
Foundations of Computer Science 1 — LIACS !1

Lecture 3

Foundations of Computer Science 1 — LIACS !2

“Laws” of computation

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication”

• these laws applicable to union and intersection

• laws: commutativity and associativity

Foundations of Computer Science 1 — LIACS !3

“Laws” of computation

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication”
• when you just multiply or add multiple numbers, it does  

not matter how you group them
• the order does not matter either

• Definition. Operation ! is associative if  
 

!

□ (x □ y, e.g. x ⋅ y, or x + y)

x □ y □ z = (x □ y) □ z = x □ (y □ z)

Foundations of Computer Science 1 — LIACS !4

“Laws” of computation

Common algebraic properties of basic operations

• operations? Think “addition” and “multiplication”
• when you just multiply or add multiple numbers, it does  

not matter how you group them
• the order does not matter either

• Definition. Operation ! is associative if  
 
 !

□ (x □ y, e.g. x ⋅ y, or x + y)

x □ y □ z = (x □ y) □ z = x □ (y □ z)

• Definition. Operation ! is commutative if  
 

! (for all x,y)

□

x □ y = y □ x

Foundations of Computer Science 1 — LIACS !5

Examples

operation which is not commutative but is associative?
operation which is associative but not commutative?

Foundations of Computer Science 1 — LIACS !6

Examples 1
• commutative but not associative:

• averaging: !
• NAND!

• associative but not commutative:
• matrix multiplication,
• “max”
• function composition

a ⋄ b := (a + b)/2

“last argument”Gmt

(1 I 2)as =

'

= I
101203) = 1 E :

'E' = I

Foundations of Computer Science 1 — LIACS !7

Examples 2
• commutative but not associative:

• averaging: !
• NAND!

• associative but not commutative:
• matrix multiplication,
• “max”
• function composition

a ⋄ b := (a + b)/2

“last argument”

-

M
oBtg I L (a , b) = b ⇐ Alb = b

y L 2L 3 = (to 2) 13 = 2 - 3=3 } Associative
= Ic (Lcs) I 1<3 =3

2. c 3=3 } NOT COMMUTATIVE
312=2

Foundations of Computer Science 1 — LIACS !8

Question:

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative?

Union, intersection,

Yup

Foundations of Computer Science 1 — LIACS !9

Question:

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative?

Set difference?

A - Bt B - A (Ys
Note

A -43 - c) ¥ # - BI - c ft!"I=a
← t

A-f. A 0- c -- 0

Foundations of Computer Science 1 — LIACS !10

Question:

• Union, intersection, set difference, symmetric difference  

• Associative? Commutative?

Symmetric difference

Yup ,

Foundations of Computer Science 1 — LIACS !11

Distributivity

• how two operations and groupings interact

• !
• !  
 
“Multiplication is distributive over addition”

10 ⋅ (5 + 7) = 10 ⋅ 13 = 130
10 ⋅ (5 + 7) = 10 ⋅ 5 + 10 ⋅ 7 = 50 + 70 = 130

• question: is addition distributive over multiplication?

Foundations of Computer Science 1 — LIACS !12

Distributivity

• how two operations and groupings interact

• !
• !  
 
“Multiplication is distributive over addition”

10 ⋅ (5 + 7) = 10 ⋅ 13 = 130
10 ⋅ (5 + 7) = 10 ⋅ 5 + 10 ⋅ 7 = 50 + 70 = 130

• question: is addition distributive over multiplication?

10 + (5 ⋅ 7) ≠ (10 + 5) ⋅ (10 + 7) = 15 ⋅ 17 = 255

10 + (5 ⋅ 7) = 350

Foundations of Computer Science 1 — LIACS !13

Distributivity of set operations

Theorem. Intersection (union) is distributive over the union (intersection), i.e,

! it holds that:
• !
• !

for all sets A, B, C
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∩ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Let’s do one using Venn

a.

'

Foundations of Computer Science 1 — LIACS !14

De Morgan’s law (theorem)

With respect to any universe U, for any two sets A, B it holds that:

• ! (A ∪ B)c = Ac ∩ Bc

Venn…

I - =

Foundations of Computer Science 1 — LIACS !15

Laws laws laws

Foundations of Computer Science 1 — LIACS !16

Identity laws: 

• !A ∩ ∅ = ∅ A ∪ ∅ = A
A ∩ U = A A ∪ U = U

With respect to any universe U, for any set A, it holds that

Complement laws: 

• !

• !
(Ac)c = A
A ∩ Ac = ∅ A ∪ Ac = U

Uc = ∅ ∅c = U

Idempotent laws: 

• !A ∩ A = A A ∪ A = A

Foundations of Computer Science 1 — LIACS !17

Laws laws laws

With respect to any universe U, for any set A,B,C, it holds that

Foundations of Computer Science 1 — LIACS !18

Commutativity:
A∩ B = B∩ A A∪ B = B ∪ A

Associativity
(A∩ B) ∩ C = A∩ (B∩ C) (A∪ B)∪ C = A∪ (B∪ C)

Distributivity:
A∩(B∪ C) = (A∩ B)∪(A∩ C) A∪(B∩ C) = (A∪ B)∩(A∪ C)

Idempotence
A∩ A = A A∪ A = A

De Morgan
(A∪ B)c= Ac∩ Bc (A∩ B)c= Ac ∪ Bc

nul element (identity)
 A ∩ = A∪ = A

identity element
A∩ U= A A∪ U= U

double complement (involution)
(Ac)c= A

complementation rules
A∩ Ac= A∪ Ac= U

∅ ∅ ∅

∅

Theorem 6.5

Foundations of Computer Science 1 — LIACS !19

Laws laws laws

Each “law” is a theorem given the chosen operations.
Provably holds from definitions of the particular operations.

BUT, we can go the other way around.
We can treat them as axioms… “algebra of sets”

See Schaum 1.5
and 15.5

Foundations of Computer Science 1 — LIACS !20

Digression!

Fundamentals of Digital Systems Design

Foundations of Computer Science 1 — LIACS !21

Other useful “laws” (equivalent axioms)

• Absorption: 
!A ∩ (A ∪ B) = A & A ∪ (A ∩ B) = A

See Schaum 15.5

Prove please: identity, distributivity…

Foundations of Computer Science 1 — LIACS !22

Proofs in algebra of sets

What constitutes a proof?

Given a set of statements (axioms), and a schemata of rewrite rules,
any statement we can reach is called a theorem.

Most theorems will be actually deriving conditional statements!
Mathematics establishes relations

Foundations of Computer Science 1 — LIACS !23

Proofs in algebra of sets

Unecessarily long proofs: 

!

A ∩ A = (nu l − element)
(A ∩ A) ∪ ∅ = (complement)

(A ∩ A) ∪ (A ∩ Ac) = (distribu tivity)
A ∩ (A ∪ Ac) = (complement)

A ∩ U = (u nit element)
A

Foundations of Computer Science 1 — LIACS !24

Proofs in algebra of sets

Duality of intersection and union

“Take any valid expression with intersections and unions.
Switch unions with intersections, and empty sets with U. It is still true.”

Foundations of Computer Science 1 — LIACS !25

Proofs in algebra of sets

Duality (set algebra)
Let ! be meaningful expressions involving sets, unions and intersections,
then
if ! then !

where ! denotes the expression obtained by exchaning unions and
intersections and empty sets with U.

Φ, Ψ

Φ = Ψ Φ* = Ψ*

Φ*

Foundations of Computer Science 1 — LIACS !26

Proofs in algebra of sets

Duality of intersection and union
“take any valid expression, and switch unions with intersections,
and empty sets with U. It is still true.”

Why, how, what?

-the duality holds for the basic rules (axioms).

