

1

Lecture 5

Relations 2

Tuples & Cartesian products

 $A_1, A_2, A_3, \dots, A_n$ $(a_1, a_2, a_3, \dots, a_n) \ a_i \in A_i$ $A = A_1 \times A_2 \times A_3 \times \dots \times A_n$

Definition.

 $A = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i\}$

Notation: $B^n := B^{\times n} := B \times B \times B \times \cdots \times B$

$$(a_1, a_2, a_3, \dots, a_n) = (b_1, b_2, b_3, \dots, b_n)$$

if and only if for all $i \in \{1, ..., n\}, a_i = b_i$.

Kuratowski?

Tuples & Cartesian products

 $A=A_1 \times A_2$ "ordered pairs" $(a,b) = (c,d) \Leftrightarrow a = c \& b = d$

- |A|, n(A), #(A), or card(A)
- For sets A, B, C it holds that $|A \cup B| = |A| + |B| - |A \cap B|$

 $A = A_1 \times A_2 \times A_3 \times \cdots \times A_n$

- $A = A_1 \times A_2 \times A_3 \times \cdots \times A_n$ • |A| ?
- $|A| = a; |B| = b; |A \times B| = ?$

- $A = A_1 \times A_2 \times A_3 \times \cdots \times A_n$ • |A| ?
- $|A| = a; |B| = b; |A \times B| = ?$
- notation helps: $|A \times B| = |A| \times |B| = |A| \cdot |B|$

- $A = A_1 \times A_2 \times A_3 \times \cdots \times A_n$ • |A| ?
- $|A| = a; |B| = b; |A \times B| = ?$
- *notation helps:* $|A \times B| = |A| \cdot |B|$
 - $|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|$

 $|A^n| = |A|^n$

Subsets of Cartesian products: $R \subseteq A_1 \times A_2 \times A_3 \times \cdots \times A_n$

(Latitude, longitude, temperature) $\in [0 2\pi] \times [0, 2\pi] \times \mathbb{R}$

Subsets of Cartesian products: $R \subseteq A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Ordering: $R \subseteq A \times B$ *"relation from A to B"*

"n-ary relation" "binary relation"

Subsets of Cartesian products: $R \subseteq A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Ordering: $R \subseteq A \times B$ *"relation from A to B"*

"n-ary relation" "binary relation"

Notation: instead of $(a, b) \in R$ we write aRb(or $(a, b) \in \star \Leftrightarrow a \star b$; $or(a, b) \in \Box \Leftrightarrow a \Box b$;)

Subsets of Cartesian products: $R \subseteq A_1 \times A_2 \times A_3 \times \cdots \times A_n$

Ordering: $R \subseteq A \times B$ *"relation from A to B"*

"n-ary relation" "binary relation"

Notation: instead of $(a, b) \in R$ we write aRb

Instead of $(42,256) \in <$ *we write* 42 < 256*.*

Relations and counting intermezzo

Set of all subsets of S, |S| = n has elements?

Given |A|=a, |B|=b, a relation from A to B is any subset of $A \times B$ (card?)

How many relations from *A* **to** *B* **are there?**

Lets work this out:

Special binary relations

- empty relation
- relations in $A: R \subseteq A^2$
- *inverse relation* $R^{-1} = \{(b, a) | (a, b) \in R\}$

One or two examples... IF NEEDED

Representing relations

Directed graphs

Arrow diagrams

Graphs (plot)

Matrix (adjacency matrix of the graph)

Domain, range, image, preimage

More details:

Y'S & 3'S

 $R \subseteq A \times B$

Domain dom(R) = A'**Range or image**

range(R) = B'

Codomain Preimage

Special relations continued: identity

 $R \subseteq A^2$ $R = \{(x, x) | x \in A\}$

notation: id_A , $\mathbf{1}_A$, Δ_A

Graph (plot)

Arrow diagram

Graph with self-loops

 $R \subseteq A \times B$

Total: if $a \in A$ then aRb for some $b \in B$. [domain is used up!]

Injective: if *aRb* and *cRb* then a = c. [no many-to-1]

<u>Surjective</u>: if $b \in B$ then aRb for some $a \in A$. [codomain is used up]

Once more...

 $R \subseteq A \times B$

<u>Functional</u>: if aRb and aRc then b = c. [no 1-to-many!]

Total: if $a \in A$ then aRb for some $b \in B$. [domain is used up!]

<u>Injective</u>: if *aRb* and *cRb* then a = c. [no many-to-1]

<u>Surjective</u>: if $b \in B$ then aRb for some $a \in A$. [codomain is used up]

 $R \subseteq A \times B$

 $A = \{1,2,3\}; B = \{a,b,c,d\}$

Examples: functional, injective, surjective, total

Functions!

 $R \subseteq A \times B$

Functional relations. $R : A \rightarrow B$

 $R \subseteq \mathbb{R} \times \mathbb{R}$

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are **intuitive**

 $R \subseteq A \times B$

Foundations of Computer Science 1—<u>**LIACS</u></u></u>**

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are **intuitive**

 $R^{-1} \subseteq B \times A$

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are intuitive $R \subseteq \mathbb{R} \times \mathbb{R}$

(0,0)

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are intuitive

 $R \subseteq \mathbb{R} \times \mathbb{R}$

(0,0)

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are intuitive

 $R \subseteq \mathbb{R} \times \mathbb{R}$

(0,0)

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, defined with $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Representations are intuitive

 $R^{-1}\subseteq \mathbb{R}\times \mathbb{R}$

Foundations of Computer Science 1—<u>**LIACS</u></u></u>**

 $R \subseteq A \times B$ $R^{-1} \subseteq B \times A$, **defined with** $(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$

Properties:

- $(R^{-1})^{-1} = R$
- $dom(R^{-1}) = range(R) \& range(R^{-1}) = dom(R)$
- *if* R *is injective,* R^{-1} *is functional*
- *if* R *is total,* R^{-1} *is surjective*

One or two examples...

Afk Vak	(studiegidsnummer
CW1	Continue wiskunde 1	4031CW103
FDSD	Fundamentals of Digital Systems Design	4031FDSD6
(w)Fl1	Fundamentele Informatica 1	4031FINF1
Intro Inf	Introductie studie Informatica	
LAfCS	Linear Algebra for Computer Scientists 1	4031LACS1
(w)PM	Programmeermethoden	4031PRGR6
vPM	Vragenuur Programmeermethoden	4031PRGR6
St⪻	Studying and Presenting	4031STPEC
01	Orientatie Informatica	4031ORINF

studiegidsnummer	Docent
4031CW103	Dr. JH. Evertse
4031FDSD6	Dr. T.P.Stefanov
4031FINF1	Dr. J.M. de Graaf
	Dr. J.M. de Graaf/M. Derogee
4031LACS1	Dr. D. Holmes
4031PRGR6	Dr. W.A. Kosters
4031PRGR6	Dr. W.A. Kosters
4031STPEC	Dr. ir. F.F.J. Hermans
4031ORINF	Prof.dr. M.E.H. van Reisen

 $R \subseteq A \times B$ and $S \in B \times C$

 $x \in A, y \in B, z \in C$

 $x(R \circ S)z$ if xRy & yRz for some $y \in B$

 $R \circ R^{-1}?$

 $R = \{(1,1), (1,2), (2,3), (3,2), (3,4)\}$

 $R \circ R^{-1}?$

always symmetric

Connection to matrix multiplication See Schaum 2.5

 $R = \{(1,1), (1,2), (2,3), (3,2), (3,4)\}$

Theorem 2.1. Relation composition is associative

Note on notation ("direction") of compositions for functions and relations...they are opposite...

$$x \overrightarrow{(R \circ S)} y \quad y = \overleftarrow{(g \circ f)}(x)$$

- reflexivity
- (anti) symmetricity
- transitivity
- partial orders
- equivalence

Definition. Relation $R \in A \times A$ is **reflexive** if For all *x*, *xRx*.

If for all $x \in A$, $(x, x) \notin R$, then it is **irreflexive**

41

Definition. Relation $R \in A \times A$ is **symmetric** if For all *x*, *y*, *if xRy then yRx*.

If xRy & *yRx implies that x*=*y then it is* **antisymmetric**

Definition. Relation $R \in A \times A$ is **transitive** if For all *x*,*y*,*z* if *xRy* & *yRz*, then *xRz*

