximum of
various individual guarantees which depends on duty
elapsed-time, TAFB, deadhead hours, and so forth. In
order to optimize the crew-utilization, it is imperative to
minimize excess-pay of a set of pairings (ideally = 0).
o Soft Cost: It is the penalty cost incurred on changing an
aircraft within a duty of a pairing, and on dead-heading
a flight within a pairing.
e Hotel and Meal Costs: It constitutes the hotel costs
incurred in the overnight rests and the entire trip’s meal
cost.

B. Results of Crew Pairing Generation Methods

Results of computational experiments are demonstrated in
this section. Implementation of all pairing generation modules
is performed in Python 3.6, and an HP Z640 Workstation,
having 32 cores @3.2 GHz (capable of multiprocessing) is
used for all computations. First, a comparison is drawn in

between pairing generation approaches using flight-based and
duty-based network structures, and their respective sequential
and parallel algorithms (SA & PA). These computational
results are summarized in Table I. The prime aim of crew
pairing generation problem is to generate a large number
of legal pairings in minimum runtime possible, resulting in
two sole criteria for drawing the comparison. First criterion
is the runtime of pairing generation (for TC-1 and similar
small/medium-scale problems) and the other is the number of
pairings generated in a fixed time (for TC-2 and similar large-
scale problems where > billion legal pairings are possible).
For TC-1, it is observed that 1,681,056 legal pairings are

TABLE I
LEGAL PAIRING GENERATION USING USING SEQUENTIAL ALGORITHM
(SA) AND PARALLEL ALGORITHM (PA) FOR TC-1 & TC-2

Test M Flight-based Network | Duty-based Network
easures
Case SA PA SA PA
TC-1 Amount 1,681,056 | 1,681,056 | 1,681,056 | 1,681,056
Runtime (sec) | 2101 436 1629 199
TC-2 Amount 378,572 | 3,573,492 | 5,485,255 103,183,858
Runtime (sec) | 3600 3600 3600 3600

possible and among its flight-based network algorithms, PA
is ~5 times faster than SA whereas among its duty-based
network algorithms, PA is ~8 times faster than SA. Also, for
TC-1, the duty-network based PA is ~2 times faster than the
flight-network based PA. For TC-2, all algorithms are allowed
to run for an hour (3600 sec) and it is observed that among
its flight-based network algorithms, PA generated ~9 times
the pairings generated by SA whereas among its duty-based
network algorithms, PA generated ~19 times the pairings
generated by SA in the given time. Also, for TC-2, the duty-
network based PA generated ~29 times the pairings generated
by the flight-network based PA. From these results, it is evident
that PA is faster than SA by an average factor of ~10 and
among the algorithms based on both the network structures,
the duty-network based algorithms are extremely faster than
the ones based on flight-network. As discussed in section II-C,
for generating pairings using a duty-based network, it is
imperative to pre-process all legal duties. These duties are
generated using a flight-based network and the results of duty
generation using SA & PA are summarized in Table II. It is

TABLE II
LEGAL DUTY GENERATION USING SEQUENTIAL ALGORITHM (SA) AND
PARALLEL ALGORITHM (PA) FOR TC-1 & TC-2

Measures TC-1 TC-2
SA PA SA PA
Amount 331,455 | 331,455 | 737,184 | 737,184
Runtime (sec) 78 14 237 56

observed that the parallel enumeration of all legal duties takes
<60 seconds which is negligible in comparison to the number
of duty rules already pre-processed, resulting in a faster search
for legal pairings in duty-network based algorithms. However,
in duty-based network, the number of duty nodes (737,184

for TC-2) present is much more than the number of flight
nodes (4212 for TC-2) involved in flight-based network, and
the entire duty-network has to be stored in memory. To this
effect, duty-based network has high-memory requirements but
these storage needs could be justified by the fact that memory
requirement per pairing is significantly smaller for the duty-
based network than the flight-based network.

The crew pairing optimization problem for TC-2 and similar
large-scale problems is initiated using an initial feasible solu-
tion. Due to presence of large number of possible legal pairings
in such test-cases, it is not advisable to generate all legal
pairings, making it difficult to find a feasible solution in short
runtime. In this paper, an enhanced-DFS algorithm (Mod.2 in
section II-C) is presented for generation of a feasible solution
in very short runtime and its comparison with the original-
DES is shown in Table III, using a sequential algorithm built
on flight-based network. It is observed that the enhanced-DFS

TABLE III
COMPARISON BETWEEN ENHANCED-DFS AND ORIGINAL-DFS
ALGORITHMS TO GENERATE A FEASIBLE SOLUTION FOR TC-2

Measures Enhanced-DFS 'Orlgmal-DF'S
Setting 1 | Setting 2
Amount 77,728 664 1,872
Runtime (sec) 146 146 3600
Uncovered Flights 0 3232 2647

covers all 4212 flights (of TC-2) in a runtime of ~150 seconds
whereas the original-DFS only covered 980 flights in 150
seconds (results shown under Column “Setting 1" in Table III).
Moreover, the original-DFS is allowed to run for an hour
(3600 seconds) and still it covered only 1565 flights (results
shown under Column “Setting 2” in Table III). This proves
that enhanced-DFS is highly effective in generating an initial
feasible solution for TC-2 and similar large-scale problems,
which is imperative to start the crew pairing optimization
problem. Fig. 4 shows the variation of unique flight coverage
with the variation in backtrack step-length of the enhanced-
DFS.

mmm Unique Flight Coverage Linear (Unique Flight Coverage)
4206 4212 4212 4212 4212

1 2 3 4 5

Backtrack Step-length

3650
0

Fig. 4. Unique Flight coverage versus Backtrack Step-length for TC-2

Given the large number of possible legal pairings in TC-
2, the search efficiency of the subsequent crew pairing op-
timization problem becomes low. In this paper, Modification
3 of pairing generation method is presented in section II-C
which helps in reducing the large search-space to pairings

with reasonable cost quality. Under this modification, cost
constraints are embedded in the pairing generation and only
those pairings are generated which have ‘0’ excess pay (ex-
cluding the deadhead excess pay component; ideally excess
pay = 0). Results of this module are shown in Table IV. With

TABLE IV
RESULTS OF MODIFICATION-3 PARALLEL PAIRING GENERATION
ALGORITHM USING DUTY-BASED NETWORK FOR TC-2

Experiment Measures Duty-based Network
Legal Duty Amount 633,485
. Runtime (sec) 37
Generation g
Uncovered Flights 5
Legal Pairin Amount 611,274,334
gal PAnng T Runtime (sec) 31,230
Generation -
Uncovered Flights 5

this modification, it is possible to narrow down TC-2’s huge
search-space (billions/trillions; not known) to a quality pairing
set of size ~612 million (still huge but manageable).

IV. CONCLUSION AND FUTURE SCOPE

In this paper, a computationally- and time-efficient legal
crew pairing generation approach is presented for a real-
world airline crew pairing problem (with <4212 flight nodes).
Firstly, a parallel pairing generation approach is presented by
distributing the pairing generation with-respect-to each crew
base (15 in total) among 15 idle threads of a processor. From
computational experiments, it is observed that the parallel
approach is ~10 times faster than the sequential approach.
However, it should be equivalent to the number of crew bases
(i.e. 15) ideally. The inefficiencies of Python’s Multiprocessing
library, used for parallelization, is accountable for this less-
than-expected speed improvement. Secondly, the uses and
characteristics of pairing generation approach for both network
structures are explored and to guarantee a fair competition,
exactly same experimental settings are used. It is observed that,
computationally, the duty-network based algorithms are faster
than the flight-network based algorithms. Finally, it is proved
that Modification-2 (Enhanced-DFS) & Modification-3 (Cost-
constrained pairing generation) are highly effective in solving
the associated NP-complete subproblems (generating an initial
feasible solution and generating pairings with reasonable cost-
quality) which builds the rationale for solving the subsequent
NP-hard crew pairing optimization problem.

The parallel approach, presented in this paper, could be
improved further by involving the concepts of load-balancing
among the multiple threads used. However, these advanced
concepts of parallelization may increase the complexity of
the pairing generation environment, which may prevent re-
searchers from testing and developing new ideas for the
subsequent crew pairing optimization problem.

ACKNOWLEDGMENT

Arioli Arumugam (Director- Data & Analytics, GE Avi-
ation), and Alla Rajesh (Staff Data Scientist, GE Aviation),

thanks for problem definition and discussions on the crew
pairing generation problem.

REFERENCES

[1] C. Barnhart, A. Cohn, E. Johnson, D. Klabjan, G. Nemhauser, and
P. Vance, “Airline crew scheduling”, In: Handbook of transportation
science, Kluwers International Series, Dordrecht: Kluwer Academic
Publishers, 2003.

[2] B. Zeren, and I. Ozkol, “An Improved Genetic Algorithm for Crew
Pairing Optimization”, Journal of Intelligent Learning Systems and
Applications, Vol. 4 No. 1, pp. 70-80, 2012.

[3] B. Zeren, and I. zkol, “A novel column generation strategy for large
scale airline crew pairing problems”, Expert Systems with Applications,
55:133-44, 15 Aug 2016.

[4] M.M. Etschmaier, and D.F. Mathaisel, “Airline scheduling: An
overview”, Transportation Science, 19(2):127-38, May 1985.

[5] R. Anbil, E. Gelman, B. Patty, and R. Tanga, “Recent advances in crew-
pairing optimization at American Airlines”, Interfaces, 21(1):62-74, Feb
1991.

[6] G.W. Graves, R.D. McBride, I. Gershkoff, D. Anderson, and D. Mahid-
hara, “Flight crew scheduling”, Management science, 39(6):736-45, Jun
1993.

[7]1 C.Barnhart, E.L. Johnson, R. Anbil, and L. Hatay, “A column-generation
technique for the long-haul crew-assignment problem”, InOptimization
in industry 2, (pp. 7-24). John Wiley & Sons, Inc., 4 Oct 1994.

[8] G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M.M.
Solomon, and F. Soumis, “Crew pairing at air france”, European journal
of operational research, 97(2):245-59, 1 Mar 1997.

[9] S. Lavoie, M. Minoux, and E. Odier, “A new approach for crew

pairing problems by column generation with an application to air

transportation”, European Journal of Operational Research, 35(1):45-58,

1 April 1988.

J. Desrosiers, Y. Dumas, M. Desrochers, F. Soumis, B. Sanso, and

P. Trudeau, “A breakthrough in airline crew scheduling”, Cahiers du

GERAD, G-91-11, 1991.

H.D. Chu, E. Gelman, and E.L. Johnson, “Solving large scale crew

scheduling problems”, InInterfaces in Computer Science and Operations

Research, (pp. 183-194), Springer, Boston, MA, 1997.

R. Anbil, J.J. Forrest, and W.R. Pulleyblank, “Column generation and

the airline crew pairing problem”, Documenta Mathematica, 3(1):677,

Aug 1998.

P.H. Vance, A. Atamturk, C. Barnhart, E. Gelman, E. L. Johnson, A.

Krishna, D. Mahidhara, G.L. Nemhauser, and R. Rebello, “A heuristic

branch-and-price approach for the airline crew pairing problem”, Tech-

nical report TLI/LEC-97-06, Georgia, Institute of Technology, Atlanta,

GA, 23 June 1997.

A. Aydemir-Karadag, B. Dengiz, and A. Bolat, “Crew pairing optimiza-

tion based on hybrid approaches”, Computers & Industrial Engineering,

65(1):87-96, 1 May 2013.

C. Goumopoulos, E. Housos, and O. Liljenzin, “Parallel crew scheduling

on workstation networks using PVM”, InEuropean Parallel Virtual

Machine/Message Passing Interface Users Group Meeting, (pp. 470-

477), Springer, Berlin, Heidelberg, 3 Nov 1997.

D. Klabjan, and K. Schwan, “Airline Crew Pairing Generation in

Parallel,” InPPSC, 2001.

D. Klabjan, E.L. Johnson, G.L. Nemhauser, E. Gelman, and S. Ra-

maswamy, “Solving large airline crew scheduling problems: Random

pairing generation and strong branching”, Computational Optimization

and Applications, 20(1):73-91, 1 Oct 2001.

A.J. Schaefer, E.L. Johnson, A.J. Kleywegt, and G.L. Nemhauser,

“Airline crew scheduling under uncertainty”, Transportation science,

39(3):340-8, Aug 2005.

G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of

Lipschitz-Hankel type involving products of Bessel functions,” Phil.

Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.

M. Desrochers, and F. Soumis, “A generalized permanent labelling

algorithm for the shortest path problem with time windows,” INFOR:

Information Systems and Operational Research, 26(3):191-212, 1 Jan

1988.

S. Qiu, “Airline crew pairing optimization problems and capacitated

vehicle routing problems,” PhD diss., Georgia Institute of Technology,

2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

