Lecture 135
binary trees

Read Schaum sections: 8.8,9.4, 10.1-3, 10.5, 10.9
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Recap

Tree: acyclic connected graph (undirected, directed, rooted, ordered)

Rooted: there is a special element (formally: 7= (V,E,r), r€ V

Ordered: children are ordered

- —
——0—<—0

implicit directionality

<+—0——0
——0—<—0

isomorphic as graphs, but not
as ordered graphs...

Foundations of Computer Science 1 — LIACS



Main properties of trees

Tree T 3 unique
(=acyclic& connected) @ simple path between : T-tey 1s not connected

any two vertices (two trees)

Further:
Trees have n-1 edges.

They are minimally connected, maximally acyclic.
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Properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|—1

Proof 1: induction over the number of vertices.

(i) basis: n=1, works. =1
(i) assume holds for all k<n.
take any tree of n vertices, and cut any edge.
Now we have two trees (see last slide) with n, n,,n; + n, = n vertices.
n,—1

By inductive hypothesis, they have
n—1+n,—1=n-—72 edges in total.

Since you cut one edge, the initial graph must have had n-1 edges basis
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Properties of trees

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|—1

Proof 2:

Choose a root and look at levels of rooted tree.

Each vertes has exactly one prececessor
in previous level...except the root.
So n-1 edges.
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Properties of trees

Theorem (Characterization of trees).
For a graph G (over n vertices) the following are equivalent

(1) G is a tree (connected acyclic graph)

(2) G is maximally acyclic : adding an edge to G creates a cycle

(3) G is minimally connected: removing any edge makes it unconnected
(4) G is acyclic and has n-1 edges

(5) G is connected and has n-1 edges

Use?

NB: this characterization is sometimes given in two parts: 1-2-3, and 1-4-5. See slides of previous lectures.
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Properties of trees

Theorem (Characterization of trees).
For a graph G (over n vertices) the following are equivalent

(1) Gisatree

(2) G is maximally acyclic : adding an edge to G creates a cycle

(3) G is minimally connected: removing any edge makes it unconnected
(4) Gis acyclic and has n-1 edges

(5) G is connected and has n-1 edges

Proof:
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Proof (continued):
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Main properties of trees

T is maximally
acyclic

31 unique / \ T is minimally

simple path between connected
any two vertices

T is connected

T is acyclic

and has n-1 edges and has n-1 edges

Tis a tree
(=acyclic& connected)

Each edge is a bi-implication
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Binary trees
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Def. A binary tree is a rooted ordered tree, where each vertex has at most 2 children. The
ordering assigns the label “left” and “right” to each child, even if the child is a single child.

binary tree Rooted ordered tree of
outdegree <3
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In CS binary trees are special

Def. (recursive) A binary tree T is a finite set of elements (vertices), such that it is
1) T is empty, or
2) T contains a distinguished node R, called the root of 7, and the remaining
nodes of T form an ordered pair of disjoint binary trees 7. and Tkr.

Def. Binary tree (recursive) simplified

1) empty
2) or has a root with a left and right subtree (each is a tree)

: : : *
*
O *e
*
o hé
* *
. *
* *
*

empty OR
T Tk

NB. subtrees can be empty
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FLASHBACK

Looking ahead: language of binary trees Looking ahead

1) aelL,belL @ @ p

2) ifx,y € L,then +xy € L
X y
++abb

o A A P
oRo @&)@b -

ﬁ)
B B S A
@@ \@ Foov b

+ ++aa+ab++abb

L ee— T —————
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In CS binary trees are special

a pointer structure:

S w
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Types of binary trees

-complete:
(1) every level, except possibly the last, is completely filled,
(2) and all nodes in the last level are as far left as possible.

-full (proper):
every node has 0 or 2 children

61718 1920212223 24 1617 18 1920 212223 24 25

canonical...
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Types of binary trees

-extended binary tree (2-tree):
full tree, or extended binary tree (see Schaum)

& /)

Original notes: internal nodes.
new nodes: external nodes.
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First child - right sibling: encoding trees into binary trees

12 13 14
12 13 14 —_

At each node, link children of same parent from left to right.
Parent is be linked only with the first child.

This process of converting an k-ary tree to an left (first) child -right sibling
binary tree 1s sometimes called the Knuth transform

1-1 correspondence between ordered rooted trees and
binary trees of where the root has just a a left child.

Foundations of Computer Science 1 — LIACS



Vertex ordering and traversal
in trees
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Enumerating all the nodes

Example: listing out all the
section headings in a book, e.g.
“contents”

Contents:

e Chapter 5 Chapter
-Section A
»Para a
»Para b Section B
-Section B
»Para a
-Section C Paragraph
»Para a SA:a 5A:b 5B:a 5C:a 5C:b 5C:c
»Para b
»Para c
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Enumerating all the nodes

Example: listing out all the
section headings in a book, e.g.
“contents”

5

Chapter
Many other enumerations
possible, e.g.:

] A C

Section B
5,A, B, C,5A:a, 5A:b, 5B:a, 5C:a,
5C:b, 5C:c

Paragraph
But 3 natural methods. 5A:a 5A:b 5B:a 5C:a 5C:b 5C:c
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Preorder

“first node, then children (subtrees)”

Preorder:

(1) Process the root N.

(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder, B

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

S5, A, SA:a, SA:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c
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Preorder

“first node, then children (subtrees)”

Preorder:
(1) Process the root N. Contents:
(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder. : Chapter.5
-Section A
(n-1) Traverse the last subtree of N in preorder, :11:2;:::
-Section B
»Para a
-Section C
»Para a
»Para b
5, A, 5A:a, 5A:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c »Para ¢
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Preorder

“first node, then children (subtrees)”

Preorder:

(1) Process the root N.

(2) Traverse the first subtree of N in preorder.
(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder, B

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)
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Preorder

“first node, then children (subtrees)”

Preorder:
(1) Process the root N.
(2) Traverse the first subtree of N in preorder.

(3) Traverse the second subtree of N in preorder.

(n-1) Traverse the last subtree of N in preorder,

5, A, SA:a, SA:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c

4 6 8 9

Preorder enumeration

10

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)
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Postorder

“first children (subtrees), then node”

Postorder: 5
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. B
(n+1) process the root N

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5
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Postorder

“first children (subtrees), then node”

Postorder: 5
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. B
(n+1) process the root N

5A:a 5A:b 5B:a 5C:a 5C:b 5C:c

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5
-“last visit”

-for binary trees: LRN (left-right-node)
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Postorder

“first children (subtrees), then node”

Postorder: 10
(1) Traverse the first subtree of N in postorder.
(2) Traverse the second subtree of N in postorder.

(n) Traverse the last subtree of N in postorder. S
(n+1) process the root N

1 2 4 6 7 8

Postorder enumeration

SA:a, SA:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

-“last visit”

-for binary trees: LRN (left-right-node)
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Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

Works only for binary trees

Inorder:

(1) Traverse the left subtree of N in inorder.
(2) Traverse the root N

(3) Traverse the right subtree of N in inorder,

aa, 1,a,ii,A,1,b,B,iii,c,iv
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Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

Works only for binary trees

Inorder:

(1) Traverse the left subtree of N in inorder.
(2) Traverse the root N

(3) Traverse the right subtree of N in inorder,

“second visit” .
Preorder enumeration

LNR (left-node-right)
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Three main methods given recursively

preorder [NLR]: pre(7) = root(7), pre(7i), ..., pre(Tk)
postorder [LRN]: post(7) = post(T7;), ..., post(7k), root(7)

inorder [LNR]: in(7) = in(7L), root(7), in(7TR)
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Expressions and traversal

An (algebraic) expression that only uses binary operations
can be represented by a full binary tree 2-tree (the expression tree)

Various ways to traverse the expression tree lead to 3 main ways to specify
algebraic expressions
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Example: from expression to tree and 3 ways back:

(2X3)+((5XT)+ O x11)) \/ \@
©,
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Example: from expression to tree and 3 ways back:

(2X3)+((OXxT)+(Ox11))) (+)

Leaves are elementary values
Inner nodes defined by brackets \ /

Furthermore, this 1s inorder traversal!
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Example: from expression to tree and 3 ways back:

What happens if we use Preorder (NLR)?
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Example: from expression to tree and 3 ways back:

What happens if we use Preorder (NLR)?

+%X23 +%X57 x 911 /\

Famous (normal) Polish notation.
Brackets not needed. @ @ R @
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Example: from expression to tree and 3 ways back:

Postorder (LRN)

23x57 x911 X+ + /\

Famous reverse Polish notation.
Brackets not needed. @ @ R @
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Comment:
Can work with unary operations (other arities as well),
provided the arity of each operator is known.
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Binary trees are a recursive structure
can provide recursive method how to evaluate expression trees

basis: for a leaf x: f(leaf) = numerical value x

inductive step: for a node @: f(node) = f(root-left-subtree) @ f(root-right -subtree)
(@ 1s the operation)

/@
\ /K
£ &%
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Binary trees are a recursive structure
recursively analyzing other tree properties

basis: for a leaf x: f(leaf) =1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-right -subtree) + 1

What does ths cowg«h,?

/@
\ /K
£ &%
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Binary trees are a recursive structure
recursively analyzing tree properties

basis: for a leaf x: f(leaf) =1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-right -subtree) + 1

/@
\ /K
£ &%

=tree size
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Modulo computation
and equivalence relations

Schaum: 2.8, 11.5, 11.8

Foundations of Computer Science 1 — LIACS



Equivalence relation: a binary relation which 1s simultanously
(1) reflexive (xRx, for all x)
(2) symmetric (xRy implies yRx)
(3) transitive (xRy and yRz imply xRz)

Capture equalities up to (disregarding) some properties:

-“same colour”

-parity
-“being parallel"” for lines
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Modulo computation examples

» 12h clock.
It 1s 5 o’clock; What time 1s 1t 8 hours later?

» 24h clock.
It 1s 22.30; What time 1s 1t 3 h later?

» 24h clock & 60 minute hour.
It 1s 22.30; What time 1s 1t 2h 33mins later?

» 7 day weeks:
Mon = 1st day; Tue = 2nd day; ... Sun = 7th day.
What day comes 20 days after a Tuesday?

Its about remainders when dividing with integers!
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Congruence modulo 7

Def. For integers a, b, n, n>0, we say a is congruent with b modulo n, written

a=b (mod n)

if n divides the difference (a-b) (in other words, n | (a-b)).
n is called the modulus.

NB:

-a is congruent with b mod » if and only if a and b have the same remainder when
divided with n. Eg: how many minutes past full hour. (245 = 305)

-Specially, if b is the remainder if a div n.

For any fixed n. "congruence mod n” is a relation (¢ and b are in that relation).

It is an equivalence relation: (1) reflexive, (2) symmetric, (3) transitive.
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Congruence modulo 7

Congruence mod n is an equivalence relation.

Proof:

() relleave k=R buwie R0 dlways.

A
W okl azh > nl(db) @ wbsrn ()

&) Laz fDuE> bEA Wk Yy

(<\

) azb k) & bEe (e )

SEN (S8 } W[©0) s n | (w) +lee) U [

=Y aTc (mdh), l/
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As we said:

Equivalence relations capture equalities “up to" some details.

“up to X" can be taken to mean "disregarding a possible difference in X"

(graph 1somorphism 1s equivalence “up to” permutation of labels,
equivalence relation “strings of equal lenght” 1gnores all except lenght...)

Equivalence class groups together all the elements that “are the same™
according to the given equivalence relation.

Such a set 1s specified by one representative element.
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Equivalence classes.

Let R be an equivalence relation on J] let x be some element of V.

With [x], = {y € V|xRy} we denote the equivalence class of x
with respect to the relation R

Equivalence class groups together all the elements that “are the same™
according to the given equivalence relation.

Such a set 1s specified by one representative element.

Foundations of Computer Science 1 — LIACS



Residue classes mod n are equivalence classes relative to the
relation of congruence mod n

Consider the equivalence relation R = congruence mod 7

0l,={...—14,—-7, 07,14,21,...}

1]p=1{...—13,—-6, 1,8,15,22,...} IX]..

o take x see what

2]p = {...—12,-5, 29,16,23,...} remainder when div 7

- collect all numbers with same
3lp=1{...—11,—-4, 3,10,17,24,...} remainder

6], =1{...—8,—1, 6,13,20,27,...}

(7], =" , :
Equivalence class [X] is also denoted
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Residue classes mod n are equivalence classes relative to the

relation of congruence mod n

Residue class [X] is also denoted x

0], ={...— 14,—7, 07,14,21,...}
e=1{...—13,-6, 1,8,1522,...}
2lp=1{...—12,—-5, 29,16,23,...}
B3lp=1{...—11,—4, 3,10,17,24,...}
6],={...—8,—1, 6,13,20,27,...}

p— |

-]

(\O]

3

6

[X]..
take x see what
remainder when div 7
collect all numbers with same
remainder
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Min1 example

Consider the equivalence relation R = congruence mod 2

How many residue classes?

If | give you a number in binary, how can you tell what class it is in?

What about mod 47?
If | give you a number in binary, how can you tell what class it is in?
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Modulo arithmetic

Theorem. Suppose that a = b (mod n) and ¢ = d (mod n). Then

(1) a+c=b+d (mod n)
2) a—c=b—d (mod n)
(3) axXc=bXd (mod n)

Corollary. If a = b (mod n) then a* = b* (mod n) for all integer k>0.
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Example of use: last digit

What is the last digit of 3232

Note: last digit of x the remainder of x divided by 10.

What 0 < b < 10 is 3%** congruent mod 10?

Use e.g.3* =81, so 81 =1 (mod 10). (dropping mod 10 notation...)
3234 _ 34x58+2 34x58 _ (34)58 =18 =1
32 —0=0 3234 _ 34X58+2 (34><58 32) =1%x9=0
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Example of use: days of the week

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Feb-2000 - ...

31-Dec-2000 - Sun
1-Jan-2001 - Mon

13-May-2023 - ?
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Find out how many days ahead of a date with known day

1 1-Jan-2000 - Sat

2 2-Jan-2000 - Sun
31 31-Jan-2000 - ...
32 1-Feb-2000 - ...
365 31-Dec-2000 - Sun

1-Jan-2001 - Mon

x  13-May-2023 - ?

x mod 7 gives you the solution...
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Compute number of days...

23 full years =23 x 365
1 1-Jan-2000 - Sat 6 leap years = +6

2 2-Jan-2000 - Sun Jan - May = 31+28+31+30
31 31-Jan-2000 - ... 13=+13

32 1-Feb-2000 - ... = 8534 (mod 7)
365 31-Dec-2000 - Sun
1-Jan-2001 - Mon

x  13-May-2023 - ?
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Compute number of days...

23 full years =23 x 365

1 1-Jan-2000 - Sat 6 leap years = +6

5 9 Tan2000 - Sun Jan - May = 31+28+31+30
13 =+13

31  31-Jan-2000 - ...

32  1-Feb-2000 - ... = 8534 (mod 7)

365 31-Dec-2000 - Sun but can compute it in parts!

1-Jan-2001 - Mon

X  13-May-2023 - ? =2x 1+ 6 + 3+0+3+2+6=22=1

Started Sat + 1 = Sun!
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Theorem. Suppose that a = b (mod n) and ¢ = d (mod n). Then

(1) a+c=b+d (mod n)
2) a—c=b—d (mod n)
(3) axXc=bxXd (mod n)

Corollary. If a = b (mod n) then a* = b* (mod n) for all integer k>0.

100'°2 mod 13
10012 =912 = g1 =3Pl =2N"=1"=1

412916 mod 13

412016 = 22016 = 16504 = 3504 — 27167 — 1

100192 412016 =141 =2
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A trick you may use (not necessary)

Little Fermat’s theorem

Theorem. For any prime p and any integer a:

a’~!' =1 (mod p).

Eg. 1007102 mod 13 = 1007(8*12 + 6) = [100"(12)]"8 * 10076 = 10076 =10"12 =1
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Note, the questions of divisibility
(“1s x divisible by y”) 1s the question 1s:
x =0 (mod y)
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Partitions and equivalence classes

Def. Given a set V, the set {V, ...V, }of subsets of V is called a partition of /' if
(1) (pariwise disjointness) V,NV. =@, for all i #j

k
(2) (cover) U Vi=V

i=1

in other words, every x from V'is in exactly one subset V'
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Residue classes partition the set of integers

Theorem. Let [O]p, ...[k — 1], be the residure classes with respect to the equivalence
relation congruent modulo £.

Then {[O], ...[k — 1]} is a partition of Z .

NB, partitions can be infinite:

V.= {Ix2"lis odd}, k>0
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Computing using residual classes

Consider the equivalence relation R = congruence mod n
[(x]r = {y|xRy} = {an+ k|a € Z,k is remainder of dividing x with n}

y € [x]g, such that y # x

nonetheless:

Xl = [y]g

Representative does not matter: well-defined
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Computing using residual classes

Can do arithmetic!

[xlg + [V]g = [x + ¥l

E.g.mod 7. [3] +[3]=[6]; [3] +[4] =[7]=[O0].

Mathematically, this 1s addition mod 7 (n).

Also notation : X+y=x+Yy
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Computing using residual classes

Can do arithmetic!
[x]g X [ylg = [x X ylg

E.e. mod 7. [3] x [3] = [9] = [21; [3]x[4] = [12] = [5].

Mathematically, this 1s multiplication mod 7 (n).

Also notation : X Xy =x XYy
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Computing using residual classes

Interesting thing happens when # 1s not prime...

[xIg X [ylg = [x X ¥l

E.g. mod 6.
[3]x[2]=16]=0]

So modular arithmetic behaves almost the same but,

if the order (n) is not prime a X b (mod n) # a =0 or b = 0.

if n is prime all good.
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Computing using residue classes

We denote these structures (of mod #) arithmetic Z,

On one hand, elements are integers, and operations are mod 7

On the other, the elements of Z, are residue classes (subsets) [k].

These structures are 1somorphic.
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Exercises:
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