Lecture 135
binary trees

Read Schaum sections: 8.8,9.4, 10.1-3, 10.5, 10.9

Foundations of Computer Science 1 — LIACS

Recap

Tree: acyclic connected graph (undirected, directed, rooted, ordered)

Rooted: there is a special element (formally: 7= (V,E,r), r€ V

Ordered: children are ordered

- —
——0—<—0

implicit directionality

<+—0——0
——0—<—0

isomorphic as graphs, but not
as ordered graphs...

Foundations of Computer Science 1 — LIACS

Main properties of trees

Tree T 3 unique
(=acyclic& connected) @ simple path between : T-tey 1s not connected

any two vertices (two trees)

Further:
Trees have n-1 edges.

They are minimally connected, maximally acyclic.

Foundations of Computer Science 1 — LIACS

Properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|—1

Proof 1: induction over the number of vertices.

(i) basis: n=1, works. =1
(i) assume holds for all k<n.
take any tree of n vertices, and cut any edge.
Now we have two trees (see last slide) with n, n,,n; + n, = n vertices.
n,—1

By inductive hypothesis, they have
n—1+n,—1=n-—72 edges in total.

Since you cut one edge, the initial graph must have had n-1 edges basis

Foundations of Computer Science 1 — LIACS

Properties of trees

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|—1

Proof 2:

Choose a root and look at levels of rooted tree.

Each vertes has exactly one prececessor
in previous level...except the root.
So n-1 edges.

Foundations of Computer Science 1 — LIACS

Properties of trees

Theorem (Characterization of trees).
For a graph G (over n vertices) the following are equivalent

(1) G is a tree (connected acyclic graph)

(2) G is maximally acyclic : adding an edge to G creates a cycle

(3) G is minimally connected: removing any edge makes it unconnected
(4) G is acyclic and has n-1 edges

(5) G is connected and has n-1 edges

Use?

NB: this characterization is sometimes given in two parts: 1-2-3, and 1-4-5. See slides of previous lectures.

Foundations of Computer Science 1 — LIACS

Properties of trees

Theorem (Characterization of trees).
For a graph G (over n vertices) the following are equivalent

(1) Gisatree

(2) G is maximally acyclic : adding an edge to G creates a cycle

(3) G is minimally connected: removing any edge makes it unconnected
(4) Gis acyclic and has n-1 edges

(5) G is connected and has n-1 edges

Proof:

(” =5 (1\ ; aq is au_\,clfLA\/ ‘ (1) => ('7>> tree = Commecked, L acyelic
5 alhhy @ t lo -]
) akklg QAR malet K Cycle =) rewwiy edge disoneds (o C‘;o’e/f) [seen b |
AAA now Z = {‘/iwl) Wt § was conmeckesl <) "’\i"“.ma“') connected

=) Swple b VU, (ank {Vwyis st) (3)= (4> nimly conmakd = commeked]
So VV, - WV 15 A cucle need acyclic,

QGU\M (DVMU)((J‘ & Cyc(fL =) C”\+ f—yc(f__
()= (1) (1) & - comeded. ohewis cowuw“wﬁ fun nconnecie/] => ot dismmidd. > acychiC . Tree
somponght s ogynt gl 0\090((_

= CDH‘\(’.M L KL‘-{O(;L = {IQL_ e Q{Jv\:HOL\

Foundations of Computer Science 1 — LIACS

Proof (continued):

(N=>) acyetiec by definkiva . N -n a,o((y,s Property ovven bpfor- £

(1) () et ¢ 1) edys & comukd
ASSW-L ho\"\ k Cﬂ“\fv‘\anl'\’ (1\[\ p\cyc‘{(=) k {'V(LS
<> Mashyh=h & Np=2 41 b oy (13-4

= M-k =hq =) k=g . 1bees couneche

(";\:3 (4) Asawmne covmeckd) A eAya & cyck

<) (ay ramovi 6/14 -

<) COMnLL‘Ld 6”\(’1\ over v\-uurh'u,g w:{'L\ n-1 QdﬁL_\ (S{,e, ‘3%‘3)
Go ot A bvee bt cow\L(/ﬂA =D L\ib S{w\\oh_ (/u/(/(L\

Can v Lmove 2l 2%3& Lo coamethd bv‘l“" h-% Zt‘ﬂs
h-A

=) VL,)LL.,F b\n,“'ll %rb\? 5%\#’“ (ib\ma(\\/«\

. D ot a bra | b QL/(,(.L

Foundations of Computer Science 1 — LIACS

Main properties of trees

T is maximally
acyclic

31 unique / \ T is minimally

simple path between connected
any two vertices

T is connected

T is acyclic

and has n-1 edges and has n-1 edges

Tis a tree
(=acyclic& connected)

Each edge is a bi-implication

Foundations of Computer Science 1 — LIACS

Binary trees

Foundations of Computer Science 1 — LIACS

Def. A binary tree is a rooted ordered tree, where each vertex has at most 2 children. The
ordering assigns the label “left” and “right” to each child, even if the child is a single child.

binary tree Rooted ordered tree of
outdegree <3

Foundations of Computer Science 1 — LIACS

In CS binary trees are special

Def. (recursive) A binary tree T is a finite set of elements (vertices), such that it is
1) T is empty, or
2) T contains a distinguished node R, called the root of 7, and the remaining
nodes of T form an ordered pair of disjoint binary trees 7. and Tkr.

Def. Binary tree (recursive) simplified

1) empty
2) or has a root with a left and right subtree (each is a tree)

: : : *
*
O *e
*
o hé
* *
. *
* *
*

empty OR
T Tk

NB. subtrees can be empty

Foundations of Computer Science 1 — LIACS

FLASHBACK

Looking ahead: language of binary trees Looking ahead

1) aelL,belL @ @ p

2) ifx,y € L,then +xy € L
X y
++abb

o A A P
oRo @&)@b -

ﬁ)
B B S A
@@ \@ Foov b

+ ++aa+ab++abb

L ee— T —————

Foundations of Computer Science 1 — LIACS

In CS binary trees are special

a pointer structure:

S w

Foundations of Computer Science 1 — LIACS

Types of binary trees

-complete:
(1) every level, except possibly the last, is completely filled,
(2) and all nodes in the last level are as far left as possible.

-full (proper):
every node has 0 or 2 children

61718 1920212223 24 1617 18 1920 212223 24 25

canonical...

Foundations of Computer Science 1 — LIACS

Types of binary trees

-extended binary tree (2-tree):
full tree, or extended binary tree (see Schaum)

& /)

Original notes: internal nodes.
new nodes: external nodes.

Foundations of Computer Science 1 — LIACS

First child - right sibling: encoding trees into binary trees

12 13 14
12 13 14 —_

At each node, link children of same parent from left to right.
Parent is be linked only with the first child.

This process of converting an k-ary tree to an left (first) child -right sibling
binary tree 1s sometimes called the Knuth transform

1-1 correspondence between ordered rooted trees and
binary trees of where the root has just a a left child.

Foundations of Computer Science 1 — LIACS

Vertex ordering and traversal
in trees

Foundations of Computer Science 1 — LIACS

Enumerating all the nodes

Example: listing out all the
section headings in a book, e.g.
“contents”

Contents:

e Chapter 5 Chapter
-Section A
»Para a
»Para b Section B
-Section B
»Para a
-Section C Paragraph
»Para a SA:a 5A:b 5B:a 5C:a 5C:b 5C:c
»Para b
»Para c

Foundations of Computer Science 1 — LIACS

Enumerating all the nodes

Example: listing out all the
section headings in a book, e.g.
“contents”

5

Chapter
Many other enumerations
possible, e.g.:

] A C

Section B
5,A, B, C,5A:a, 5A:b, 5B:a, 5C:a,
5C:b, 5C:c

Paragraph
But 3 natural methods. 5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

Foundations of Computer Science 1 — LIACS

Preorder

“first node, then children (subtrees)”

Preorder:

(1) Process the root N.

(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder, B

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

S5, A, SA:a, SA:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c

Foundations of Computer Science 1 — LIACS

Preorder

“first node, then children (subtrees)”

Preorder:
(1) Process the root N. Contents:
(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder. : Chapter.5
-Section A
(n-1) Traverse the last subtree of N in preorder, :11:2;:::
-Section B
»Para a
-Section C
»Para a
»Para b
5, A, 5A:a, 5A:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c »Para ¢

Foundations of Computer Science 1 — LIACS

Preorder

“first node, then children (subtrees)”

Preorder:

(1) Process the root N.

(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder, B

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)

Foundations of Computer Science 1 — LIACS

Preorder

“first node, then children (subtrees)”

Preorder:
(1) Process the root N.
(2) Traverse the first subtree of N in preorder.

(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder,

5, A, SA:a, SA:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c

4 6 8 9

Preorder enumeration

10

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)

Foundations of Computer Science 1 — LIACS

Postorder

“first children (subtrees), then node”

Postorder: 5
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. B
(n+1) process the root N

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

Foundations of Computer Science 1 — LIACS

Postorder

“first children (subtrees), then node”

Postorder: 5
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. B
(n+1) process the root N

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5
-“last visit”

-for binary trees: LRN (left-right-node)

Foundations of Computer Science 1 — LIACS

Postorder

“first children (subtrees), then node”

Postorder: 10
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. S
(n+1) process the root N

1 2 4 6 7 8

Postorder enumeration

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

-“last visit”

-for binary trees: LRN (left-right-node)

Foundations of Computer Science 1 — LIACS

Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

Works only for binary trees

Inorder:

(1) Traverse the left subtree of N in inorder.
(2) Traverse the root N

(3) Traverse the right subtree of N in inorder,

aa, 1,a,ii,A,1,b,B,iii,c,iv

Foundations of Computer Science 1 — LIACS

Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

Works only for binary trees

Inorder:

(1) Traverse the left subtree of N in inorder.
(2) Traverse the root N

(3) Traverse the right subtree of N in inorder,

“second visit” .
Preorder enumeration

LNR (left-node-right)

Foundations of Computer Science 1 — LIACS

Three main methods given recursively

preorder [NLR]: pre(7) = root(7), pre(7i), ..., pre(Tk)
postorder [LRN]: post(7) = post(T7;), ..., post(7k), root(7)

inorder [LNR]: in(7) = in(7L), root(7), in(7TR)

Foundations of Computer Science 1 — LIACS

Expressions and traversal

An (algebraic) expression that only uses binary operations
can be represented by a full binary tree 2-tree (the expression tree)

Various ways to traverse the expression tree lead to 3 main ways to specify
algebraic expressions

Foundations of Computer Science 1 — LIACS

Example: from expression to tree and 3 ways back:

(2X3)+((5XT)+ O x11)) \/ \@
©,

Foundations of Computer Science 1 — LIACS

Example: from expression to tree and 3 ways back:

(2X3)+((OXxT)+(Ox11))) (+)

Leaves are elementary values
Inner nodes defined by brackets \ /

Furthermore, this 1s inorder traversal!

Foundations of Computer Science 1 — LIACS

Example: from expression to tree and 3 ways back:

What happens if we use Preorder (NLR)?

Foundations of Computer Science 1 — LIACS

Example: from expression to tree and 3 ways back:

What happens if we use Preorder (NLR)?

+%X23 +%X57 x 911 /\

Famous (normal) Polish notation.
Brackets not needed. @ @ R @

Foundations of Computer Science 1 — LIACS

Example: from expression to tree and 3 ways back:

Postorder (LRN)

23x57 x911 X+ + /\

Famous reverse Polish notation.
Brackets not needed. @ @ R @

Foundations of Computer Science 1 — LIACS

Comment:
Can work with unary operations (other arities as well),
provided the arity of each operator is known.

Foundations of Computer Science 1 — LIACS

Binary trees are a recursive structure
can provide recursive method how to evaluate expression trees

basis: for a leaf x: f(leaf) = numerical value x

inductive step: for a node @: f(node) = f(root-left-subtree) @ f(root-right -subtree)
(@ 1s the operation)

/@
\ /K
£ &%

Foundations of Computer Science 1 — LIACS

Binary trees are a recursive structure
recursively analyzing other tree properties

basis: for a leaf x: f(leaf) =1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-right -subtree) + 1

What does ths cowg«h,?

/@
\ /K
£ &%

Foundations of Computer Science 1 — LIACS

Binary trees are a recursive structure
recursively analyzing tree properties

basis: for a leaf x: f(leaf) =1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-right -subtree) + 1

/@
\ /K
£ &%

=tree size

Foundations of Computer Science 1 — LIACS

Modulo computation
and equivalence relations

Schaum: 2.8, 11.5, 11.8

Foundations of Computer Science 1 — LIACS

Equivalence relation: a binary relation which 1s simultanously
(1) reflexive (xRx, for all x)
(2) symmetric (xRy implies yRx)
(3) transitive (xRy and yRz imply xRz)

Capture equalities up to (disregarding) some properties:

-“same colour”

-parity
-“being parallel"” for lines

Foundations of Computer Science 1 — LIACS

Modulo computation examples

» 12h clock.
It 1s 5 o’clock; What time 1s 1t 8 hours later?

» 24h clock.
It 1s 22.30; What time 1s 1t 3 h later?

» 24h clock & 60 minute hour.
It 1s 22.30; What time 1s 1t 2h 33mins later?

» 7 day weeks:
Mon = 1st day; Tue = 2nd day; ... Sun = 7th day.
What day comes 20 days after a Tuesday?

Its about remainders when dividing with integers!

Foundations of Computer Science 1 — LIACS

Congruence modulo 7

Def. For integers a, b, n, n>0, we say a is congruent with b modulo n, written

a=b (mod n)

if n divides the difference (a-b) (in other words, n | (a-b)).
n is called the modulus.

NB:

-a is congruent with b mod » if and only if a and b have the same remainder when
divided with n. Eg: how many minutes past full hour. (245 = 305)

-Specially, if b is the remainder if a div n.

For any fixed n. "congruence mod n” is a relation (¢ and b are in that relation).

It is an equivalence relation: (1) reflexive, (2) symmetric, (3) transitive.

Foundations of Computer Science 1 — LIACS

Congruence modulo 7

Congruence mod n is an equivalence relation.

Proof:

() relleave k=R buwie R0 dlways.

A
W okl azh > nl(db) @ wbsrn ()

&) Laz fDuE> bEA Wk Yy

(<\

) azb k) & bEe (e)

SEN (S8 } W[©0) s n | (w) +lee) U [

=Y aTc (mdh), l/

Foundations of Computer Science 1 — LIACS

As we said:

Equivalence relations capture equalities “up to" some details.

“up to X" can be taken to mean "disregarding a possible difference in X"

(graph 1somorphism 1s equivalence “up to” permutation of labels,
equivalence relation “strings of equal lenght” 1gnores all except lenght...)

Equivalence class groups together all the elements that “are the same™
according to the given equivalence relation.

Such a set 1s specified by one representative element.

Foundations of Computer Science 1 — LIACS

Equivalence classes.

Let R be an equivalence relation on J] let x be some element of V.

With [x], = {y € V|xRy} we denote the equivalence class of x
with respect to the relation R

Equivalence class groups together all the elements that “are the same™
according to the given equivalence relation.

Such a set 1s specified by one representative element.

Foundations of Computer Science 1 — LIACS

Residue classes mod n are equivalence classes relative to the
relation of congruence mod n

Consider the equivalence relation R = congruence mod 7

0l,={...—14,—-7, 07,14,21,...}

1]p=1{...—13,—-6, 1,8,15,22,...} IX]..

o take x see what

2]p = {...—12,-5, 29,16,23,...} remainder when div 7

- collect all numbers with same
3lp=1{...—11,—-4, 3,10,17,24,...} remainder

6], =1{...—8,—1, 6,13,20,27,...}

(7], =" , :
Equivalence class [X] is also denoted

Foundations of Computer Science 1 — LIACS

Residue classes mod n are equivalence classes relative to the

relation of congruence mod n

Residue class [X] is also denoted x

0], ={...— 14,—7, 07,14,21,...}
e=1{...—13,-6, 1,8,1522,...}
2lp=1{...—12,—-5, 29,16,23,...}
B3lp=1{...—11,—4, 3,10,17,24,...}
6],={...—8,—1, 6,13,20,27,...}

p— |

-]

(\O]

3

6

[X]..
take x see what
remainder when div 7
collect all numbers with same
remainder

Foundations of Computer Science 1 — LIACS

Min1 example

Consider the equivalence relation R = congruence mod 2

How many residue classes?

If | give you a number in binary, how can you tell what class it is in?

What about mod 47?
If | give you a number in binary, how can you tell what class it is in?

Foundations of Computer Science 1 — LIACS

Modulo arithmetic

Theorem. Suppose that a = b (mod n) and ¢ = d (mod n). Then

(1) a+c=b+d (mod n)
2) a—c=b—d (mod n)
(3) axXc=bXd (mod n)

Corollary. If a = b (mod n) then a* = b* (mod n) for all integer k>0.

Foundations of Computer Science 1 — LIACS

Example of use: last digit

What is the last digit of 3232

Note: last digit of x the remainder of x divided by 10.

What 0 < b < 10 is 3%** congruent mod 10?

Use e.g.3* =81, so 81 =1 (mod 10). (dropping mod 10 notation...)
3234 _ 34x58+2 34x58 _ (34)58 =18 =1
32 —0=0 3234 _ 34X58+2 (34><58 32) =1%x9=0

Foundations of Computer Science 1 — LIACS

Example of use: days of the week

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Feb-2000 - ...

31-Dec-2000 - Sun
1-Jan-2001 - Mon

13-May-2023 - ?

Foundations of Computer Science 1 — LIACS

Find out how many days ahead of a date with known day

1 1-Jan-2000 - Sat

2 2-Jan-2000 - Sun
31 31-Jan-2000 - ...
32 1-Feb-2000 - ...
365 31-Dec-2000 - Sun

1-Jan-2001 - Mon

x 13-May-2023 - ?

x mod 7 gives you the solution...

Foundations of Computer Science 1 — LIACS

Compute number of days...

23 full years =23 x 365
1 1-Jan-2000 - Sat 6 leap years = +6

2 2-Jan-2000 - Sun Jan - May = 31+28+31+30
31 31-Jan-2000 - ... 13=+13

32 1-Feb-2000 - ... = 8534 (mod 7)
365 31-Dec-2000 - Sun
1-Jan-2001 - Mon

x 13-May-2023 - ?

Foundations of Computer Science 1 — LIACS

Compute number of days...

23 full years =23 x 365

1 1-Jan-2000 - Sat 6 leap years = +6

5 9 Tan2000 - Sun Jan - May = 31+28+31+30
13 =+13

31 31-Jan-2000 - ...

32 1-Feb-2000 - ... = 8534 (mod 7)

365 31-Dec-2000 - Sun but can compute it in parts!

1-Jan-2001 - Mon

X 13-May-2023 - ? =2x 1+ 6 + 3+0+3+2+6=22=1

Started Sat + 1 = Sun!

Foundations of Computer Science 1 — LIACS

Theorem. Suppose that a = b (mod n) and ¢ = d (mod n). Then

(1) a+c=b+d (mod n)
2) a—c=b—d (mod n)
(3) axXc=bxXd (mod n)

Corollary. If a = b (mod n) then a* = b* (mod n) for all integer k>0.

100'°2 mod 13
10012 =912 = g1 =3Pl =2N"=1"=1

412916 mod 13

412016 = 22016 = 16504 = 3504 — 27167 — 1

100192 412016 =141 =2

Foundations of Computer Science 1 — LIACS

A trick you may use (not necessary)

Little Fermat’s theorem

Theorem. For any prime p and any integer a:

a’~!' =1 (mod p).

Eg. 1007102 mod 13 = 1007(8*12 + 6) = [100"(12)]"8 * 10076 = 10076 =10"12 =1

Foundations of Computer Science 1 — LIACS

Note, the questions of divisibility
(“1s x divisible by y”) 1s the question 1s:
x =0 (mod y)

Foundations of Computer Science 1 — LIACS

Partitions and equivalence classes

Def. Given a set V, the set {V, ...V, }of subsets of V is called a partition of /' if
(1) (pariwise disjointness) V,NV. =@, for all i #j

k
(2) (cover) U Vi=V

i=1

in other words, every x from V'is in exactly one subset V'

Foundations of Computer Science 1 — LIACS

Residue classes partition the set of integers

Theorem. Let [O]p, ...[k — 1], be the residure classes with respect to the equivalence
relation congruent modulo £.

Then {[O], ...[k — 1]} is a partition of Z .

NB, partitions can be infinite:

V.= {Ix2"lis odd}, k>0

Foundations of Computer Science 1 — LIACS

Computing using residual classes

Consider the equivalence relation R = congruence mod n
[(x]r = {y|xRy} = {an+ k|a € Z,k is remainder of dividing x with n}

y € [x]g, such that y # x

nonetheless:

Xl = [y]g

Representative does not matter: well-defined

Foundations of Computer Science 1 — LIACS

Computing using residual classes

Can do arithmetic!

[xlg + [V]g = [x + ¥l

E.g.mod 7. [3] +[3]=[6]; [3] +[4] =[7]=[O0].

Mathematically, this 1s addition mod 7 (n).

Also notation : X+y=x+Yy

Foundations of Computer Science 1 — LIACS

Computing using residual classes

Can do arithmetic!
[x]g X [ylg = [x X ylg

E.e. mod 7. [3] x [3] = [9] = [21; [3]x[4] = [12] = [5].

Mathematically, this 1s multiplication mod 7 (n).

Also notation : X Xy =x XYy

Foundations of Computer Science 1 — LIACS

Computing using residual classes

Interesting thing happens when # 1s not prime...

[xIg X [ylg = [x X ¥l

E.g. mod 6.
[3]x[2]=16]=0]

So modular arithmetic behaves almost the same but,

if the order (n) is not prime a X b (mod n) # a =0 or b = 0.

if n is prime all good.

Foundations of Computer Science 1 — LIACS

Computing using residue classes

We denote these structures (of mod #) arithmetic Z,

On one hand, elements are integers, and operations are mod 7

On the other, the elements of Z, are residue classes (subsets) [k].

These structures are 1somorphic.

Foundations of Computer Science 1 — LIACS

N
QO
N
N
S
Q
=
s
AN
O
b
ol))
§=
N
>
ol
§=
=
2
=
o
@)

012345

oONn<tT mAN
Ot NO TN
O MO MO M
ON<TON T
Or-IaNM < N
OCOOOOO

O == AN M <t N

INO = AN M <
<t N O -HANM
MTNO = N
NMN<tTNO v
NN <IN O
Or-HANMS< N

+012 345

O AN M< N

N
@
<
e
=
o
<P
>
=
<P}
© pu(
&
N
N
<P
~a
=
=
=
(=
@)
oy
(e
7/}
=
=
ﬁ
S
=
=
=
(=
=

N
QO
N
N
S
Q
=
s
AN
O
b
ol))
§=
N
>
ol
§=
=
2
=
o
@)

7

7

0123456

QO MAN
OQOINnmd O <+ N
Ot =HLNLNANOM
OMONLWNH <
ON<T Oy mMmuwn
OryrlANM<T N O
OCOOOOOO

O - TANMN< N O

OO - AN M N
LN OO —=ITAN M <
< TN OO - AN M
Mt N OO N
NN< 1N OO v
—ANN<TWIN OO
Or-lANMNMN< N O

+012 3456

OrxrIANNMNMS< N O

N
@
<
e
=
o
<P
>
=
<P}
© pu(
&
N
N
<P
~a
=
=
=
(=
@)
oy
(e
7/}
=
=
ﬁ
S
=
=
=
(=
=

Exercises:

() WLR (Prespoer.)

A
(i) LN Worpe
(> P\ C (L)
5 0 (i) Lew (Rgonper)

Foundations of Computer Science 1 — LIACS

Exercises:

() WLR (Prespoer.)

O /O\ (\(1 LN (WDRDEL)

(ite) Lew (?OS’) OR-DE R)

ALDEGH C F |
DOGEH A C|F
DGHE n, |ECA

Foundations of Computer Science 1 — LIACS

L

'SP Livisible 5v J"bv add X

S AN

AN
'M‘Lhc(\(vk p(;‘/(o" .
.)(-1 =0 "V\OA X
bhi\ O T(X%)(XM]
L
U k XK 24wl §
" AN LA
VI - N
~ X’L Fix v 4 - 1 v vk 4. UD] 5= =M ~—A4 g
1 1) T =
SN+ by
) A% s = (

RERSL LRSI T,

l/bv//

Foundations of Computer Science 1 — LIACS

|2

1Y 2 360 wad €

[V Wt - & v dumbe x € %

Foundations of Computer Science 1 — LIACS

