
Basic concepts for Foundations of Computer Science

Vedran Dunjko

Fall 2019

Contents

1 Sets 2
1.1 Concepts & definitions . 2
1.2 Other topics & useful mathematical concepts 3

2 Relations 4
2.1 Binary relations . 4

3 Functions 7

4 Graph theory 1 9

5 Basic combinatorics 11

6 Recursion and induction 12

7 Trees 13

8 Modulo computation and equivalence relations 14

9 Languages 15

10 Automata 16

1

Chapter 1

Sets

1.1 Concepts & definitions

Specification of sets: extensive ({1, 2, 3, 4...}), intensive {x|x has property P}

Examples: R = {a, b, c, d}, S = {x|x is an integer divisible by 17};

Special sets: empty set ∅, universe or universal set U . Sets of numbers
N,Z,Q,R

Operations (on sets A, B): intersection A∩B, union A∪B, set differ-
ence A−B or (A\B), symmetric difference A⊕B or (A4B), complement
Ac.

Basic set relations (on sets A, B) subset A ⊆ B, equality A = B,
strict subset A ⊂ B or (A $ B), disjointness (no special symbol, but means
A ∩B = ∅)

Venn diagrams: Venn diagram factors, or ”regions” [4 for 2 sets (and
universe), 8 for 3 sets (and universe)].

Set cardinality: |A|,card(A),#(A)

Powerset P(A)

Example: A = {1, 2}, P(A) = {∅, {1}, {2}, {1, 2}}. Note, A ∈ P(A).

2

CHAPTER 1. SETS 3

Principle of inclusion and exclusion

Main properties of operations: commutativity, associativity, distribu-
tivity (general, and of set operations). Correct expression evaluation; order
and parentheses (brackets) matter.

Laws of set algebra: (Theorem 6.5, Schaum) (commutativity, associativ-
ity, distributivity (both), idempotence, De Morgan, nul (identity) elements,
double complement (involution), complementation rules.

Duality: true expression involving unions intersections and complements,
empty sets and universal sets remain true if we exchange unions for inter-
sections (and converse) and empty sets with universes.

1.2 Other topics & useful mathematical concepts

Various theorems, formal proofs, equivalences of statements, im-
plication . Example: A ∪ B = B is equivalent to Ac ∪ B = U (in other
words, if two sets satisfy any of the two expressions, then they necessarily
satisfy the other as well.)

Implication (⇒), bi-implication ⇔ . Note A implies B, means if A is
true, then so is B. Implication is transitive:(A implies B and B implies C),
implies that A implies C (if if rains, the streets are wet. If the streets are
wet, driving is dangerous. Then if it rains, driving is dangerous.). “if and
only if”, iff : A if and only if B means that A implies B and B implies A.
Careful: A if B (A happens if B happens) means B implies A. A only if B
means A implies B (A only if B means that if A happens, B must (have)
happen(ed)... in other words, A implies B).

Other symbols: There exists ∃, for all ∀

Evaluating expressions, priorities, importance of parentheses

Binary numbers, bit-strings, and counting subsets Specifically, the
proof that the cardinality of the powerset of set of n elements is the same
as the number of all bit-strings of length n.

Chapter 2

Relations

Tuples: n-tuples and ordered pairs (from a family of sets), tuple equality

Cartesian product of sets A1, A2, . . . , An: A1 ×A2×, . . . ,×An.

Relations: subsets of Cartesian products, binary relations

Cardinality of Cartesian products

2.1 Binary relations

Inverse relation and inverse relation : R−1 for R; identity relation on
A: idA, or ∆A or 1A) .

Relation representations: Arrow diagrams, directed graph, matrix, graph
(plot)

Domain, range of a relation (Dom,Range). Image, preimage of a set,
under a relation.

Main types of relations (I): functional, total, injective, surjective

Composition of relations R,S, denoted R ◦ S.

Main types/properties of relations (II) : reflexive, symmetric, anti-
symmetric, transitive, irreflexive. Note, not symmetric 6= antisymmetric,
irreflexive 6= not reflexive.

4

CHAPTER 2. RELATIONS 5

Main types of relations (III) : equivalence relation, partial order

Main characterization of main properties via set-theoretic expres-
sions (equivalent statements) Example: R is symmetric if and only if
R−1 ⊆ R.

Closure or property P (e.g., P= reflexive, symmetric,...) the P -closure
of a relation R is ”smallest” relation containing R which has property P .

Comment: Note that the properties of reflexivity, symmetricity, and
transitivity, can always be achieved by adding certain pairs to the relation;
to see this note that these properties are violated only when certain pairs
are missing from the relation.

Examples:

• R ⊆ {a, b}× {a, b}, R = {(a, a)}. R is not reflexive as (b, b) is missing.
However, R ∪ {(b, b)} is reflexive.

• S ⊆ {a, b}×{a, b}, S = {(a, b)}. S is not symmetric as (b, a) is missing.
So S ∪ {(b, a)} is symmetric.

• T ⊆ {a, b, c} × {a, b, c}, T = {(a, b), (b, c)} is not transitive as (a, c) is
missing. T ∪ {(a, c)} is transitive.

• More involved example for transitive closure:

T ⊆ {a, b, c, d} × {a, b, c, d}, T = {(a, b), (b, c), (c, d)} is not transitive
as (a, c), and (b, d) are missing. However, T ∪ {(a, c), (b, d)} is still
not transitive, as it now includes (a, c) and (c, d), but not (a, d). But,
T ∪ {(a, c), (b, d)} ∪ {(a, d)} is the transitive closure.

Note T ◦ T = {(a, c), (b, d)}; T ◦ T ◦ T = (T ◦ T) ◦ T = {(a, d)}.

Expressions for reflexive, symmetric and transitive closure Pro-
vided in slides, e.g. the transitive closure of the relation T , is T+ =⋃∞

k=1 T
◦k.

Theorems: unions and intersections preserve reflexivity (r), sym-
metricity (s), transitivity (t) : in other words if R,S are both r/s/t
then both R ∪ S and R ∩ S are r/s/t.

CHAPTER 2. RELATIONS 6

P -closure of R: intersection of all relations R′ which have the prop-
erty P and contain R . By above theorems, this intersection will have
the property, and be the smallest one such (no element can be removed
without violating property, or loosing the containment of R).

Chapter 3

Functions

Function is synonymous to: mapping, map, transformation.

Main representations; arrow diagrams, tables, graphs. For a func-
tion f : A→ B, its graph (grafiek) is the set {(x, f(x))|x ∈ A}.

Formal definition A function f : A → B is a functional total relation
from A to B, specifically f ⊆ A×B. Note f is now identified with its graph.

Comment: recall that total means that ∀y ∈ B there exists x ∈ A such
that (x, y) ∈ f , or, equivalently f(x) = y. Functional means that f(x) = y
and f(x) = z, imply that y = z (no 1-to-many) (relationally, we would write
this (x, y) ∈ f and (x, y) ∈ f ⇒ z = y.)

Domain, range, codomain, image, preimage of a function. (Same
as in the case of relations). Comment. Let f : X → Y be a function,
and let V ⊆ V , W ⊆ Y . By abuse of notation, with f(V) we denote
the following set: f(V) = {f(x)|x ∈ V }, that is the set of all elements of
Y reached by applying f to the elements of V . This symbol reads as if
the function f takes a subset as an argument, but it is just the (natural)
notation of a subset of the codomain Y (note f(V) ⊆ Y). One can think of
this as a generalisation of the function f onto the domain P(X) with range
in P(Y), but it is better to simply understand as special notation, defined
once the function f is defined. More importantly, and what can cause more
confusion, with f−1(W) we denote the following subset of the domain X:
f−1(W) = {x ∈ X|f(x) ∈ W}; this is the set of all elements of the domain
X which are mapped into the subset W . Do not mistake this set for the

7

CHAPTER 3. FUNCTIONS 8

inverse function f−1(y) – the sets f−1(W) are always defined, even when
the function f has no inverse.

Surjective, injective and bijective functions. .Comment: proving
that a function (or function family) is not surjective, injective and bijective
is often easily done by providing a counterexample. E.g., a difference of two
bijective functions f, g from R to.R (f−g)(x) := f(x)−g(x) is not necessar-
ily bijective. Proof: take f to be the identity and f = g. Then (f−g)(x) = 0
for all x (constant function). A constant function is not bijective, as it is
(e.g.) not injective: take any x1 6= x2, yet (f − g)(x1) = (f − g)(x2), which
is in contradiction with the definition of injectivity.

Inverse function. If f is a function the inverse relation of f (understood
as a relation) need not be a function.

Function composition For f : A → B, g : B → C, then g ◦ f : A → C
is defined with (g ◦ f)(x) = g(f(x)).
Comment: this notation is opposite to the case of relations. Consider the
relations Rf ⊆ A × B, Sg ⊆ B × C, which are just the relational repre-
sentations of f and g (i.e. their graphs), so, Rf = {(x, f(x))|x ∈ A} and
Sg = {(y, g(y))|y ∈ B}. The composed relation Rf ◦ Sg is a relation from
A to C, and is the relational representation (the graph) of the composed
function g ◦ f . Note the reversal of the order g and f . The relational com-
position is read “first Rf then Sg”, whereas the functional is read g after f .
[We have introduced the notation Rf and Sg for the relational versions of
f and g for clarity; we could have used the symbols f and g to mean both,
but in this case, the ordering would be more confusing.]

Sequences and series. Sequences and tuples; Series and sums; Sum-
mation and product symbols

∑l
i=k ai,

∑
i<k ai,

∑
i∈S ai, analogously for

products, unions, intersections (
∏l

i=k ai,
⋃l

i=k ai,
⋂l

i=k ai). Arithmetic and
geometric series. Basic summation identities (e.g. what is

∑34
i=4 i?)

Chapter 4

Graph theory 1

Graphs: definitions and basic concepts; Vertices, edges, undirected,
directed; representation: graph, adjacency matrix; Simple graphs; connect-
edness, adjacency, incidence, neighbourhood. Degree.

Sum-degree formula and handshaking lemma. Sum of all degrees is
twice the edge number. Number of vertices with odd degree is even.

Graph equality; graph isomorphism.

Subgraphs. induced subgraphs, vertex and edge removal. Connected
components,

Path, simple path, trail, cycle, circuit. If there is a path between
vertices, there is a simple path. Distance between vertices, graph diameter.

Seven Bridges of Köningsberg.

Eulerian graph: has Eulerian circuit (each edge once, end where started).
Eulerian trail. For Euler circuit, necessary and sufficient condition: all
vertices even degree. For trail: exactly 2 or 0 (then also circuit) odd degree
vertices.

Hamilton cycle. Closed path with each vertex traversed exactly once.

9

CHAPTER 4. GRAPH THEORY 1 10

Concepts with directed graphs, and topological ordering. Topo-
logical sorting (ordering) exists if and only if the graph is directed without
cycles. Theorems 9.2 and 9.3 (Schaum): a) strongly connected if and only
a closed spanning path exists b) weakly connected if and only if a spanning
semi path exists; A directed graph G without cycles has a source and a sink.

Planar graphs.

Complete graphs.

Bipartite graphs. Graph is bipartite if and only if if it has no cycles of
odd length.

Weighted and labeled graphs.

Chapter 5

Basic combinatorics

Permutations. n! =
∏n

i=1 i. Sampling without replacement.

Ordered lists. Length n, k elements = kn. Sampling with replacement.

Subsets. Number of k sized subsets out of n distinct elements:
(
n
k

)
=

n!

(n− k)!k!
, (“n-choose-k”). Binomial coefficients.

11

Chapter 6

Recursion and induction

Inductive definition, recursive definition E.g., Fibonacci sequence.

Mathematical induction. Proofs via induction (prove that some prop-
erty – equality, inequality, congruence, etc., holds for all numbers (larger
than some constant)): (1) base, (2) inductive step;

Mathematical induction over inductively defined sets. E.g.. all
trees have n− 1 edges... E.g., inductively defined languages. E.g., Blurpsen
language and proving properties.

12

Chapter 7

Trees

Basic definitions. Undirected, directed, rooted, ordered tree...

Terminology. Leaf, internal vertex (node), edge, root, child, sibling, par-
ent ancestor, descendant. Depth of a vertex. Height of a vertex. Depth of
tree. Subtrees.

Main properties. If G is a tree, then G−e is not connected. |E| = |V |−1.
Inductive proof.

(Equivalent) characterizations : T is a tree; T is maximally acyclic;
There exists a unique simple path between any two vertices of T ; T is acyclic
with n−1 edges; T is minimally connected; T is connected with n−1 edges.

Binary trees Definition (recursive). Types: complete, full; extended bi-
nary tree.

First child- right sibling encoding (Knuth transformation) ; En-
coding arbitrary trees into binary trees.

Tree traversals. Preorder (NLR for binary). Postorder (LRN for binary).
Inorder (symmetric ordering: only binary, LNR).

Arithmetic expressions and tree traversals. Polish and reverse Polish
notation.

13

Chapter 8

Modulo computation and
equivalence relations

Congruence modulo n. Definition. Is an equivalence relation.

Equivalence classes.

Residue classes modulo n: equivalence classes of the relation of con-
gruence modulo n.

Modulo arithmetic: if a ≡ b (mod n), and c ≡ d (mod n), then: (1)
a ± c ≡ b ± c (mod n); (2) a × c ≡ b × c (mod n); Also if a ≡ b (mod n)
then ak ≡ bk (mod n). Due to these rules, and the fact that the congruence
relations are transitive, it is easy to compute modulo computations; mod can
essentially be taken at any point (in exponents, in products and sums)...

Computing with residue classes.

14

Chapter 9

Languages

Basic definitions; Alphabet, word/string, empty string (λ), word length,
set of all words, Kleene star. Language. Empty language.

Languages as sets, and set operations.

Operations on words. Concatenation, powering, Kleene star, mirroring.
Basic properties (length).

Operation on languages – derived from operations on words. Con-
catenation, powering, Kleene star, mirroring (of languages).

Specifying languages.

Regular expression. Recursive definition. Language defined by a regular
expression.

Regular language. Generated by union, concatenation and Kleene star
from singlet sets. Regular languages are exactly those specified by a regular
expression. Set of regular languages is closed under mirroring.

From inductive definition of a regular language to a defining reg-
ular expression (set expression)

15

Chapter 10

Automata

Basic definitions Finite state machine/automaton. States, transition
table, transition graph, labels. Terminal states. Deterministic automaton
(exactly one arrow with each label from each state). Non-deterministic
automaton.

Automata and accepting words. Labelling of a walk. Accepts word
if ends in a terminal (accepting) state (for non-deterministic, one of the
labelings ends in an accepting state).

A language is representable by a deterministic finite state automa-
ton if and only if it is representable by a non-deterministic finite
state automaton. Not all languages are recognised/accepted by a finite
state automaton (counterexample?).

16

CHAPTER 10. AUTOMATA 17

Theorem (Kleene): A language is representable as a finite state
automation if and only if it is a regular language.

	Sets
	Concepts & definitions
	Other topics & useful mathematical concepts

	Relations
	Binary relations

	Functions
	Graph theory 1
	Basic combinatorics
	Recursion and induction
	Trees
	Modulo computation and equivalence relations
	Languages
	Automata

