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Chapter 1

Sets

Exercise 1.

Use Venn diagrams to simplify (A ∪B)− (B −A).

Exercise 2.

Use Venn diagrams to show that

a) (A ∩B) ∪ (A ∩Bc) = A

b) (A−B) ∩ (B −A) = ∅

Exercise 3.

Use Venn diagrams to show that

a) B ∩ [(A ∩B) ∪ (A ∩Bc)] = A ∩B

b) (Bc ∩A) ∩A = (Ac ∪B)c

Exercise 4.

A hospital has admitted 50 patients, 25 with pneumonia, 30 with bronchitis,
10 with both.

a) How many patients have pneumonia, bronchitis or both?

b) How many do not have either?
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Exercise 5.

A software company has 100 programmers. The following table lists the
proficiencies:

Proficient in # of employees

Java 45
C# 30

Python 20
C# and Java 6

Java & Python 1
C# & Python 5

C# & Python & Java 1

How many programmers are not proficient in any of the three langauges
Java, Python, C#?

Exercise 6.

Schaum 1.41:
A survey on a sample of 25 new cars being sold at a local auto dealer was
conducted to see which of three popular options, air conditioning (A), radio
(R), and power windows (W), were already installed. The survey found:
15 had air-conditioning, 12 had radio, 11 had power windows, 5 had air-
conditioning and power windows, 9 had air-conditioning and radio, 4 had
radio and power windows, 3 had all three options. Find the number of cars
that had

a) only W;

b) only A;

c) only R;

d) R and W, but not A;

e) A and R, but not W;

f) only one of the options;

g) at least one option;

h) none of the options.
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Exercise 7.

Consider the following languages over binary strings:

K = {x | (x)2 is prime}
L = {x | x does not contain two consecutive ones}

(x)2 signifies that the bitstring x is to be understood as an integer repre-
sented in binary. 1 is not prime. By convention binary represented numbers
do not have leading zeros (i.e., 01 is not a valid binary number, but 1 is).

a) Determine the first 5 elements of the two languages, ordered in length,
and alphabetically when equal length.

b) Draw a Venn diagram of the languages and identify one string for each
of the three Venn diagram areas.

Exercise 8.

Prove that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) by proving two inclusions.

Exercise 9.

Prove that (A ∪B)c = Ac ∩Bc by proving two inclusions.

Exercise 10.

Prove that the following are equivalent:

a) A ⊆ B,

b) A ∩B = A, and

c) A ∪B = B.

Exercise 11.

Recall that with P(V ) we denote the power set (set of all subsets) of the set
V . Let V = {{∅}, x, {y}}. Which of the following are true?

a) ∅ ∈ P(V )

b) {∅} ∈ P(V )

c) {{∅, x}} ∈ P(V )

d) {{∅}, y} ⊆ P(V )
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e) ∅ ⊆ P(P(P(V )))

f) x ∈ {V }

Exercise 12.

An ordered pair can be defined using sets via (a, b)K := {a, {a, b}}. How-
ever, the first set theoretical definition was given by Wiener: (a, b)W :=
{{{a}, ∅}, {{b}}}

a) Prove that (a, b)K = (c, d)K if and only if a = c and b = d.

b) Prove that (a, b)W = (c, d)W if and only if a = c and b = d.

Exercise 13.

a) List the elements of P({∅,P(∅)}).

b) Determine P((a, b)K). (see Exercise 12).

Exercise 14.

Schaum 1.59:
Prove the following properties of the symmetric difference of sets ⊕:

a) associativity: (A⊕B)⊕ C = A⊕ (B ⊕ C).

b) commutativity: A⊕B = B ⊕A.

c) cancellation: if A⊕B = A⊕ C, then B = C.

d) distributivity w.r.t. intersection: A ∩ (B ⊕ C) = (A ∩B)⊕ (A ∩ C).

Exercise 15.

Using the laws of set algebra, prove that (V ∪W ) ∩ (V ∩W ) = (V ∩W ),
and name the rules used.

Exercise 16.

Using the laws of set algebra, simplify [(A∪Bc)∩C]∪ [(B−A)∩C] as much
as possible and name the rules used.
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Exercise 17.

Prove that (A ∪B)c = ((A ∩Bc) ∪ (Ac ∩B) ∪ (A ∩B))c.

Exercise 18.

Prove or give a counterexample: (A−B)− (C −D) = (A− C)− (B −D).

Exercise 19.

The symmetric difference has a number of properties proven in Exercise 14.
Here we are looking for similar laws.

a) Does cancellation hold for intersections? That is, does A∩B = A∩C
imply B = C?

b) Is union distributive with respect to symmetric difference? That is,
does A ∪ (B ⊕ C) = (A ∪B)⊕ (A ∪ C) hold?

c) Is intersection distributive with respect to symmetric difference? That
is, does A ∩ (B ⊕ C) = (A ∩B)⊕ (A ∩ C) hold?

d) Is symmetric difference distributive with respect to intersection? That
is, does A⊕ (B ∩ C) = (A⊕B) ∩ (A⊕ C) hold?

Exercise 20.

Schaum 1.40:
Use Theorem 1.9 n(A ∪ B) = n(A) + n(B) − n(A ∩ B) to prove Corollary
1.10: If A,B and C are finite sets, then so is A∪B∪C, and n(A∪B∪B) is

n(A) + n(B) + n(C)− n(A ∩B)− n(A ∩ C)− n(B ∩ C) + n(A ∩B ∩ C)

Exercise 21.

We are working in the universe U . Given a set A ⊆ U , we can define the
characteristic function κA : U → {0, 1} such that κA(x) = 1 if and only if
x ∈ A.

a) Express the function κAc in terms of κA.

b) Express the functions κA∪B and κA∩B in terms of the functions κA
and κB.
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Relations

Exercise 22.

Schaum 2.4:
Given A = {1, 2, 3, 4} and B = {x, y, z}. Let R be the following relation
from A to B: R = {(1, y), (1, z), (3, y), (4, x), (4, z)}.

a) Determine the matrix of the relation R.

b) Draw the arrow diagram of R.

c) Find the inverse relation R−1.

d) Determine the domain and range of R.

Exercise 23.

Schaum 2.7:
Let R and S be the following relations on A = {1, 2, 3}:

R = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)},
S = {(1, 2), (1, 3), (2, 1), (3, 3)}.

Find:

a) R ∪ S,

b) R ∩ S,

c) Rc (in the universe A×A),

d) R ◦ S,

7



CHAPTER 2. RELATIONS 8

e) S2 = S ◦ S.

Exercise 24.

Consider the relation

R = {(1, 2), (2, 1), (3, 4), (4, 2), (4, 5)}

on {1, 2, 3, 4, 5}.

a) Draw the directed graphs corresponding to R and R ◦R.

b) Determine the transitive closure R+ =
⋃

n≥1R
n, and write R+ as a

set of pairs.

Exercise 25.

For each of following definitions of relation R, determine if R is reflexive,
irreflexive, symmetric, antisymmetric, transitive.

a) xRy iff x · y is odd (choose appropriate universe).

b) xRy iff x ∩ y = ∅ (on P(N0))

c) xRy iff x+ 4y = 10 (choose appropriate universe).

Exercise 26.

Let R,S be relations on a set A of size |A| ≥ 3. For every property P ∈
{reflexive, irreflexive, symmetric, antisymmetric, transitive}, prove or give
a counterexample for the following statements:

a) If R and S have property P , then R ∩ S has property P .

b) If R and S have property P , then R ∪ S has property P .

Exercise 27.

Let R ⊆ A×B be a relation, and idB = {(b, b) | b ∈ B} the identity relation
on B. Prove or give a counter example for the following statements:

a) R is functional ⇔ R−1 ◦R ⊆ idB.

b) R is surjective ⇔ idB ⊆ R−1 ◦R.
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Exercise 28.

For the following relations on N+, check whether they are reflexive, irreflex-
ive,symmetric, antisymmetric or transitive. Explain your answer.

a) xRy if x | y.

b) xRy if x = 2y.

c) xRy if x2 ≥ y.

Exercise 29.

Schaum 2.12:
Let R be a relation on a set A, and let P be a property of relations, such as
symmetry and transitivity. Then P will be called R-closable if P satisfies
the following two conditions:

1) There is a P -relation S containing R.

2) The intersection of P -relations is a P -relation.

a) Show that symmetry and transitivity are R-closable for any relation
R.

b) Suppose P is R-closable. Then P (R), the P -closure of R, is the inter-
section of all P -relations S containing R, that is,

P (R) =
⋂
{S | S is a P -relation and R ⊆ S}

Exercise 30.

Let R be a relation on R2, given as (x, y)R(p, q) iff x < p or both x = p and
y ≤ q, for all x, y, p, q ∈ R. Is R a partial order on R2? Explain your claims.
(Recall a partial order is a reflexive, antisymmetric, transitive relation).



Chapter 3

Functions

Exercise 31.

Which of the following functions is injective?

a) f : R→ R, defined as

f(x) =

{
x if x ≤ 0

(x+ 1)/x if x > 0
.

b) f : R→ R, defined as f(x) = sin(x).

c) f : Countries→ Cities, defined as f(country) = capital(country).

Exercise 32.

Which of the functions in Exercise 31 is surjective?

Exercise 33.

Let f, g : R → R be functions. Prove or give a counterexample for the
following statements:

a) If f and g are bijective, then f + g is bijective.

b) If f and g are bijective, then f · g is bijective.

Note f + g is the short-hand for the function (f + g)(x) := f(x) + g(x), and
analogously for the product.
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Exercise 34.

Let A = {1, 2, 3}, B = {a, b, c}, and f : A→ B. Show that

a) V ⊆ A⇒ f−1(f(V )) ⊇ V .

b) W ⊆ B ⇒ f(f−1(W )) ⊆W .

Exercise 35.

Prove that the composition of bijections is a bijection.

Exercise 36.

a) Provide a bijection between N+ and N+ − {1, 2, 3, 4, 5}.

b) Provide a bijection between N+ and Z. (See Schaum 3.11).

Exercise 37.

Suppose f : A → B is bijective. Let f |V : V → B be defined as f |V (x) =
f(x), for all x ∈ V (this is called a restriction of f to V ).

a) Show that f |V is injective.

b) Prove by counterexample that it need not be surjective.

Exercise 38.

Find a generic formula (without proof) for:

a) 1 = 1, 1 − 4 = −(1 + 2), 1 − 4 + 9 = 1 + 2 + 3, 1 − 4 + 9 − 16 =
−(1 + 2 + 3 + 4), . . .

b) 1
1·2 = 1

2 ,
1
1·2 + 1

2·3 = 2
3 ,

1
1·2 + 1

2·3 + 1
3·4 = 3

4 , . . ..

Exercise 39.

a) The Fibonacci sequence is defined as F0 = 0, F1 = 1, and Fn =
Fn−1 +Fn−2, for n > 1. Let ak be the kth prime Fibonacci number (1
is not prime, so a1 = F3 = 2). Compute

∑3
k=1 ak.

b) Compute
∑n

k=0 2k,
∑n

k=2(−3k),
∑n

k=0 π,
∑n

k=0((−3)k + 2k + 1),

c) In the universe N+, let Vn denote the set of multiples of n. Express
the set of prime numbers in terms of Vn

d) Let A = (aij) be an n×n matrix. Express the sum of all the elements
below the diagonal (not including the diagonal).



Chapter 4

Graphs

Exercise 40.

Consider the adjacency matrix

M =


1 0 0 0
1 0 1 0
0 1 0 0
0 0 1 0

 .
a) Provide the graph whose adjacency matrix is M , where the vertices

are enumerated 1, 2, 3, 4.

b) Provide the graph associated with the relation M ◦ M , and with
M−1 ◦ M . (Here, M is understood as a relation, not matrix, and
the operations are relation operations.)

c) Just by looking at the adjacency matrix, how can we see if the graph
is undirected? That it has no self-loops? That the associated relation
is functional?

Exercise 41.

Consider the following graph G:

a

e

b

f

c

g

d

h
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a) Specify the degree of each vertex, and verify Theorem 8.1.

b) Find all simple paths from a to g.

c) All trails (a walk with distinct edges) from b to c.

d) the distance d(a, c) from a to c.

e) diam(G), the diameter of G.

Exercise 42.

Find all cycles, cut points, and bridges of the graph in Exercise 41.

Exercise 43.

A clique is an induced complete subgraph of a graph. Find all cliques in the
graph in Exercise 41.

Exercise 44.

Consider the graph G in Exercise 41. Find the subgraph G(V ′, E′) induced
by:

a) V ′ = {b, c, d, e, f},

b) V ′ = {a, c, e, g, h},

c) V ′ = {b, d, e, h},

d) V ′ = {c, f, g, h}.

Which of them are isomorphic?

Exercise 45.

How many non-isomorphic connected graphs are there over 4 vertices? 5?
10?

Exercise 46.

Suppose that an undirected graph G contains two distinct simple paths from
a vertex u to a vertex v. Show that G has a cycle. Does this claim hold if

a) the graph is directed?

b) the path is not simple?
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Exercise 47.

Let G be a connected graph. Prove:

a) If G contains a cycle C that contains an edge e, then G − {e} is still
connected.

b) If e = {u, v} is an edge such that G− {e} is disconnected, then u and
v belong to different components of G− {e}.

Exercise 48.

Prove Theorem 8.11: The following are equivalent for a graph G:

a) G is 2-colorable.

b) G is bipartite.

c) Every cycle of G has even length.

Exercise 49.

A d-regular graph, d ≥ 0, has only vertices with degree d. Bipartite graphs
allow a bipartition of the edges into two sets such that there is no edge
between vertices of the same set. Construct a 3-regular graph of order at
least 5, and check if it is bipartite.

Exercise 50.

Consider the following grap G:

u y

x

z

r

s

t

w

A topological order of a directed graph G = (V,E) is a sequence v1, . . . , vn
of all nodes of G so that if (vi, vj) ∈ E, then i < j. (You can use the nodes
of the count on a line where only arrows of the count run from left to right.)
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a) Determine a topological order of the directed graph above.

b) Prove Theorem 9.8 (Schaum): Let S be a finite directed cycle-free
graph. Then there exists a topological sort of the graph S.



Chapter 5

Combinatorics

Exercise 51.

a) We have a row of 11 seats. In how many ways can you accommodate
6 people to take a seat?

b) In how many ways can you seat 10 people around a round table with
10 chairs around it.

Exercise 52.

a) How many different sequences of 8 binary digits exist with exactly 5
ones?

b) How many different sequences of n binary digits exist with exactly k
ones?

c) How many different sequences of length n, with elements from {0, 1, 2}
exist, with exactly k ones?

Exercise 53.

a) How many different edges (so unordered pairs {u, v}) can an undi-
rected graph with n nodes have?

b) How many different directed edges (so ordered pairs (u, v)) can a di-
rected graph with n nodes have?

c) How many different functions are there from {1, 2, 3} to {1, 2, 3}?

d) How many different functions are there from {1, 2, ..., n} to {1, 2, ..., n}?
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e) How many different bijections are there from {1, 2, ..., n} to {1, 2, ..., n}?

Exercise 54.

a) Put a complete set of parentheses in the expression 1− 2− 3− 4. How
many ways of doing this are there?

b) The same for 1− 2− 3− 4− 5− 6− 7.

Exercise 55.

Determine the coefficient of x3y4z in the expansion of

a) (x+ y2 + z)6

b) (2x− y − 3z)8

Exercise 56.

A palindrome is a word that can be read the same way in either direc-
tion (such as RACECAR). How many 9-letter palindromes (not necessarily
meaningful) can be formed using the letters A-Z?

Exercise 57.

How many three-digit numbers abc have the property that a ≤ b ≤ c?

Exercise 58.

Consider a knockout tournament for a two-player game. For each game, the
winner continues to the next round, while the loser is knocked out. How
many games are played if the tournament starts with n ≥ 1 players.

Exercise 59.

Prove Pascal’s identity: for all n ∈ N0 and 0 ≤ k ≤ n,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Hint: use that the binomial coefficient
(
n
k

)
equals the number of subsets with

k elements of a set with n elements.
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Exercise 60.

A derangement of a set S is a bijection f : S → S, such that f(x) 6= x, for
all x ∈ S. Informally, it is a permutation where every element moved. Let
!n be the number of derangements on a set of n elements.

a) Show that !1 = 0, !2 = 1, and !n = (n − 1)(!(n − 1)+!(n − 2)), for
n ≥ 2.

b) Prove that !n = n·!(n− 1) + (−1)n, for n ≥ 0.

Exercise 61.

Programmeerwedstrijd competition, spring 2003
In a prison for life-threatening criminals, the prisoners have to be brought
into the cell block one at a time. This is done by forming a long line
with criminals (C) and guards (B). The prisoners are so dangerous that two
cannot be allowed to stand next to each other, because anarchy would break
out immediately. But, the guards so lazy that as soon as four are next to each
other, they immediately start playing cards. This must also be prevented.
For example, the following sequences may not be formed: C-B-B-C-C-B:
2 criminals side by side: anarchy! C-B-B-B-B-C: cards! The following
sequence is possible: C-B-C-B-B-B-C-B-C-B-B-C-B-C-B-B-B-C The prison
warden has ordered to make a sequence of length N . “Yes, but,” one of the
guards asks, “in how many different ways of doing that are there?”

The input is in the imprisoned.in file and the output is written in the
imprisoned.out file. Every line of imprisoned.in contains is a value N
(with 4 ≤ N ≤ 50). Write a program that given this N , always calculates
how many different rows of that length can be made. This answer is then
always printed in a separate line in imprisoned.out. You do not have to
take symmetry into account, i.e., C-B-B and B-B-C are counted as different
rows.



Chapter 6

Recursion

Exercise 62.

a) What does the following function compute (for y > 0)?

int func(int x, int y) {

if (y) return x * func(x, y - 1);

return 1;

}

b) What does fibo(4) output? Create a tree structure that displays the
function calls. What is the length of the string printed by fibo(8)?
What is the number of a’s and b’s in that string?

void fibo(int depth) {

switch (depth) {

case 0: cout << ’b’; return;

case 1: cout << ’a’; return;

default: fibo(depth - 1); fibo(depth - 2);

}

}

Exercise 63.

a) Give a (possible) recursive definition of V = {1,−3, 5,−7,−9, 11,−13, . . .}.

b) Give a (possible) recursive definition of W = {1, 4, 13, 40, 121, . . .}.

19
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Note, since definitions which use the ellipsis (“. . .”) symbol are not unam-
biguous, there are many different recursive definitions consistent with the
given specification, and any will do.

Exercise 64.

a) Give a recursive definition of f(n) = 2n, for n ≥ 0.

b) Give a recursive definition of g(n) = 2n + 1, for n ≥ 1.

c) Give a recursive definition of h(n) =
∑n

i=1 i(i+ 1), for n ≥ 1.

Exercise 65.

a) Describe a recursive function for the number of nodes of a binary tree,
by it giving a base f(leaf) and a recursion f(node) expressed in f(left)
and f(right).

b) Using the same approach, provide a function that determines the
height of a binary tree.

c) Using the same approach, provide a function for the maximum of value
stored in the nodes of a binary tree.

Exercise 66.

The Blurpsen set is the smallest set (language) so that:

a) ∆ is a Blurps.

b) If x is a Blurps, then x∆∆ and �xx� are Blurps.

c) If x and y are Blurps, then x∆y is also a Blurps.

Show that all Blurps have an odd number of triangles or at least one dia-
mond.
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Induction

Exercise 67.

Express using the summation symbols, and prove using induction on n.

a) 1 + 3 + 5 + · · ·+ (2n− 1) = n2, for n ≥ 1.

b) 2 + 6 + 18 + · · ·+ (2 · 3n) = 3n+1 − 1, for n ≥ 0.

Exercise 68.

Prove by induction on n:

a)
∑n

k=1 k = n(n+1)
2 , for n ≥ 0.

b)
∑n

k=1(−1)kk2 = (−1)n
∑n

k=1 k, for n ≥ 0.

c)
∑n

j=1
1

j(j+1) = n
n+1 , for n ≥ 0.

For b) use the results of a).

Exercise 69.

Show that (1− a)n ≥ 1− na, for all n ∈ N0 and all 0 < a < 1.

Exercise 70.

Prove Newton’s binomial theorem: for all x, y ∈ R and n ∈ N0,

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Hint: use induction and Pascal’s identity in Exercise 59.
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Exercise 71.

Fibonacci numbers are defined recursively as F0 = 0, F1 = 1, and Fn+2 =
Fn + Fn+1, for n ≥ 0. Prove, by induction on n, that

a)
∑n

k=1 Fk = Fn+2 − 1, for all n ≥ 1.

b)
∑n

k=1 F
2
k = FnFn+1, for all n ≥ 1.

Exercise 72.

Binet’s formula.

a) Prove that xn = xFn +Fn−1, for all n ≥ 1 and x ∈ R, with x2 = x+1.

b) Show that Fn = 1√
5

[(
1+
√
5

2

)n
−
(
1−
√
5

2

)n]
, for all n ≥ 1.

Exercise 73.

Fibonacci by matrix multiplication.

a) Show that Qn =

[
Fn+1 Fn

Fn Fn−1

]
, for n ≥ 0, with Q =

[
1 1
1 0

]
.

b) Show that F2n = F 2
n+1 + F 2

n−1, and F2n+1 = F 2
n+1 + F 2

n .

c) Show that Q2 = Q+ I, where I is the identity matrix.

d) Show that F2n =
∑n

k=0

(
n
k

)
Fk

Exercise 74.

Lucas numbers are defined recursively as L0 = 2, L1 = 1, and Ln+2 =
Ln + Ln+1, for n ≥ 0. Prove that Ln+2Ln − L2

n+1 = 5(−1)n.
Note: Lucas numbers have the same recursive form as Fibonacci num-

bers, but different initial values.

Exercise 75.

How can we compute a desired Fibonacci number Fn using a number of
operation which is proportional to log(n)? Go through the fibo function
from the lectures, it loops about n times so the number of operations there
is proportional to n not log(n).

Hint: use that
∑n

k=1 Fk = Fn+2 − 1.
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Exercise 76.

Fibonacci numbers are defined recursively as F0 = 0, F1 = 1, and Fn+2 =
Fn + Fn+1, for n ≥ 0.

a) Compute
∑5

k=1 F2k.

b) Prove by induction that
∑n

k=1 F2k = F2n+1 − 1, for all n ≥ 1.

c) If we take initial values F0 = 1 and F1 = 3, what equality do we get
in b)?

Exercise 77.

(Exam question) Prove:

1 +

n∑
i=1

(i · i!) = (n+ 1)!,

for all natural numbers n > 0.

Exercise 78.

(Exam question) We define the sequence An, for n ∈ N0, by means of the
recurrence an = an−1 + an−2, with initial values a0 = 2 and a1 = 1. Prove
by induction that an = (−1)n + 2n.

Exercise 79.

(Exam question) The language L ⊆ {a, b}∗ is defined recursively as (1) a ∈
L, (1); (2) if x, y ∈ L then bxy ∈ L; (3) no other words are in L. Prove with
induction that for every z ∈ L it holds that that #a(z) = #b(z) + 1. Here,
#a(z) and #b(z) denote the numbers of letters a and b in z, respectively.
For example #a(abbaabbabb) = 4 and #b(aa) = 0.

Exercise 80.

(Exam question) Using induction, prove that for all n ≥ 1 the number of
edges l(n) of a complete graph Kn is n(n− 1)/2.
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Trees

Exercise 81.

Draw all (undirected) trees with exactly six vertices.

Exercise 82.

Let G = (V,E) be an undirected, cycle-free graph with c components, so a
forest with c trees.

a) Prove that |V | = |E|+ c.

b) Show that Theorem 8.6, implication (ii) → (iii) follows from this
result.

Exercise 83.

a) Consider the following tree:

A

B

C D

L M

E

F

G H

J

K
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Find the corresponding binary tree in left-child right-sibling represen-
tation.

b) Suppose T is a general tree with root R and subtrees T1, T2, . . . , TM .
The postorder traversal of T is defined as follows:

a) Traverse the subtrees T1, T2, . . . , TM in postorder.

b) Process the root R.

Traverse the tree T (given with the graph above) in postorder.

c) Give the definition of ‘preorder traversal’ and illustrate it on T .

Exercise 84.

a) Draw the five binary trees with three vertices.

b) Let tn be the number of binary trees with n vertices. Show that the
following recurrence relation holds:

tn+1 =
n∑

k=0

tktn−k, t0 = 1

c) How many binary threes with 6 vertices are there?
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Expressions

Exercise 85.

Assume that @ is an associative binary operation.

a) Prove that

(((((1 @ 2) @ 3) @ 4) @ 5) @ 6) = 1 @ (2 @ (3 @ (4 @ (5 @ 6)))).

b) Is (1 @ 2) @ 3 = (3 @ 1) @ 2?

Exercise 86.

Compute the following expressions in reverse Polish notation:

a) 5 1 2 + 4 × + 3 −

b) 30 400 × 15 60 × +

Exercise 87.

Consider the algebraic expression E = (3x−5z)4
a(2b+c2)

.

a) Draw the ordered rooted parse tree T of E, using Knuth’s uparrow (↑)
for exponentiation, an asterisk (*) for multiplication, and a slash (/)
for division.

b) Use T to rewrite E in Polish notation and in reverse Polish notation.
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Formal languages

Exercise 88.

The language L over {a, b} is defined recursively as follows:

1) a ∈ L, b ∈ L.

2) if x ∈ L, then ax ∈ L and xbb ∈ L

3) L contains no other words.

a) Show that the following words are elements of L: aa, bbb, abbb, abbbb.

b) Explain that the following words are not an element of L: ba, bb, bbbb.
Explain what properties of L-words you use to argue the claim.

c) Give a (non-recursive) specification of L (without proof).

Exercise 89.

The language L over {a, b} is defined recursively as:

1) λ ∈ L, with λ the empty string,

2) if x ∈ L then ax ∈ L and axb ∈ L,

3) no other strings are in L.

a) Give all words from L with length less or equal to 5.

b) Give a general description of the language L. What do the words from
L look like?
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Exercise 90.

The language L is defined recursively as follows:

1) λ ∈ L (empty word)

2) if x ∈ L, then axa and bxb are in L.

For a word w, let wR be its reverse.

a) Show that L ⊆ {wwR | w ∈ {a, b}∗}.

b) Conversely, prove that wwR ∈ L for every w ∈ {a, b}∗

Exercise 91.

Determine a shortest word that is not in the language:

a) 1∗{01}∗0∗

b) {0}∗ · ({10} · {0}∗) · {1}∗

c) (0∗ ∪ 1∗)(0∗ ∪ 1∗)(0∗ ∪ 1∗)

d) 1∗{0, 10}∗1∗

Exercise 92.

Compute L2, for the following languages:

a) L = {λ}, with λ the empty word.

b) L = {λ, a}

c) L = {a, b, ab}

d) L = ∅

e) L = {aa}∗.

Exercise 93.

Prove or give a counterexample:

a) If L = L2, then λ ∈ L, with λ the empty word.

b) If L = L2, then L = Ln, for n > 1.

c) If L = L2, then L = L∗.
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d) If K2 = L2, then K = L.

e) If K∗ ⊆ L, then K ⊆ L.

Exercise 94.

Let K, L, and M be languages over an alphabet Σ. Prove or give a coun-
terexample:

a) (K∗)n = (Kn)∗, for n ≥ 1.

b) (KL)∗ = (LK)∗.

c) (K − L)M = KM − LM .

d) (K∗L∗)∗ = (L∗K∗)∗.

e) (Kc)∗ = (K∗)c.

f) (K∗L∗)∗K∗ = (K∗ ∪ L∗)∗.

Exercise 95.

Let K be a language over an alphabet Σ. Prove that (K∗)2 = K∗.

Exercise 96.

The language L is defined recursively as follows:

a) a ∈ L

b) If x ∈ L, then xb, xba ∈ L

c) L contains no other words.

Show that L is exactly the language of words without a subword aa.

Exercise 97.

Use language operations to get the following languages over Σ = {a, b}
from finite languages. For example, the set of words of even length is
{aa, ab, ba, bb}∗.

a) The set of words of odd length.

b) The words with exactly one occurrence of the letter a.

c) The words that start with an a or end with two b’s (or both).
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d) The words with at least three consecutive a’s.

e) The words with the subword bbab.

Exercise 98.

The language L ⊆ {0, 1}∗ is defined recursively as follows:

1) 01, 10 ∈ L,

2) If w ∈ L, then wwR ∈ L, with wR the reverse of w,

3) L contains no other words.

a) For the following words, determine whether or not they belong to L:
0110, 1010, 01010, 01011010.

b) Let K = {01, 10} ∪ {w ∈ {01, 10}+ | w = wR}}.

c) Prove by induction that L ⊆ K.

d) Is K = L? Explain your answer.
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Countability

Exercise 99.

Show that the following sets are countable:

a) N0 × N0 = {(x, y) | x ∈ N0, y ∈ N0}.

b) The set of finite sequences of integers.

c) Σ∗, for some countable alphabet Σ.

Exercise 100.

a) Prove that A is countable, if there is an injective function f : A→ N0.

b) Prove that every subset of a countable set is countable.

Exercise 101.

Show that the following sets are uncountable.

a) The set consisting of all infinite sequences of zeros and ones; More
formally that is the set of all functions from N0 to {0, 1}.

b) The set of languages over the alphabet {0, 1}.
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Modular arithmetic

Exercise 102.

In the Gregorian calendar, the standard calendar in most of the world,
leap years are defined as follows: Every year that is exactly divisible by
four is a leap year, except for years that are exactly divisible by 100, but
these centurial years are leap years if they are exactly divisible by 400. For
example, the years 1700, 1800, and 1900 are not leap years, but the years
1600 and 2000 are

Which day is February 29, 2020? (January 1, 2000 was a Saturday).

Exercise 103.

Schaum 2.15:
Let A be the set of nonzero integers and let ≈ be the relation on A × A
defined as (a, b) ≈ (c, d) whenever ad = bc. Prove that ≈ is an equivalence
relation.

Exercise 104.

Let a(m) be the alternating sum of the digits of a numberm given in decimal.
That is, a(m) = d0 − d1 + d2 − d3 + · · · + (−1)kdk, if m = (dk · · · d1d0)10.
Prove that m ≡ a(m) modulo 11.

Exercise 105.

A congruence class (residue class) x̄ ∈ Zm modulo m, for m ≥ 1, is called
invertible if a congruence class ȳ exists for which x̄ · ȳ = 1̄.

Determine the invertible congruence classes modulo 7 and determine
their inverse. Do the same for Z10.
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Exercise 106.

a) Provide an addition and multiplication table for Z4.

b) Determine the invertible congruence classes of Z4.

c) Show that x̄4 = x̄2, for every x ∈ Z4.

d) Prove that x4 − x2 is divisible by 4, for every x ∈ Z.

Exercise 107.

a) Show that x̄12 = 1̄ for each x ∈ Z13 with x̄ 6= 0̄. Note: if you do
not use calculators/computers, then it is handy to pre-compute x̄,
x̄2, x̄3, x̄6, x̄12 in succession.

b) Determine the remainder of 100100 + 10001000 when divided by 13.
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Finite automata

Exercise 108.

For each automaton in Figures 13.1 to 13.7, determine

a) its accepted language,

b) if it deterministic,

c) if it can be made deterministic by to adding branches and states.

q0start q1 q2

a a a, b

b b

Figure 13.1: Automaton 1

0start 1 2

0 0 0

1 1

1

Figure 13.2: Automaton 2
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Astart B C

a a

a

b

a

b

Figure 13.3: Automaton 3

−1 0

start

1

a

b

a

b

Figure 13.4: Automaton 4

Exercise 109.

For each of the following languages, determine a finite automaton with al-
phabet {0, 1}. Try (also) to give a deterministic finite automaton. The
language consists of the words w, such that

a) w has exactly two 0s.

b) w does not end with 01.

c) w has no infix 00.

d) w has an even number of 0s.

e) every 0 in w is immediately followed by 11.

f) w contains both 11 and 010 as subwords.

g) the second to last letter of w is 0.

h) w has at most two occurrences of the subword 00.
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Istart II III IV V

a,b

a a b a

Figure 13.5: Automaton 5

Istart II III IV V

a,ba,b

a a b a

Figure 13.6: Automaton 6

Istart II III IV V

aa

a

b

a

b

b

a b a

Figure 13.7: Automaton 7
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