

1

Lecture 7

Functions

Chapter 3 Schaum up to 3.8, 3.9

synonyms: map, mapping, transformation

associates elements of one set to elements of another

Local Time a	nd Weather	Around	the Wo	orld	Cities Sho	wn: Mo	ost Popula	ar (143) 🗸 🗸	Sort By: C	ity	V 20
Accra	Mon 07:59	×	24 °C	Dublin *	Mon 08:59	×	11 °C	Nairobi	Mon 10:59	À	17 °C
Addis Ababa	Mon 10:59		15 °C	Edmonton *	Mon 01:59	2	13 °C	Nassau *	Mon 03:59	Ð	27 °C
Adelaide	Mon 17:29	Ŕ	11 °C	Frankfurt *	Mon 09:59	×	17 °C	New Delhi	Mon 13:29		30 °C
Algiers	Mon 08:59	×	28 °C	Guatemala City	Mon 01:59	Ð	19 °C	New Orleans *	Mon 02:59	D	28 °C
Almaty	Mon 13:59	*	33 °C	Halifax *	Mon 04:59	Ð	15 °C	New York *	Mon 03:59	D	22 °C
Amman *	Mon 10:59	- `	28 °C	Hanoi	Mon 14:59	×	36 °C	Oslo *	Mon 09:59	$\stackrel{\frown}{\ldots}$	17 °C
Amsterdam *	Mon 09:59	*	17 °C	Harare	Mon 09:59	*	16 °C	Ottawa *	Mon 03:59	Ð	16 °C
Anadyr	Mon 19:59		11 °C	Havana *	Mon 03:59	Ð	23 °C	Paris *	Mon 09:59	*	16 °C
Anchorage *	Sun 23:59	2	17 °C	Helsinki *	Mon 10:59	*	20 °C	Perth	Mon 15:59	- \	25 °C
Ankara	Mon 10:59	×	24 °C	Hong Kong	Mon 15:59	×	34 °C	Philadelphia *	Mon 03:59	D	21 °C
Antananarivo	Mon 10:59	À	20 °C	Honolulu	Sun 21:59	Ð	28 °C	Phoenix	Mon 00:59	Ð	35 °C

Letter Grade	Number Grade				
A+	97				
А	95				
A-	92				
B+	87				
В	85				
B-	82				
C+	77				
С	75				
C-	72				
D+	67				
D	65				
D-	62				
F	50				

tables...

synonyms: map, mapping, transformation

associates elements of one set to elements of another

$$\{A, B, C \}$$

$$\{A, B, C \}$$

$$\{O = 0 \quad 0 \quad 0 \quad \rightarrow \{ \} \}$$

$$\{O = 0 \quad 1 \quad 0 \quad \rightarrow \{ B \} \}$$

$$\{O = 1 \quad 1 \quad 0 \quad \rightarrow \{ B, C \} \}$$

$$\{O = 1 \quad 1 \quad \rightarrow \{ A, C \} \}$$

$$\{O = 1 \quad 0 \quad \rightarrow \{ A, B \}$$

$$\{O = 1 \quad 0 \quad \rightarrow \{ A, B \} \}$$

$$\{O = 1 \quad 0 \quad \rightarrow \{ A, B, C \}$$

binary counting $\mathscr{P}(\{A, B, C\})$

synonyms: map, mapping, transformation

associates elements of one set to elements of another

y = f(x) $x \xrightarrow{f} y$

 $x \mapsto y$

Notation

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Notation:

Specification:

y = f(x)

X

Notation:

Specifications:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

f(x) = 2(x + 1); g(x) = 2x + 2;h(x) = sin(x) + x;

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Specifications: graph (grafiek)

given $f : A \rightarrow B$, the graph of f is graph(f) = {(x, f(x)) | $x \in A$ }

Note: $graph(f) \subseteq A \times B$

A graph is a binary relation.

Equality of functions: Two functions f,g are equal if: f(x) = g(x) for all x in A

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Functions here:

from informal "mapping"

to formal relations.

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Definition. A **function** from *A* to *B* is a binary relation $f \subseteq A \times B$ which is functional and total

What do "functional" and "total" mean?

AND LOGDONO TO THE ADDRESS OF THE AD

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Definition. A **function** from *A* to *B* is a binary relation $f \subseteq A \times B$ which is functional and total.

What do "functional" and "total" mean?

$R \subseteq A \times B$

Functional: if aRb and aRc then b = c. [no 1-to-many!] **Total:** if $a \in A$ then aRb for some $b \in B$. [domain is used up!] **Injective:** if aRb and cRb then a = c. [no many-to-1] **Surjective:** if $b \in B$ then aRb for some $a \in A$. [codomain is used up]

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Definition. A **function** from *A* to *B* is a binary **relation** $f \subseteq A \times B$ which is functional.

What does "functional" mean?

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Definition. A **function** from *A* to *B* is a binary **relation** $f \subseteq A \times B$ which is functional.

What does "functional" mean?

Notation:

y = f(x) $x \xrightarrow{f} y$ $x \mapsto y$

Definition. A **function** from *A* to *B* is a binary **relation** $f \subseteq A \times B$ which is functional.

Notation. To specify domain and range we write:

 $f: A \to B$

Basic functions

Definition. $f : A \rightarrow B$ is constant if f(x) = f(y) for all $x, y \in A$

Basic functions

Definition. $f : A \to B$ is the identity (on A) if f(x) = x for all $x \in A$

identity relation...Inherited notation id_A , $\mathbf{1}_A$

 $R \subseteq A \times B$

Domain dom(R) = A'**Range or image**

range(R) = B'

Codomain Preimage

Image of $V \subseteq A$ (**under f**) : $f(V) = \{f(x) | x \in V\}$

 $R \subseteq A \times B$

Domain dom(R) = A'**Range or image**

range(R) = B'

Codomain Preimage

Preimage of $W \subseteq B$ (under f) : $f^{-1}(W) = \{x | f(x) \in W\}$

Image of $V \subseteq A$ (**under f**) : $f(V) = \{f(x) | x \in V\}$

Preimage of $W \subseteq B$ (under f) : $f^{-1}(W) = \{x | f(x) \in W\}$

Some highlights:

- V is in A (domain), f(V) in B (codomain) [image in codomain/range]
- W is in B (codomain), $f^{-1}(W)$ in A (domain) [preimage in domain]
- $f^{-1}(W)$ is <u>notation</u>. In general, f^{-1} is not a function (not functional)

Can all be made fully formal as (proper) functions on powersets...

Image of $V \subseteq A$ (**under f**) : $f(V) = \{f(x) | x \in V\}$

Preimage of $W \subseteq B$ (under f) : $f^{-1}(V) = \{x | f(x) \in W\}$

Properties; $V \subseteq A$; $W \subseteq B$;

What is the relationship between

 $\frac{V \text{ and } f^{-1}(f(V))?}{W \text{ and } f(f^{-1}(W))?} \quad \forall \in \{ \mathsf{M} \}$

Image of $V \subseteq A$ (under f) : $f(V) = \{f(x) | x \in V\}$

Preimage of $W \subseteq B$ (under f) : $f^{-1}(V) = \{x | f(x) \in W\}$

Properties; $V \subseteq A$; $W \subseteq B$;

What is the relationship between

 $\frac{V \operatorname{and} f^{-1}(f(V))}{W \operatorname{and} f(f^{-1}(W))}? \quad \underbrace{\downarrow \left(\underbrace{f^{-1}(W)} \right)} = W \cap \underbrace{\downarrow (A)}$

Surjective, injective

Definition. $f : A \rightarrow B$ is surjective if f(A) = B.

Definition. $f : A \rightarrow B$ is injective if for all x, y if f(x)=f(y) then x=y.

Surjective, injective

Examples: $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = 2^{x}$$
$$f(x) = x^{2}$$
$$f(x) = x^{3}$$

Definition. $f : A \rightarrow B$ is bijective if it is both surjective and injective.

 $V \subseteq A; W \subseteq B;$ $V = f^{-1}(f(V)) \& V = f(f^{-1}(W))$

Definition. $f : A \rightarrow B$ is bijective if it is both surjective and injective.

$$V \subseteq A; W \subseteq B;$$
 $V = f^{-1}(f(V)) \& W = f(f^{-1}(W))$

These are two properties. One of them is equivalent to injectivity, the other surjectivity. Which is which?

Solution.
a)
$$\#$$
 VEA, V= $f^{-1}(f(V)) \iff f$ is injective
b) $\#$ WEB, W= $f(f^{-1}(W)) \iff f$ is surjected
then $f(f^{-1}(W)) \notin W$ as $y \notin W$ but $y \notin f(f^{-1}(W))$
 $\#$ as $y \notin f(A)$.
 $\iff y \notin f(A)$.
 $\implies y \implies f(A)$.
 $\implies y \implies f(A)$.
 $\implies f(A$

Definition. $f : A \rightarrow B$ is bijective if it is both surjective and injective.

Examples:
$$f : \mathbb{R} \to \mathbb{R}$$
 $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$
 $f(x) = 2^x$ $f(x) = 2^x$

Definition. $f : A \rightarrow B$ is bijective if it is both surjective and injective.

Examples: $f : \mathbb{R} \to \mathbb{R}$ $f : [-\pi/2, \pi/2] \to \mathbb{R}$ f(x) = tan(x) f(x) = tan(x)

Restriction on domain (and codomain) can always yield a 1-1 function...

Definition. $f : A \rightarrow B$ is bijective if it is both surjective and injective.

Examples: $f : \mathbb{R} \to \mathbb{R}$ $f : [-\pi/2, \pi/2] \to \mathbb{R}$ f(x) = tan(x) f(x) = tan(x)

Restriction on domain can *often* yield a 1-1 function...

intuitively.. for each $f^{-1}(\{b\}), b \in B$, choose one... [deep waters]

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

(0,0)

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

 $R \subseteq A \times B$

 $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

(0,0)

 $R \subseteq A \times B$

 $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

For functions not triv. since $R^{-1} \subseteq B \times A$, is not functional, unless...?

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

For functions not triv. since $R^{-1} \subseteq B \times A$, is not functional, unless R is injective

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

For functions not triv. since $R^{-1} \subseteq B \times A$, is not functional, unless R is injective

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Theorem 3.1. A function *f* is invertible (has an inverse) if and only if *f* is bijective.

Function composition

Definition. Let $f : A \rightarrow B$, $g : B \rightarrow C$ be functions. The composition of *f* and *g*, denoted $g \circ f$ ("g composed with f", "g after f") is a function from A to C, defined with:

 $(g \circ f)(x) = g(f(x)), \text{ for all } x \in A$

Function composition

Definition. Let $f : A \to B$, $g : B \to C$ be functions. The composition of *f* and *g*, denoted $g \circ f$ ("g composed with f", "g after f") is a function from A to C, defined with:

 $(g \circ f)(x) = g(f(x)), \text{ for all } x \in A$ (note: Runge $(f) \in Dom(g)$).

Careful: for relations we had $xR \circ Sy$, **but for functions** $y = g \circ f(x)$

Language: relations : $R \circ S = '\mathbf{R}$ then \mathbf{S}' functions : $g \circ f = '\mathbf{g}$ after \mathbf{f}'

ambiguity... be careful, context matters.

Function composition: brackets not necessary

Property. Function composition is associative: $f \circ g \circ h = (f \circ g) \circ h = f \circ (g \circ h)$

Note: for function composition to be defined domains & ranges must match; Range (h) E Dom (g) Range (g) E Dom (f)

Let's work this out $\left(f \circ g \right) \circ h \quad (x) = (f \circ g) \left(h (x) \right) = f \left(g \left(h (x) \right) \right)$ $f \circ (g \circ h) (x) = f \left(g \circ h (x) \right) = f \left(g \left(h (x) \right) \right)$

Much simpler than for relations.

Function composition: brackets not necessary

Property. Let $f : A \to B$, $g : B \to C$. Then if *f* and *g* are injective (surjective) then $g \circ f$ is injective (surjective)

Function composition

Let's work this out
Trivial to see if we think of
$$\{a,b\}$$
 as relation
 $(a,b) & (b,a) \Rightarrow (a,a)$
 $\{a,b\} & (b,a) \Rightarrow (a,a)$
 $\{a,b\} & (b,a) \Rightarrow (a,a)$
 $\{a,b\} & (b,a) \Rightarrow (a,b)$
 $\{a,b\} & (a,b) \Rightarrow (a,b)$

Some excercises

Property. $A = \{a,b,c\}; B = \{x,y,z\}, C = \{r,s,t,u\}$ $f = \{(a,y), (b,x), (c,y)\} [f : A \to B]$ Comment: $\{a,g,h\}$ are defined by $g = \{(a,b), (b,c); (c,a)\} [g : A \to A]$ their graphs, $\{(a_1 \notin A) | A \notin A\}$ $h = \{(r,c), (s,b), (t,b), (u,a)\} [h : C \to A]$

a) g ∘ f?; b) determine f ∘ g ∘ h. c) what is it's (b)) range?
d) determine f⁻¹, g⁻¹, h⁻¹ if they exist.

Some excercises

Property. $A = \{a,b,c\}; B = \{x,y,z\}, C = \{r,s,t,u\}$ $f = \{(a,y), (b,x), (c,y)\} [f : A \to B]$ Comment: $\{a,g,h\}$ are defined by $g = \{(a,b), (b,c); (c,a)\} [g : A \to A]$ their graphs, $\{(a_1 \notin A) | A \notin A\}$ $h = \{(r,c), (s,b), (t,b), (u,a)\} [h : C \to A]$

a) g ∘ f?; b) determine f ∘ g ∘ h. c) what is it's (b)) range?
d) determine f⁻¹, g⁻¹, h⁻¹ if they exist.

Mathematical formalism...

Function

$$(\forall x \in A)[$$

$$(\exists y \in B)(y = f(x)) \land$$

$$\neg(\exists y \in B)(\exists z \in B)(y \neq z \land y = f(x) \land z = f(x)))]$$

$$(\forall \exists y \in B) = (shorthand) = (\forall \exists y)_B$$

Injective
$$(\forall x)_A(\forall y)_B(f(x) = f(y) \Rightarrow x = y)$$

?

$$(\exists y)_B(\forall x)_A(y = f(x)))$$
?

$$(\exists y)_B(\forall x)_A(y \neq f(x)))$$

Mathematical formalism...

\forall -"for all"... inverted "A"

-exists... flipped "E"

Some excercises

Property. $A = \{a,b,c\}; B = \{x,y,z\}, C = \{r,s,t,u\}$ $f = \{(a,y), (b,x), (c,y)\} [f : A \to B]$ Comment: $\{,q,h\}$ are defined by $g = \{(a,b), (b,c); (c,a)\} [g : A \to A]$ their graphs, $\{(a_1 \notin A) | A \in A\}$ $h = \{(r,c), (s,b), (t,b), (u,a)\} [h : C \to A]$

a) g ∘ f?; b) determine f ∘ g ∘ h. c) what is it's (b)) range?
d) determine f⁻¹, g⁻¹, h⁻¹ if they exist.

