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Properties of binary relations

Definition. Relation R € A X A i1s reflexive if
For all x, xRx.

Ifforallx € A, (x,x) & R, then it is irreflexive
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Properties of binary relations

Definition. Relation R € A X A 1s symmetric 1f
For all x,y, if xRy then yRx.

If xRy & yRx implies that x=y then it is antisymmetric

A

oy
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Properties of binary relations

Definition. Relation R € A X A 1s transitive 1f
For all x,y,z if xRy & yRz, then xRz

oz
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Extra clarification

not reflexive # irreflexive

not symmetric # antisymmetric

not reflexive: there exists x such that (x,x) € R
irreflexive: for all x (x,x) € R

Question: how would you express “not symmetric” formally, using “for all” etc...
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Extra clarification

not reflexive # irreflexive

not symmetric # antisymmetric

not reflexive: there exists x such that (x,x) € R
irreflexive: for all x (x,x) € R

Question: how would you express “not symmetric” formally, using “for all” etc...

ot le}’\f'\e,\[vicf . <>('%) ST <X,L))(:K & <3,X>€K

NB: Symneliaty doog mt  wmean ACC s -of -faiv (1) (%) are uk,
It U mewns  thd
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Extra clarification

not reflexive # irreflexive

not symmetric # antisymmetric

not symmetric: there exist x,y such that (x,y) € R& (v,x) € R
antisymmetric: for all x (x,y) € R& (y,x) ER then x =y

Not symmetric/reflexive: violates definition of ...

Antisymmetric: only symmetric pairs are reflexive ones
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Extra clarification

Examples:

reflexive: <

not reflexive: “product of x an y is even” on integers

irreflexive: < , C

Question?

ot reflexve = J x st (xR
xRy T XY s e ) XBRy F x* b oenn,  buf

LREEEXVE + xRy vever,

Todadk o} 1,y S aen” 15 et VQ”UW( nov- imﬂe)(!'\/*

Howewor | 0w e R fej(\u"\’ﬁ ( bt oF gueny IS @vm)
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Extra clarification

Examples:
symmetric: =
not symmetric: <

antisymmetric: <
not antisymmetric: “is sibling of”’; x, y such that 2x >y on N ( See elow ! )

& < oN  Z  MWTSymmgTRIC ]

Question?

Yes, By vawws peagng WoTE | IufLi Ty TF oK THEY

IS oMLYy PRGE (F N & NoT-0 . (F RIS ALWRYL BALGE A 1§ TRUG .

Q«q L 94X) D XY g LECAKE R M ¥y

\ Q <7k<\j %(VOQ TRUE . WIS (¢ ’FkLgi;l 3D (%xﬁ&y@g(}:% §  Teuc,
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Extra clarification

Examples:
symmetric: =
not symmetric: <

antisymmetric: <
not antisymmetric: “is sibling of”’; x, y such that 2x >y on N ( See elow ! )

s <L oN  Z ATl SYmME TRIC f\)

Question?

by & vy

b ke e o 71T 1S WoT THE CASE  THAT
, .
15y IF - xXFy & yRy Tutv  x=y

&3 Xw o xRy & yRx A xgg
MTE 2354 & Lhyb  so 3Ry & 4Ry QT 4¢3
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Extra example

Transitivity: xRy & YRz = xRz

example (trivial): <, =
example (non-trivial) : empty relation (vacuous truth) , IMPUCATION (TSECF,

counterexample: orthogonality
counterexample: two transitive relations K= {(‘ ), (314)3 S¢ { ( Z.%), (43 )B
their composition is not transitive W TR YTiVE

Question?

\<OS 5 > { (/lfg), (Sls—)a (M_) V"\n'ksihj

Coreosmion  OF  Teawgqive Recazons  MAY AT
L Teavg —ive

VoTe. A rewvtvs wugre 4Ry & 9\ weee taptens ARE Teasmive
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Equivalence relations

Definition. Binary relation R C A? is an equivalence relation if it is
e reflexive

* symmetric

* transitive

Example: “="
Slightly more complicated: aRb if |a| = |b| [absolute value equality]

More complicated: “is congruent to (modn)” [a =b (mod n) & (n|(b —a))]

Counterexample: <
i REmrindER. Kwoh 1 = (- L%J
)

| !

&Elo (\Mm& \/\) '”: Floov-
FireT (VTEGEL  CEGS ol
R ol b =b mok y Eaual To ali

EQUIV : Azb (V‘wk VI) e LIO‘6\> :kx}q For awn 'M{'Eﬁ@r \/\
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Equivalence relations

Definition. Binary relation R C A? is an equivalence relation if it is
e reflexive

* symmetric

* transitive

Example: “="
Slightly more complicated: aRb if |a| = |b| [absolute value equality]

More complicated: “is congruent to (modn)” [a =b (mod n) & (n|(b —a))]

Counterexample: < a b o 2zl (mod m )

alb &2 remamder of fwim ok x &b
with sty Gane.

G=L (mod Z) [evermess'” ]
62 15 (mod 5)
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Equivalence relations

Definition. Binary relation R C A? is an equivalence relation if it is
e reflexive

* symmetric

* transitive

Equivalence relations = always capture some notion of equality
“the same up to ‘irrelevant’ properties”
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Partial orders

Definition. Binary relation R C A? is a partial order if it is
e reflexive

* antisymmetric

* transitive

Example: <

a .
More complicated: “divisibility” b | a, if E e 7 < b divides “3

Counterexample: < O\K L, &2 b | A

_ —

(1) ala v
1) alb & bla = a-t 7
(5) A s y Lhe <> aRc

‘0{0\ : Clb =D (l&\

solbo (5% > 5|6
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Characterizations (1) UNDERGAWDING  MAIN RPERTVIES U by
ComPos|T/onN

(1) Risreflexive < id CR recql MA = { (a,a)) |ae At
(2) Ris symmetric < R™'CR < @b ok all puics (“:‘t\
(3) Transitive & Ro-RCR

(then also R*" C R)

Let’s prove these ‘
(AS R memy — () ¢ <) WY/
W) € =) e

“\ Letuave =y ¥y (x x)eR =2 A =

=R ) e =Y i mf/@dwt
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Characterizations (1)

(1) Risreflexive < id CR

(2) Rissymmetric © R~! CR

(3) Transitive & Ro-RCR
(then also R*" C R)

Let’s prove these
) =7

iy ymm [X?—‘ﬂ =2 B]lxl')w/\ () €2 (gy)en

~—
o (Cﬂ-) S
(1) @ R el <2 (UX el =) 1 yrn
\ -y \—’ﬁr—\)
5 T K ELT o YIER 4 (%

(Y x) et =) (X19) el
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Characterizations (1)

(1) Risreflexive < id CR

(2) Rissymmetric © R~! CR

(3) Transitive & Ro-RCR
(then also R*" C R)

Let’s prove these

) &) Uxty €ogr > Rl neh () €BLD faqen

—
-~ VAl

(I 39 @y & (g cyen

I
Q Agwme  Thmd [: (x\ C) e Rof

<) 3‘3 (o\,bﬂe& (U)IC)GKS =D (a c)

Need - wﬂ (a ¢) el

But (R, C)c Rl so =>(ac¢)en !/
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Characterizations (2)

(1) Risirreflexive ©idNR=O
(2) R s antisymmetric © R-'NR Cid

Let’s prove these

(A(‘o) cid O => (cn)
@pyeih = @=b) =5 (ay ¢R

= @) € b NR ¥ b
= ¢t/ﬂ‘ﬂ’2

=D rrej(\e_x‘\ JU
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Characterizations (2)

(1) Risirreflexive ©idNR=O
(2) R s antisymmetric © R-'NR Cid

Let’s prove these

(1) € P Y 4R > uycid < ey

=Y ML Py ey sl £ (yx)ER 5y ey 7) (9)=ty) € ih.
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Characterizations (3)

(1) R C A X Bis functional & R~ 'R C idy
(2) R C A X Bissurjective < idy CR !oR

(3) R C AXBisinjective © RoR™! Cid,
(4) RCAXBistotal < id, CR-R™!

} via inverse

Maybe one

(q @ [x?q & xto = y=z 1 ()

- _
(a5) e o(LI J Y %ﬂq £ (9,L) e

7 2
=) 3 ('7/”\_)Ek & CU,b) G 1 (5'3 Cﬂ)

A < b => (q,%) :('o,b) e EA@

/
THIS (3 FunceTi /vMiTy
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Characterizations (3)

(1) R C A X Bis functional & R~ 'R C idy
(2) R C A X Bissurjective < idy CR !oR

(3) R C AXBisinjective © RoR™! Cid,
(4) RCAXBistotal < id, CR-R™!

} via inverse

Maybe one
: « f —1
((5‘) Vie V&S R 1S 'M'IaL]L/L < E (S vacﬁ'ombf

QR—é’((/ QTZ_1C => b=C
bﬁq g— CTLK ~> L =C i'\\,\’?(lv\'lll)

AL REODY PRwED

L., Relabe [ | R exdwant with R ) b vith A,Q;@/* m, Teve
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Closure

For property P (reflexivity, symmetricity, transitivity)...

P-closure of relation R = “smallest” relation with property P

But what does smallest mean??
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Closure

For property P (reflexivity, symmetricity, transitivity)...

P-closure of relation R = “smallest” relation with property P

But what does smallest mean??

Intuition... start adding pairs that are missing... but is
this process always ending with the same relation...

is “P-closure” well-defined?
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Closure

Easy ones: symmetric and reflexive closure

(1) Risreflexive < id CR
(2) Rissymmetric © R~' CR

Given R, its symmetric closureis S = R U id,

Given R, its reflexive closure is S = R U R™!
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Closure

Transitive closure: super important

A problem has been detected and Windows has been shut down to prevent damage
to your computer.

UNMOUNTABLE_BOOT_VOLUME TH IS S P I N N I N G

If this is the first time you've seen this error screen,
restart your computer. If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any Windows updates you might need.
If problems continue, disable or remove any newly installed hardware
. ' H or software. Disable BIOS memory options such as caching or shadowing.
YOUr PC ran IntO a prOblem and needS tO reStart We (S _JUSt If you need to use Safe Mode to remove or disable components, restart
your computer, press F8 to select Advanced Startup Options, and then

collecting some error info, and then we'll restart for you. (0% celect sefe fore:

Technical Information: WHEEL SUCKS

Comp|ete) *** STOP: @X@00000ED (BXx80F128D0, ©XCOOOOOIC, OXPPP00000, ©X00000000)

Foundations of Computer Science 1 — LIACS




Closure: transitive

(1) Transitive R-RCR
(then also ) R C R

Suppose Rc- R € R
How about R" = R R U R. Are we done?

R RoR R3

0D X (Bl
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Closure: transitive

(1) Transitive R-RCR
(then also ) R C R

Suppose Rc- R € R
How about R" = R R U R. Are we done?

| e "
O:l\/ C‘.mé Q>(' » c.@'
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Closure: transitive

(1) Transitive R-RCR
(then also ) R C R

Suppose Rc- R € R
How about R" = R R U R. Are we done?

R RoR R°3

Coe 0 “ ‘
<.>j>’ e .3”3 Z:_»/ iﬁf}a
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Closure: transitive

(1) Transitive R-RCR
(then also ) R C R

&)
The transitive closure R™ of R is given with R* = U R*
k=1

Domain can be infinite...
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Closure: transitive

0
The transitive closure R* of R is given with Rt = U R*
k=1

Example: R€ Z X Z;aRb iff b =a + 1

What is R*?
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Closure: transitive

0
The transitive closure R* of R is given with Rt = U R*
k=1

Example: R€ Z X Z;aRb iff b =a + 1

T~

math jargon; iff means
“if and only if”
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Closure: transitive

Property: intersection and union of transitive relations is transitive.

Proofs! direct and by contradiction

Intevectiom

ROS = (x19) ¢4 Xky & xSy

R ot FoRSI (4]

ASSum |-

s gb  SesES (1 K9 e2ns & (xz)eras,

e
_

(1) (1)
=7 (X, 1) e £ (x 7)€ S

=5 (X, L) €eRNS  Jon .
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Closure: transitive

Property: intersection and union of transitive relations is transitive.

Proofs! direct and by contradiction

& L/ C DNTQ/AD} CTIW ( I tevsee hon )

A(éSVV’\{ 71, S {V&.ns\lﬂavn & /IZ/] S Iy Aol .
(>4) '

- S ~—

=) 3 (7.“3) ) (V,2) e?/\} ot (x)E€ KNS

Ly B (x2) € oR (i) g5 agvmg (< U) €,

Wkt (x9)el & (9)en (b ) £ (x2)dR
=) @ iy MT TeavOnvE, Cow TRADI CTIVV -
F (%2)ds weger [ mes & (MUes & (x9)£s) » Conbadkion T

v
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