
Foundations of Computer Science 1 — LIACS !1

Lecture 7

Foundations of Computer Science 1 — LIACS !2

Functions

Chapter 3 Schaum
up to 3.8, 3.9

Foundations of Computer Science 1 — LIACS !3

Function;
synonyms: map, mapping, transformation

associates elements of one set to elements of another

tables…

Foundations of Computer Science 1 — LIACS !4

Function;
synonyms: map, mapping, transformation

associates elements of one set to elements of another

binary counting !!({A, B, C})

Foundations of Computer Science 1 — LIACS !5

Function;
synonyms: map, mapping, transformation

associates elements of one set to elements of another

Foundations of Computer Science 1 — LIACS !6

Function;
!y = f(x)

x → y
f

1 2 3 4
1 x
2 x
3 x

x ↦ y

Foundations of Computer Science 1 — LIACS !7

Function;

x → y
f

x ↦ y

y = f(x)
Notation

Foundations of Computer Science 1 — LIACS !8

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

1 2 3 4
1 x
2 x
3 x

Specification:

Foundations of Computer Science 1 — LIACS !9

Function;

x → y
f

x ↦ y

y = f(x)
Notation: Specifications:

!
!
! ;

f(x) = 2(x + 1);
g (x) = 2x + 2;
h (x) = sin(x) + x

Foundations of Computer Science 1 — LIACS !10

Function;

x → y
f

x ↦ y

y = f(x)
Notation: Specifications: graph (grafiek)

given ! , the graph of f is
graph(f) = !

Note: !

f : A → B
{(x, f(x)) |x ∈A}

g raph (f) ⊆A × B

A graph is a binary relation.

Equality of functions:
Two functions f,g are equal if:
f(x) = g(x) for all x in A

Foundations of Computer Science 1 — LIACS !11

Function;

x → y
f

x ↦ y

y = f(x)
Notation: Functions here:

from informal “mapping”

to formal relations.

Foundations of Computer Science 1 — LIACS !12

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

Definition. A function from A to B is a binary
relation ! which is functional and totalf ⊆A × B

What do “functional” and “total” mean?

Foundations of Computer Science 1 — LIACS !13

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

Definition. A function from A to B is a binary
relation ! which is functional and total.f ⊆A × B

What do “functional” and “total” mean?

Foundations of Computer Science 1 — LIACS !14

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

Definition. A function from A to B is a binary
relation ! which is functional.f ⊆A × B

What does “functional” mean?

Foundations of Computer Science 1 — LIACS !15

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

Definition. A function from A to B is a binary
relation ! which is functional.f ⊆A × B

What does “functional” mean?

Foundations of Computer Science 1 — LIACS !16

Function;

x → y
f

x ↦ y

y = f(x)
Notation:

Definition. A function from A to B is a binary
relation ! which is functional.f ⊆A × B

Notation. To specify domain and range we write:

!

f : A → B

Foundations of Computer Science 1 — LIACS !17

Basic functions

Definition. ! is constant if
! for all !

f : A → B
f(x) = f(y) x, y ∈A

1 2 3 4
1 x
2 x
3 x

0
1
10
11

0
1
10
11

Foundations of Computer Science 1 — LIACS !18

Basic functions

Definition. ! is the identity (on A) if
! for all !

f : A → B
f(x) = x x ∈A

1 2 3 4
1 x
2 x
3 x

0
1
10
11

0
1
10
11

identity relation… !Inherited notation idA, 1A

Foundations of Computer Science 1 — LIACS !19

Domain, range…

A B

!A′� B′�

R ⊆A × B

x y

z

a
b dom(R) = A′�

rang e(R) = B′�

Domain

Range or image

Preimage
Codomain

Image of !V ⊆A (under f) : f(V) = {f(x) |x ∈V}

Foundations of Computer Science 1 — LIACS !20

Domain, range…

A B

!A′� B′�

R ⊆A × B

x y

z

a
b dom(R) = A′�

rang e(R) = B′�

Domain

Range or image

Preimage
Codomain

Preimage of !W ⊆B (under f) : f − 1(W) = {x | f(x) ∈W}

Foundations of Computer Science 1 — LIACS !21

Domain, range…

Preimage of !W ⊆B (under f) : f − 1(V) = {x | f(x) ∈W}

Image of !V ⊆A (under f) : f(V) = {f(x) |x ∈V}

Some highlights:
• V is in A (domain), f(V) in B (codomain) [image in codomain/range]
• W is in B (codomain), ! in A (domain) [preimage in domain]  

• ! is notation. !

f − 1(W)

f − 1(W) In general, f − 1is not a function (not functional)

Can all be made fully formal as (proper) functions on powersets…

V'

Foundations of Computer Science 1 — LIACS !22

Domain, range…

Preimage of !W ⊆B (under f) : f − 1(V) = {x | f(x) ∈W}
Image of !V ⊆A (under f) : f(V) = {f(x) |x ∈V}

Properties; !V ⊆A; W ⊆B;
What is the relationship between

!
!
V and f − 1(f(V))?
W and f(f − 1(W))?

Let’s work this out A B

-

re f
' '

HH)

i

""

Foundations of Computer Science 1 — LIACS !23

Domain, range…

Preimage of !W ⊆B (under f) : f − 1(V) = {x | f(x) ∈W}
Image of !V ⊆A (under f) : f(V) = {f(x) |x ∈V}

Properties; !V ⊆A; W ⊆B;
What is the relationship between

!
!
V and f − 1(f(V))?
W and f(f − 1(W))?

Let’s work this out A B
-

"
ii """

Foundations of Computer Science 1 — LIACS !24

Surjective, injective

Definition. !f : A → B is surjective if f(A) = B .

Definition. !f : A → B is injective if for all x, y if f(x)=f(y) then x=y.

In other words…

- . . surjective (injective) as a relation
. .

.

Foundations of Computer Science 1 — LIACS !25

Surjective, injective

Examples: !f : ℝ → ℝ

f(x) = x2
f(x) = 2x

f(x) = x3

Plotting a plot to plot

¥.÷= *
iniinotsur uol.int#Hsur? init

.

Foundations of Computer Science 1 — LIACS !26

Bijection (1-to-1)

Definition. !f : A → B is bijective if it is both surjective and injective.

V ⊆A; W ⊆B; V = f − 1(f(V)) & V = f(f − 1(W))

Foundations of Computer Science 1 — LIACS !27

Bijection (1-to-1)

Definition. !f : A → B is bijective if it is both surjective and injective.

V ⊆A; W ⊆B; V = f − 1(f(V)) & V = f(f − 1(W))

These are two properties. One of them is
equivalent to injectivity, the other surjectivity.
Which is which?

¥
.

Solution . Proof (b)
al t VEA

,
V -- f

' '

If (VI) ⇐ s f is injective ⇒ by contradiction .
assume y t B & get flat

and take any ze flat . Set W-- { 493" " " " ' " t 't
"

"" ⇐ t " """"t) then f. It'twht w as yew but

a , yy¥¥q!w ,
⇐ by contradiction . assure f surjective & WE f.of

-

yw)
[only onion since HE'Mf- W AHA)) . " t 2 EW , zettof

'

'm)
⇒ 2- Et f ft

' '

143)) ⇒ f
' '

INI -- 0 ⇒ test t atA Hatti . Notsurieirl

Foundations of Computer Science 1 — LIACS !28

Bijection (1-to-1)

Definition. !f : A → B is bijective if it is both surjective and injective.

Examples: !f : ℝ → ℝ
f(x) = 2x

f : ℝ → ℝ≥0

f(x) = 2x

Plotting a plot to plot

¥

Foundations of Computer Science 1 — LIACS !29

Bijection (1-to-1)

Definition. !f : A → B is bijective if it is both surjective and injective.

Examples: !f : ℝ → ℝ
f(x) = tan(x)

f : [− π/2,π/2] → ℝ

Restriction on domain
can always yield a 1-1 function…

f(x) = tan(x)

(and codomain)

To make surjective , restrict codomain
to range .

To make injective ,
restrict domain .

.

Foundations of Computer Science 1 — LIACS !30

Bijection (1-to-1)

Definition. !f : A → B is bijective if it is both surjective and injective.

Examples: !f : ℝ → ℝ
f(x) = tan(x)

f : [− π/2,π/2] → ℝ

Restriction on domain
can often yield a 1-1 function…

f(x) = tan(x)

intuitively.. for each ! ,
choose one…
[deep waters]

f − 1({b}), b ∈B

Foundations of Computer Science 1 — LIACS !31

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !32

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !33

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !34

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !35

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

For functions not triv. since !R− 1 ⊆B × A, is not functional, unless...?

Foundations of Computer Science 1 — LIACS !36

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

For functions not triv. since !R− 1 ⊆B × A, is not functional, unless R is injective

Foundations of Computer Science 1 — LIACS !37

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

For functions not triv. since !R− 1 ⊆B × A, is not functional, unless R is injective

Foundations of Computer Science 1 — LIACS !38

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !39

Inverse function

R ⊆A × B
R− 1 ⊆B × A, defined with (b, a) ∈R− 1 ⇔ (a, b) ∈R

(0,0)

(x,x)

Foundations of Computer Science 1 — LIACS !40

Inverse function

Theorem 3.1. A function f is invertible (has an inverse) if and only if
f is bijective.

Foundations of Computer Science 1 — LIACS !41

Function composition

Definition. Let ! be functions. The composition of
f and g, denoted ! (“g composed with f”, “g after f”) is a function
from A to C, defined with:

! for all !

f : A → B, g : B → C
g ∘ f

(g ∘ f)(x) = g (f(x)), x ∈A

Foundations of Computer Science 1 — LIACS !42

Function composition

Definition. Let ! be functions. The composition of
f and g, denoted ! (“g composed with f”, “g after f”) is a function
from A to C, defined with:

! for all !

f : A → B, g : B → C
g ∘ f

(g ∘ f)(x) = g (f(x)), x ∈A

Careful: for relations we had ! xR ∘ Sy, but for functions y = g ∘ f(x)

Language: !relations : R ∘ S = ′� R then S′�

fu nctions : g ∘ f = ′ � g after f′�

ambiguity… be careful, context matters.

(note : Rangel f) : Dom (g)) !

Foundations of Computer Science 1 — LIACS !43

Function composition: brackets not necessary

Property. Funciton composition is associative:
!f ∘ g ∘ h = (f ∘ g) ∘ h = f ∘ (g ∘ h)

Let’s work this out

:*.in.

Note : for function composition to be defined domains & ranges must match :

Range (ht E Dom 191 Range (g) E Dom IH

Ho g) oh HI = Hog) (kN) -- Ffg (hull)
,

to Hohl Hl -- fflgohllxl) .- ffglhlxiy
=

Much simpler than for relations .

Foundations of Computer Science 1 — LIACS !44

Function composition: brackets not necessary

Property. Let !
Then if f and g are injective (surjective) then ! is injective (surjective)

f : A → B, g : B → C .
g ∘ f

Let’s work this out
EXAMPLE : INJECTIVE . 127I -
t

, g injective [HAIN'll ⇒x-eyiglxl.gl/-.sx-.yJfogcxtfogig1s=sfIgcxll--fl9lYl1-isglxl--gly) * y

Foundations of Computer Science 1 — LIACS !44

Function composition: brackets not necessary

Property. Let !
Then if f and g are injective (surjective) then ! is injective (surjective)

f : A → B, g : B → C .
g ∘ f

Let’s work this out

eastman

CB.fi?Eig:E:Eit:B.7Ei#tEiA.BA#BtEqgET
trivial

,÷, I
t t and t

' '

as relations .

t¥Tg ofukf.vn composition !

Foundations of Computer Science 1 — LIACS !45

Some excercises

Property. A = {a,b,c}; B = {x,y,z}, C = {r,s,t,u}
f = {(a,y),(b,x), (c,y) } [!]
g = {(a,b),(b,c), (c,a) } [!]
h = {(r,c),(s,b), (t,b),(u,a) } [!]  
 
a) ! b) ! c) what is it’s (b)) range?
d) determine ! if they exist.

f : A → B
g : A → A

h : C → A

g ∘ f ?; determine f ∘ g ∘ h .
f − 1, g − 1, h − 1

Let’s work this out

Comment : f. gin are defined by
i -

-

,

their graphs , { la , Hakata}

.

Y

Honewort

Foundations of Computer Science 1 — LIACS !45

Some excercises

Property. A = {a,b,c}; B = {x,y,z}, C = {r,s,t,u}
f = {(a,y),(b,x), (c,y) } [!]
g = {(a,b),(b,c), (c,a) } [!]
h = {(r,c),(s,b), (t,b),(u,a) } [!]  
 
a) ! b) ! c) what is it’s (b)) range?
d) determine ! if they exist.

f : A → B
g : A → A

h : C → A

g ∘ f ?; determine f ∘ g ∘ h .
f − 1, g − 1, h − 1

Let’s work this out

Comment : f. gin are defined by
i -

-

,

their graphs , { la , Hakata}

.

Y

Honewort

Foundations of Computer Science 1 — LIACS !46

Mathematical formalism…

(∀x ∈A)[

¬(∃y ∈B)(∃z ∈B)(y ≠ z ∧ y = f(x) ∧ z = f(x)))]
(∃y ∈B)(y = f(x)) ∧

(∀/∃y ∈B) = (sh orth and) = (∀/∃y)B

(∀x)A(∀y)B(f(x) = f(y) ⇒ x = y)

(∃y)B(∀x)A(y = f(x))

(∃y)B(∀x)A(y ≠ f(x))

Function

Injective

?
?

Foundations of Computer Science 1 — LIACS !47

Mathematical formalism…

∀ -“for all”… inverted “A”

∃ -exists… flipped “E”

Foundations of Computer Science 1 — LIACS !45

Some excercises

Property. A = {a,b,c}; B = {x,y,z}, C = {r,s,t,u}
f = {(a,y),(b,x), (c,y) } [!]
g = {(a,b),(b,c), (c,a) } [!]
h = {(r,c),(s,b), (t,b),(u,a) } [!]  
 
a) ! b) ! c) what is it’s (b)) range?
d) determine ! if they exist.

f : A → B
g : A → A

h : C → A

g ∘ f ?; determine f ∘ g ∘ h .
f − 1, g − 1, h − 1

Let’s work this out

Comment : f. gin are defined by
i -

-

,

their graphs , { la , Hakata}

.

Y

SOLUTION at Lof is not defined, because flat is not in Dom (g)
-

b) g.oh - 11491,1514 ,
It .cl

,
his)) (eg ' hlrkc so glhkl) : gli) -- a]

togoh - tocgohl :{ 1491,144) , Itis)
,
fu ,x) }

4 Him

d) f & g are not injective ⇒ no inverse by Theorem 3A .

g-
'
-

- Hsia ,
kid , fail)

