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Lecture 3 
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“Laws” of computation 

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication”

• these laws applicable to union and intersection

• laws: commutativity and associativity
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“Laws” of computation 

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication” 
• when you just multiply or add multiple numbers, it does  

not matter how you group them 
• the order does not matter either

• Definition. Operation !  is associative if  
 

!

□ (x □ y, e.g. x ⋅ y, or x + y)

x □ y □ z = (x □ y) □ z = x □ (y □ z)
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“Laws” of computation 

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication” 
• when you just multiply or add multiple numbers, it does  

not matter how you group them 
• the order does not matter either

• Definition. Operation !  is associative if  
 
              !

□ (x □ y, e.g. x ⋅ y, or x + y)

x □ y □ z = (x □ y) □ z = x □ (y □ z)

• Definition. Operation !  is commutative if  
 

!  (for all x,y)

□

x □ y = y □ x
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Examples 

operation which is not commutative but is associative? 
operation which is associative but not commutative? 
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Examples 1 
• commutative but not associative:  

• averaging: !  
• NAND! 

• associative but not commutative:  
• matrix multiplication,  
• “max” 
• function composition

a ⋄ b := (a + b)/2

“last argument”Gmt

(1 I 2)as =

'

= I
101203) = 1 E :

'E' = I
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Examples 2 
• commutative but not associative:  

• averaging: !  
• NAND! 

• associative but not commutative:  
• matrix multiplication,  
• “max” 
• function composition

a ⋄ b := (a + b)/2

“last argument”

-

M
oBtg I L ( a , b) = b ⇐ Alb = b

y L 2L 3 = ( to 2) 13 = 2 - 3=3 } Associative
= Ic ( Lcs) I 1<3 =3

2. c 3=3 } NOT COMMUTATIVE
312=2
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Question: 

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative? 

Union, intersection,

Yup
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Question: 

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative? 

Set difference?

A - Bt B - A ( Ys
Note

A -43 - c) ¥ # - BI - c ft!"I=a
← t

A-f. A 0- c -- 0
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Question: 

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative? 

Symmetric difference

Yup ,
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Distributivity 

• how two operations and groupings interact

• !  
• !  
 
“Multiplication is distributive over addition”

10 ⋅ (5 + 7) = 10 ⋅ 13 = 130
10 ⋅ (5 + 7) = 10 ⋅ 5 + 10 ⋅ 7 = 50 + 70 = 130

• question: is addition distributive over multiplication?
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Distributivity 

• how two operations and groupings interact

• !  
• !  
 
“Multiplication is distributive over addition”

10 ⋅ (5 + 7) = 10 ⋅ 13 = 130
10 ⋅ (5 + 7) = 10 ⋅ 5 + 10 ⋅ 7 = 50 + 70 = 130

• question: is addition distributive over multiplication?

10 + (5 ⋅ 7) ≠ (10 + 5) ⋅ (10 + 7) = 15 ⋅ 17 = 255

10 + (5 ⋅ 7) = 350
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Distributivity of set operations 

Theorem. Intersection (union) is distributive over the union (intersection), i.e, 

!  it holds that: 
• !  
• !

for all sets A, B, C
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∩ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Let’s do one using Venn

a.

'
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De Morgan’s law (theorem) 

With respect to any universe U, for any two sets A, B it holds that: 

• !  (A ∪ B)c = Ac ∩ Bc

Venn…

I - =
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Laws laws laws
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Identity laws: 

• !A ∩ ∅ = ∅ A ∪ ∅ = A
A ∩ U = A A ∪ U = U

With respect to any universe U, for any set A, it holds that 

Complement laws: 

• !  

• !
(Ac)c = A
A ∩ Ac = ∅ A ∪ Ac = U

Uc = ∅ ∅c = U

Idempotent laws: 

• !A ∩ A = A A ∪ A = A
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Laws laws laws

With respect to any universe U, for any set A,B,C, it holds that 
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Commutativity:   
A∩ B = B∩ A                          A∪ B = B ∪ A 

Associativity 
(A∩ B) ∩ C = A∩ (B∩ C)                         (A∪ B)∪ C = A∪ (B∪ C) 

Distributivity: 
A∩(B∪ C) = (A∩ B)∪(A∩ C)                       A∪(B∩ C) = (A∪ B)∩(A∪ C) 

Idempotence  
A∩ A = A                         A∪ A = A 

De Morgan 
(A∪ B)c= Ac∩ Bc                        (A∩ B)c= Ac ∪ Bc 

nul element (identity) 
 A ∩ =                                     A∪ = A 

identity element  
A∩ U= A                                        A∪ U= U 

double complement (involution) 
(Ac)c= A 

complementation rules 
A∩ Ac=                                         A∪ Ac= U

∅ ∅ ∅

∅

Theorem 6.5
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Laws laws laws

Each “law” is a theorem given the chosen operations. 
Provably holds from definitions of the particular operations.

BUT, we can go the other way around.  
We can treat them as axioms… “algebra of sets” 

See Schaum 1.5 
and 15.5 
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Digression! 

Fundamentals of Digital Systems Design 



Foundations of Computer Science 1 — LIACS !21

Other useful “laws” (equivalent axioms) 

• Absorption: 
!A ∩ (A ∪ B) = A & A ∪ (A ∩ B) = A

See Schaum 15.5 

Prove please: identity, distributivity… 
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Proofs in algebra of sets 

What constitutes a proof? 

Given a set of statements (axioms), and a schemata of rewrite rules,  
any statement we can reach is called a theorem.   

Most theorems will be actually deriving conditional statements! 
Mathematics establishes relations 
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Proofs in algebra of sets 

Unecessarily long proofs: 

!  

A ∩ A = (nu l − element)
(A ∩ A) ∪ ∅ = (complement)

(A ∩ A) ∪ (A ∩ Ac) = (distribu tivity)
A ∩ (A ∪ Ac) = (complement)

A ∩ U = (u nit element)
A
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Proofs in algebra of sets 

Duality of intersection and union 

“Take any valid expression with intersections and unions. 
Switch unions with intersections, and empty sets with U. It is still true.” 
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Proofs in algebra of sets 

Duality (set algebra) 
Let !  be meaningful expressions involving sets, unions and intersections, 
then 
if !  then !  

where !  denotes the expression obtained by exchaning unions and 
intersections and empty sets with U. 

Φ, Ψ

Φ = Ψ Φ* = Ψ*

Φ*
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Proofs in algebra of sets 

Duality of intersection and union 
“take any valid expression, and switch unions with intersections, 
and empty sets with U. It is still true.” 

Why, how, what? 

-the duality holds for the basic rules (axioms). 


