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Proofs in algebra of sets 

Duality of intersection and union 
“take any valid expression, and switch unions with intersections, 
and empty sets with U. It is still true.” 

Why, how, what? 

-the duality holds for the basic rules (axioms). 
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Commutativity:   
A∩ B = B∩ A                          A∪ B = B ∪ A 

Associativity 
(A∩ B) ∩ C = A∩ (B∩ C)                         (A∪ B)∪ C = A∪ (B∪ C) 

Distributivity: 
A∩(B∪ C) = (A∩ B)∪(A∩ C)                       A∪(B∩ C) = (A∪ B)∩(A∪ C) 

Idempotence  
A∩ A = A                         A∪ A = A 

De Morgan 
(A∪ B)c= Ac∩ Bc                        (A∩ B)c= Ac ∪ Bc 

nul element (identity) 
 A ∩ =                                     A∪ = A 

identity element  
A∩ U= A                                        A∪ U= U 

double complement (involution) 
(Ac)c= A 

complementation rules 
A∩ Ac=                                         A∪ Ac= U

∅ ∅ ∅

∅
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Proofs in algebra of sets 

Duality of intersection and union 
“take any valid expression, and switch unions with intersections, 
and empty sets with U. It is still true.” 

Why, how, what? 

-the duality holds for the basic rules (axioms). 
-any true statement can be expanded to a sequential application 
of the elementary rules. 
-but we can apply duality to every step, so each step remains true 
after the substitute. 
  
-so the first, and last remain true 

=



EXAMPLE

A-- An CAUB) A- AVIANB )

A- = AVO ← A- Anu

Au0=Av(Bnd ) ← AN =AA(BUB )
Au(Bnd )=fAuD)nfAu0 ) ← AMBU A) '- IAABIUCANU)
( Aubyn ( AVO ) = (AUB)nA⇒lAhBl4AnU) -- AVFAAB)
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Proofs in algebra of sets 

Duality of intersection and union 
“take any valid expression, and switch unions with intersections, 
and empty sets with U. It is still true.” 

Why, how, what? 

-the duality holds for the basic rules (axioms). 
-any true statement can be expanded to a sequential application 
of the elementary rules. 
-but we can apply duality to every step, so each step remains true 
after the substitute. 
  
-so the first, and last remain true 

#If WHICH uses

-
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How would we formally define “expressions”?

Digression! 

(1) IF HIS A SET
,
A is AN EXPRESSION

(2) IF A ,B ARE EXPRESSIONS

a (AUB)
• ( An B)

EXPRESSIONS
Inductive
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Digression! 

Duality in mathematics

• Duality, generally speaking, translates concepts, theorems or mathematical structures  
into other concepts, theorems or structures 

• in a one-to-one fashion 
• often by an involution operation: if the dual of A is B, then the dual of B is A.  

• Involutions sometimes have fixed points, so that the dual of A is A itself.  

‘In mathematical contexts, duality has numerous meanings although it is "a very pervasive and 
important concept in (modern) mathematics" and "an important general theme that has manifestations 
in almost every area of mathematics”.'

https://en.wikipedia.org/wiki/Duality_(mathematics)
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Examples of using duality: 

Prove, prove dual: !(Bc ∩ A) ∪ (A ∩ B) = A
Find dual: !A ∩ (A ∩ ∅)c = A ∩ U

UBe

In -
CUNAIUCANB) -_ A (OUA ) h ( AUB) -- A

F. umm
"
"

;!FnF=at¥#
AULAVU )

'
-

- AVO /ATF =Au¢ I
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Sets as elements of sets 

!  
 
Example: 
!  
!  

(BUT. ! !)

A ∈ B

{1,2} ∈ {{1,2}, ∅}
∅ ∉ {{1,2}}

∅ ⊆ {{1,2}}
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S}

Examples: ( IE NEEDED)
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S}

Powerset, aka: !2S

Cardinality: |S|; !  |'(S) | = 2|S|



Foundations of Computer Science 1 — LIACS !35

Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S} Bitstrings

Binary numbers, 
or bitstrings 

how many?
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S} Bitstrings

Binary numbers, 
or bitstrings 

how many? 

“if I add one more bit, 
the count doubles”
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S} Bitstrings v.s. powersets

Why is 

!
|{bn−1bn−2…b0 |bk ∈ 0,1} | =

= |'({a0, …, an−1}) |

Ao O

ya
.
i

''
"

I mousse.

- YES

Az l
l l

l

l l

An O
=

EACH BITSTRING specifies ↳ { an , AL - n }⇒ EXACTLY ONE SUBSET &
⇐

EACH SUBSET SPECIFIES EXACTLY
ONE BITSTRING
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, the powerset !  is the set of all subsets of B: 

!

'(S)

'(S) := {A |A ⊆ S} Bitstrings v.s. powersets

Why is 

!
|{bn−1bn−2…b0 |bk ∈ 0,1} | =

= |'({a0, …, an−1}) |

③

1-I
# bitstrings
=

# subsets
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• Definition. An alphabet is a non-empty, finite set of letters. 

• Definition. A string (word) over the alphabet !   is an ordered set of letters  
from the alphabet !  

Σ
Σ

• Definition. A language over the alphabet !  is a  set of strings (words)  
over !   

Σ
Σ

• !  - all the languages over !  Notation:'(Σ*) Σ

• !  - set of all strings from the alphabet !  Notation: Σ* Σ

REMINDER: alphabets, strings, languages Supplemental
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, family of sets !  is called a 
(countable) partition of S if  

• !   

• !                    [ ! ] 

• For all !                       [ ! ]

Ps = {A1, A2, A3…}

∅ ∉ Ps

S ∈ A1 ∪ A2 ∪ ⋯ = ⋃
i∈I

Ai Ps covers S

i, j, Ai ∩ Aj = ∅ elements of Ps are pairwise disjoint

S

A1

A2

A3

A4 A5

Supplement
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Sets as elements of sets 
(constructions) 

Definition: Given the set S, family of sets !  is called a 
(countable) partition of S if: a) no Ak is empty; b) they cover P c) pairwise disjoint

Ps = {A1, A2, A3…}

Examples:

Supplemental
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Important partitions:  
congruence classes (residue claseses)

• Defined relative to the universe !   
• given ! ,  and ! , the congruence class of l modulo k is: 

!

ℤ
k ∈ ℕ l ∈ ℤ

l̄ = {…, l + nk, …l −2k, l −k, l, l + k, l + 2k, …, l + nk, …}

• Example: congruence classes of 0,1,2 modulo 7:

0̄ = {… . −14, −7,0,7,14…}
1̄ = {… . −13, −6,1,8,15…}
2̄ = {… . −12, −5,2,9,16…}

VERY !

SoPPLEMEN
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Auxiliary 
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Important partitions:  
congruence classes (residue claseses)
• Example: congruence classes of 0,1,2 modulo 7:

0̄ = {… . −14, −7,0,7,14…}
1̄ = {… . −13, −6,1,8,15…}
2̄ = {… . −12, −5,2,9,16…}

• NB: congruence classes are sets. Recall when two sets are equal.

• work out a few other congruence classes modulo 7 (of some other number) 
• for a given k, are there infinitely many classes? how many?

VERY !

SoPPLEMEN
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Important partitions:  
congruence classes (residue claseses)
• Example: congruence classes of 0,1,2 modulo 7:

0̄ = {… . −14, −7,0,7,14…}
1̄ = {… . −13, −6,1,8,15…}
2̄ = {… . −12, −5,2,9,16…} . . .

Lets work this out: 

• Note: for mod 7: !   0̄ = 7̄; 1̄ = 8̄; for  mod k: l̄ = k + l; l̄ = k + ml

VERY !

SoPPLEMEN
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Important partitions:  
congruence classes (residue claseses)
• Example: congruence classes of 0,1,2 modulo 7:

0̄ = {… . −14, −7,0,7,14…}
1̄ = {… . −13, −6,1,8,15…}
2̄ = {… . −12, −5,2,9,16…} . . .

• Partition of ! ! 
• !  (check properties!)

ℤ
R7 = {0̄, 1̄, …, 6̄}

Lets work this out: 

VERY !

SoPPLEMEN
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Important partitions:  
non-trivial infinite partition

A0 = {1,3,5,7…}
A1 = {2,6,10,14,…}
A2 = {4,12,20,28,…}

Supplemental
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Important partitions:  
non-trivial infinite partition

A0 = {1,3,5,7…}
A1 = {2,6,10,14,…}
A2 = {4,12,20,28,…}

Ak = {2k ⋅ 1,2k ⋅ 3,2k ⋅ 5,2k ⋅ 7,…}

Supplemental
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Important partitions:  
non-trivial infinite partition

A0 = {1,3,5,7…}
A1 = {2,6,10,14,…}
A2 = {4,12,20,28,…}

Ak = {2k ⋅ 1,2k ⋅ 3,2k ⋅ 5,2k ⋅ 7,…}

Claim: this is a partition of the natural numbers. Prove!

Supplement
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Intermezzo! Binary numbers

Decimal numbers (base 10) 

Auxiliary 

123 = 100 + 20 + 3 = 1 ⋅ 102 + 2 ⋅ 102 + 3 ⋅ 102

dn−1dn−2…d0,with dk ∈ {0,…,9}

dn−1dn−2…d0 = dn−1 ⋅ 10n−1 + dn−2 ⋅ 10n−3 + ⋅ + d0 ⋅ 100

bn−1bn−2…b0,with bk ∈ {0,1}

-
- -

bun x 2
" 't bn

- z
x 2
""
- -

. go - 20
won

1 0

(101112 = 1×23 t 0×2't 1×2 t 1×2 = 8+21-1=11

pp pl t T T
p

s l l O 3 2 n
O
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Auxiliary 

EXERCISES ?


