
Foundations of Computer Science 1 — LIACS !1

Lecture 15
binary trees

Read Schaum sections: 8.8, 9.4, 10.1-3, 10.5, 10.9

Foundations of Computer Science 1 — LIACS !2

Tree: acyclic connected graph (undirected, directed, rooted, ordered)

Rooted: there is a special element (formally: !)T = (V, E, r), r ∈ V
Ordered: children are ordered

implicit directionality

1 2 2 1

≠

isomorphic as graphs, but not
as ordered graphs…

Recap

Bo

Foundations of Computer Science 1 — LIACS !3

Main properties of trees

Further:

Trees have n-1 edges.

They are minimally connected, maximally acyclic.

Tree T
(=acyclic& connected) ⇔ ! unique

simple path between
any two vertices

∃ ⇒ T-{e} is not connected
(two trees)

Foundations of Computer Science 1 — LIACS !4

Properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 1: induction over the number of vertices.

(i) basis: n=1, works.

(ii) assume holds for all k<n.

take any tree of n vertices, and cut any edge.
Now we have two trees (see last slide) with vertices.

By inductive hypothesis, they have
 edges in total.

Since you cut one edge, the initial graph must have had n-1 edges

n1, n2, n1 + n2 = n

n1 −1 + n2 −1 = n−2

basis

n1 −1

n2 −1

%
E-

Foundations of Computer Science 1 — LIACS !5

Properties of trees

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 2:

Choose a root and look at levels of rooted tree.
1

0

2

3

4

Each vertes has exactly one prececessor
in previous level…except the root.
So n-1 edges.

Gq
goes

Foundations of Computer Science 1 — LIACS !6

Properties of trees
Theorem (Characterization of trees).

For a graph G (over n vertices) the following are equivalent

(1) G is a tree (connected acyclic graph)
(2) G is maximally acyclic : adding an edge to G creates a cycle
(3) G is minimally connected: removing any edge makes it unconnected
(4) G is acyclic and has n-1 edges
(5) G is connected and has n-1 edges

Use?

NB: this characterization is sometimes given in two parts: 1-2-3, and 1-4-5. See slides of previous lectures.

Foundations of Computer Science 1 — LIACS !7

Properties of trees

Proof:

Theorem (Characterization of trees).

For a graph G (over n vertices) the following are equivalent

(1) G is a tree
(2) G is maximally acyclic : adding an edge to G creates a cycle
(3) G is minimally connected: removing any edge makes it unconnected
(4) G is acyclic and has n-1 edges
(5) G is connected and has n-1 edges

(g) ⇒ (z) : a) is acyclic V 4) ⇒ (3) tree ⇒ connected
.

& acyclic .

b) adding edge males a cycle :

÷÷÷÷÷÷÷÷÷÷÷:÷i:..÷÷÷:÷÷÷÷÷÷÷÷::""""Abune connected & cyclic ⇒ cut cycle
(2)⇒ (t) (z) ⇒ - connected .

Otherwise connecting two unconnected → not disconnected
. ⇒ acyclic . tree

.

components doesn't make a cycle
- connected t acyclic ⇒ true per definition

Foundations of Computer Science 1 — LIACS !8

Proof (continued):

(1)⇒ (4) acyclic by definition . h - n edges property proven before

(4)⇒ (5) acyclic t 1h41 edges
.

⇒ connected

Assure hot : K components ,aH, acyclic ⇒ k trees

⇒ hath z - ihre -- h & n
,
- A the- n t - ha - 1=4 - A

⇒ n - K -

- h - n =) 1<=1 .

A tree ⇒ connected

(5)⇒ (1) Asumne connected
,
he edges & cycle

⇒ can remove edge .

⇒ Connected graph over n - vertices with n- z edges (see 8.39)

so not a tree but connected ⇒ has simple cycle .

Can remove one edge ,
be connected with h -3 edges

. . .
⇒ not a tree

,
has cycle , -

- -
h - h

⇒ repeat until empty graph . (inductive)
OR : Has spanning tree ! htt

Foundations of Computer Science 1 — LIACS !9

Main properties of trees

T is a tree
(=acyclic& connected)

! unique
simple path between

any two vertices

∃

T is maximally
acyclic

!

T is minimally
connected

T is acyclic
and has n-1 edges

T is connected
and has n-1 edges

Each edge is a bi-implication

Foundations of Computer Science 1 — LIACS !10

Binary trees

Foundations of Computer Science 1 — LIACS !11

Def. A binary tree is a rooted ordered tree, where each vertex has at most 2 children. The
ordering assigns the label “left” and “right” to each child, even if the child is a single child.

L

R

binary tree Rooted ordered tree of
outdegree <3

L R L R

L R L R

Foundations of Computer Science 1 — LIACS !12

Def. (recursive) A binary tree T is a finite set of elements (vertices), such that it is
1) T is empty, or
2) T contains a distinguished node R, called the root of T , and the remaining

nodes of T form an ordered pair of disjoint binary trees TL and TR.

Def. Binary tree (recursive) simplified
1) empty
2) or has a root with a left and right subtree (each is a tree)

r

TL TR

empty OR

NB. subtrees can be empty

In CS binary trees are special

Foundations of Computer Science 1 — LIACS !13

FLASHBACK

Foundations of Computer Science 1 — LIACS !14

In CS binary trees are special

a pointer structure:

∅

∅∅∅∅∅∅

Foundations of Computer Science 1 — LIACS !15

Types of binary trees

-complete:
(1) every level, except possibly the last, is completely filled,
(2) and all nodes in the last level are as far left as possible.

-full (proper):
every node has 0 or 2 children

canonical…

Foundations of Computer Science 1 — LIACS !16

Types of binary trees

-extended binary tree (2-tree):  
full tree, or extended binary tree (see Schaum)

Original notes: internal nodes.
new nodes: external nodes.

Foundations of Computer Science 1 — LIACS !17

First child - right sibling: encoding trees into binary trees

1

2

3 4

5

6

7

8

9 10

11

12 13 14

15

16

3

1

2

5

4 6

7

8

9 10

1611
15

12

13
14

This process of converting an k-ary tree to an left (first) child -right sibling
binary tree is sometimes called the Knuth transform

At each node, link children of same parent from left to right.
Parent is be linked only with the first child.

1-1 correspondence between ordered rooted trees and
binary trees of where the root has just a a left child.

Foundations of Computer Science 1 — LIACS !18

Vertex ordering and traversal
in trees

Foundations of Computer Science 1 — LIACS !19

Chapter

A

5A:a

B CSection

Paragraph

5

5A:b 5B:a 5C:a 5C:b 5C:c

Enumerating all the nodes

Contents:

• Chapter 5
-Section A

‣Para a
‣Para b

-Section B
‣Para a

-Section C
‣Para a
‣Para b
‣Para c

Example: listing out all the
section headings in a book, e.g.
“contents”

Foundations of Computer Science 1 — LIACS !20

Chapter

A

5A:a

B CSection

Paragraph

5

5A:b 5B:a 5C:a 5C:b 5C:c

Enumerating all the nodes

Example: listing out all the
section headings in a book, e.g.
“contents”

Many other enumerations
possible, e.g.:

5, A, B, C, 5A:a, 5A:b, 5B:a, 5C:a,
5C:b, 5C:c

But 3 natural methods.

Foundations of Computer Science 1 — LIACS !21

“first node, then children (subtrees)”

Preorder:
(1) Process the root N.  
(2) Traverse the first subtree of N in preorder.  
(3) Traverse the second subtree of N in preorder.
…
(n-1) Traverse the last subtree of N in preorder,

5, A, 5A:a, 5A:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c

A

5A:a

B C

5

5A:b 5B:a 5C:a 5C:b 5C:c

Preorder

Foundations of Computer Science 1 — LIACS !22

“first node, then children (subtrees)”

Preorder:
(1) Process the root N.  
(2) Traverse the first subtree of N in preorder.  
(3) Traverse the second subtree of N in preorder.
…
(n-1) Traverse the last subtree of N in preorder,

5, A, 5A:a, 5A:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c

Preorder

Contents:

• Chapter 5
-Section A

‣Para a
‣Para b

-Section B
‣Para a

-Section C
‣Para a
‣Para b
‣Para c

Foundations of Computer Science 1 — LIACS !23

“first node, then children (subtrees)”

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)

Preorder:
(1) Process the root N.  
(2) Traverse the first subtree of N in preorder.  
(3) Traverse the second subtree of N in preorder.
…
(n-1) Traverse the last subtree of N in preorder,

A

5A:a

B C

5

5A:b 5B:a 5C:a 5C:b 5C:c

Preorder

Foundations of Computer Science 1 — LIACS !24

“first node, then children (subtrees)”

“first visit”: output the vertex the first time you see it

In binary trees: NLR (node-left-right)

Preorder:
(1) Process the root N.  
(2) Traverse the first subtree of N in preorder.  
(3) Traverse the second subtree of N in preorder.
…
(n-1) Traverse the last subtree of N in preorder,

2

3

5 7

1

4 6 8 9 10

5, A, 5A:a, 5A:b, B, 5B:a, C, 5C:a, 5C:b:, 5C:c
Preorder enumeration

Preorder

Foundations of Computer Science 1 — LIACS !25

Postorder

“first children (subtrees), then node”

Postorder:  
(1) Traverse the first subtree of N in postorder.  
(2) Traverse the second subtree of N in postorder.
…
(n) Traverse the last subtree of N in postorder.
(n+1) process the root N

A

5A:a

B C

5

5A:b 5B:a 5C:a 5C:b 5C:c

5A:a, 5A:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

Foundations of Computer Science 1 — LIACS !26

“first children (subtrees), then node”

-“last visit”

-for binary trees: LRN (left-right-node)

Postorder:  
(1) Traverse the first subtree of N in postorder.  
(2) Traverse the second subtree of N in postorder.
…
(n) Traverse the last subtree of N in postorder.
(n+1) process the root N

A

5A:a

B C

5

5A:b 5B:a 5C:a 5C:b 5C:c

5A:a, 5A:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

Postorder

Foundations of Computer Science 1 — LIACS !27

“first children (subtrees), then node”

-“last visit”

-for binary trees: LRN (left-right-node)

Postorder:  
(1) Traverse the first subtree of N in postorder.  
(2) Traverse the second subtree of N in postorder.
…
(n) Traverse the last subtree of N in postorder.
(n+1) process the root N

3

1

5 9

10

2 4 6 7 8

5A:a, 5A:b, A, 5B:a, B, 5C:a, 5C:b, 5C:c, C, 5

Postorder enumeration

Postorder

Foundations of Computer Science 1 — LIACS !28

Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

Inorder:  
(1) Traverse the left subtree of N in inorder.  
(2) Traverse the root N
(3) Traverse the right subtree of N in inorder,

Works only for binary trees
1

aa, i,a,ii,A,1,b,B,iii,c,iv

A B

a b c

i ii iii iv

aa

Foundations of Computer Science 1 — LIACS !29

Inorder (symmetric ordering)

“first left child (subtree), then node, then right child (subtree)”

“second visit”

LNR (left-node-right)

example chapters

Inorder:  
(1) Traverse the left subtree of N in inorder.  
(2) Traverse the root N
(3) Traverse the right subtree of N in inorder,

Works only for binary trees
6

5 8

3 7 10

2 4 9 11

1
Preorder enumeration

Goddamed

Foundations of Computer Science 1 — LIACS !30

Three main methods given recursively

preorder [NLR]: pre(T) = root(T), pre(T1), …, pre(Tk)

postorder [LRN]: post(T) = post(T1), …, post(Tk), root(T)

inorder [LNR]: in(T) = in(TL), root(T), in(TR)

Foundations of Computer Science 1 — LIACS !31

Expressions and traversal

An (algebraic) expression that only uses binary operations
can be represented by a full binary tree 2-tree (the expression tree)

Various ways to traverse the expression tree lead to 3 main ways to specify
algebraic expressions

Foundations of Computer Science 1 — LIACS !32

Example: from expression to tree and 3 ways back:

2 3

5 7 9 11

+

+×

× ×

((2 × 3) + ((5 × 7) + (9 × 11)))

Foundations of Computer Science 1 — LIACS !33

Example: from expression to tree and 3 ways back:

Leaves are elementary values
Inner nodes defined by brackets

2 3

5 7 9 11

+

+×

× ×

Furthermore, this is inorder traversal!

((2 × 3) + ((5 × 7) + (9 × 11)))

Foundations of Computer Science 1 — LIACS !34

Example: from expression to tree and 3 ways back:

What happens if we use postorder (NLR)?

2 3

5 7 9 11

+

+×

× ×

Preorderimma

Foundations of Computer Science 1 — LIACS !35

Example: from expression to tree and 3 ways back:

What happens if we use postorder (NLR)?

+ × 2 3 + × 5 7 × 9 11

Famous (normal) Polish notation.
Brackets not needed. 2 3

5 7 9 11

+

+×

× ×

PreorderPimm

Foundations of Computer Science 1 — LIACS !36

Example: from expression to tree and 3 ways back:

2 3

5 7 9 11

+

+×

× ×

Preorder (LRN)

2 3 × 5 7 × 9 11 × + +

Famous reverse Polish notation.
Brackets not needed.

Postorder (LRN)numina

Foundations of Computer Science 1 — LIACS !37

Comment:
Can work with unary operations (other arities as well),
provided the arity of each operator is known.

Foundations of Computer Science 1 — LIACS !38

Binary trees are a recursive structure
can provide recursive method how to evaluate expression trees

basis: for a leaf x: f(leaf) = numerical value x

inductive step: for a node @: f(node) = f(root-left-subtree) @ f(root-rigth-subtree)
(@ is the operation)

2 3

5 7 9 11

+

+×

× ×

Mt

Foundations of Computer Science 1 — LIACS !39

Binary trees are a recursive structure
recursively analyzing other tree properties

basis: for a leaf x: f(leaf) = 1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-rigth-subtree) + 1

2 3

5 7 9 11

+

+×

× ×

that

what does this compute ?

Foundations of Computer Science 1 — LIACS !40

Binary trees are a recursive structure
recursively analyzing tree properties

basis: for a leaf x: f(leaf) = 1

inductive step: for a node y: f(node) = f(root-left-subtree) + f(root-rigth-subtree) + 1

2 3

5 7 9 11

+

+×

× ×

=tree size

imma

Foundations of Computer Science 1 — LIACS !41

Modulo computation
and equivalence relations

Schaum: 2.8, 11.5, 11.8

Foundations of Computer Science 1 — LIACS !42

Equivalence relation: a binary relation which is simultanously
(1) reflexive (xRx, for all x)
(2) symmetric (xRy implies yRx)
(3) transitive (xRy and xRz imply xRz)

Capture equalities up to (disregarding) some properties:

-“same colour”
-=
-parity
-“being parallel" for lines

ima:*

Foundations of Computer Science 1 — LIACS !43

Modulo computation examples

‣ 12h clock.  
It is 5 o’clock; What time is it 8 hours later?

‣ 24h clock.  
It is 22.30; What time is it 3 h later?

‣ 24h clock & 60 minute hour.  
It is 22.30; What time is it 2h 33mins later?

‣ 7 day weeks:  
Mon = 1st day; Tue = 2nd day; … Sun = 7th day.  
What day comes 20 days after a Tuesday?

Its about remainders when dividing with integers!

Foundations of Computer Science 1 — LIACS !44

Congruence modulo n

Def. For integers a, b, n, n>0, we say a is congruent with b modulo n, written

 !

if n divides the difference (a-b) (in other words, n | (a-b)).
n is called the modulus.

a ≡ b (mod n)

NB:

-a is congruent with b mod n if and only if a and b have the same remainder when
divided with n. Eg: how many minutes past full hour. (245 = 305)

-Specially, if b is the remainder if a div n.

For any fixed n, "congruence mod n” is a relation (a and b are in that relation).

It is an equivalence relation: (1) reflexive, (2) symmetric, (3) transitive.

Foundations of Computer Science 1 — LIACS !45

Congruence modulo n

Congruence mod n is an equivalence relation.

Proof:
(e) reflexive a a because h/0 always .

At symelil A b =3 NICA- b) ⇒ a- b - k -h (ke 't)

E) b-a - this BEA worth ✓

(3) AE b (mod h) & BEC (mod n)

⇒ NAHH
,
4/4-4 ⇒ nlla-htlb.cl ⇒ hla- c

⇒ aec (moan) . ✓

Foundations of Computer Science 1 — LIACS !46

Equivalence relations capture equalities “up to" some details.

(graph isomorphism is equivalence “up to” permutation of labels,
equivalence relation “strings of equal lenght” ignores all except lenght…)

Equivalence class groups together all the elements that “are the same”
according to the given equivalence relation.

Such a set is specified by one representative element.

“up to X" can be taken to mean "disregarding a possible difference in X"

As we said:

Foundations of Computer Science 1 — LIACS !47

Equivalence classes.

Let R be some binary relation on V, let x be some element of V.

With ! we denote the equivalence class of x
with respect to the relation R

[x]R = {y ∈ V |xRy}

Equivalence class groups together all the elements that “are the same”
according to the given equivalence relation.

Such a set is specified by one representative element.

Let R be an equivalence armings .

Foundations of Computer Science 1 — LIACS !48

Residue classes mod n are equivalence classes relative to the
relation of congruence mod n

Consider the equivalence relation R = congruence mod 7

[0]R = {… −14, −7, 0,7,14,21,…}

[1]R = {… −13, −6, 1,8,15,22,…}

[2]R = {… −12, −5, 2,9,16,23,…}

[3]R = {… −11, −4, 3,10,17,24,…}

[6]R = {… −8, −1, 6,13,20,27,…}

[7]R = ?

…

[x]..
take x see what

remainder when div 7
collect all numbers with same

 remainder

Equivalence class [x] is also denoted

Foundations of Computer Science 1 — LIACS !49

Residue classes mod n are equivalence classes relative to the
relation of congruence mod n

[0]R = {… −14, −7, 0,7,14,21,…} = 0̄

[1]R = {… −13, −6, 1,8,15,22,…} = 1̄

[2]R = {… −12, −5, 2,9,16,23,…} = 2̄

[3]R = {… −11, −4, 3,10,17,24,…} = 3̄

[6]R = {… −8, −1, 6,13,20,27,…} = 6̄

…

[x]..
take x see what

remainder when div 7
collect all numbers with same

 remainder

Residue class [x] is also denoted �x̄

Foundations of Computer Science 1 — LIACS !50

Mini example

Consider the equivalence relation R = congruence mod 2

How many residue classes?

If I give you a number in binary, how can you tell what class it is in?

What about mod 4?
If I give you a number in binary, how can you tell what class it is in?

Foundations of Computer Science 1 — LIACS !51

Modulo arithmetic

Theorem. Suppose that ! and ! . Then

(1) !
(2) !
(3) !

a ≡ b (mod n) c ≡ d (mod n)

a + c ≡ b + d (mod n)
a −c ≡ b −d (mod n)
a × c ≡ b × d (mod n)

Corollary. If ! then ! for all integer k>0.a ≡ b (mod n) ak ≡ bk (mod n)

Foundations of Computer Science 1 — LIACS !52

Example of use: last digit

What is the last digit of ! ?3234

Note: last digit of x the remainder of x divided by 10.

What ! is ! congruent mod 10?0 ≤ b < 10 3234

Use e . g . 34 = 81, so81 ≡ 1 (mod 10) . (dropping mod 10 notation…)

3234 = 34×58+ 2 34×58 = (34)58 ≡ 158 ≡ 1

32 = 9 ≡ 9 3234 = 34×58+ 2 = (34×58 × 32) ≡ 1 × 9 = 9

Foundations of Computer Science 1 — LIACS !53

Example of use: days of the week

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Feb-2000 - …

31-Dec-2000 - Sun

1-Jan-2001 - Mon

13-May-2023 - ?

Foundations of Computer Science 1 — LIACS !54

Find out how many days ahead of a date with known day

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Jan-2000 - …

31-Dec-2000 - Sun

1-Jan-2001 - Mon

13-May-2023 - ?

1
2
31
32

365

1-Feb-2000 - …

x

x mod 7 gives you the solution…

Foundations of Computer Science 1 — LIACS !55

Compute number of days…

23 full years = 23 x 365
6 leap years = +6
Jan - May = 31+28+31+30
13 = +13

= 8534 (mod 7)

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Jan-2000 - …

31-Dec-2000 - Sun

1-Jan-2001 - Mon

13-May-2023 - ?

1
2
31
32

365

1-Feb-2000 - …

x

Foundations of Computer Science 1 — LIACS !56

Compute number of days…

23 full years = 23 x 365
6 leap years = +6
Jan - May = 31+28+31+30
13 = +13

= 8534 (mod 7)

but can compute it in parts!

=2 x 1 + 6 + 3+0+3+2+6=22=1

Started Sat + 1 = Sun!

1-Jan-2000 - Sat
2-Jan-2000 - Sun
31-Jan-2000 - …

31-Dec-2000 - Sun

1-Jan-2001 - Mon

13-May-2023 - ?

1
2
31
32

365

1-Feb-2000 - …

x

Foundations of Computer Science 1 — LIACS !57

Theorem. Suppose that ! and ! . Then

(1) !
(2) !
(3) !

a ≡ b (mod n) c ≡ d (mod n)

a + c ≡ b + d (mod n)
a −c ≡ b −d (mod n)
a × c ≡ b × d (mod n)

Corollary. If ! then ! for all integer k>0.a ≡ b (mod n) ak ≡ bk (mod n)

100102 ≡ 9102 ≡ (81)51 ≡ (3)51 ≡ (27)17 ≡ 117 ≡ 1
100102 mod 13

412016 mod 13

412016 ≡ 22016 ≡ 16504 ≡ 3504 = 27167 = 1

100102 + 412016 ≡ 1 + 1 = 2

Foundations of Computer Science 1 — LIACS !58

A trick you may use (not necessary)

Little Fermat’s theorem

Theorem. For any prime p and any integer a:

! .ap−1 ≡ 1 (mod p)

Eg. 100^102 mod 13 = 100^(8*12 + 6) = [100^(12)]^8 * 100^6 = 100^6 = 10^12 = 1

Foundations of Computer Science 1 — LIACS !59

Note, the questions of divisibility
(“is x divisible by y”) is the question is:
!x ≡ 0 (mod y)

Foundations of Computer Science 1 — LIACS !60

Partitions and equivalence classes

Def. Given a set V, the set ! of subsets of V is called a partition of V if
(1) (pariwise disjointness) !

(2) (cover) !

{V1, …Vk}
Vi ∩ Vj = ∅, for all i ≠ j

k

⋃
i= 1

Vk = V

in other words, every x from V is in exactly one subset Vj

Foundations of Computer Science 1 — LIACS !61

Residue classes partition the set of integers

Theorem. Let ! be the residure classes with respect to the equivalence
relation congruent modulo k.
Then ! is a partition of !

[0]R, …[k −1]R,

{[0]R, …[k −1]R} ℤ .

NB, partitions can be infinite:

!Vk = {l × 2k | l is odd}, k ≥ 0

Foundations of Computer Science 1 — LIACS !62

Computing using residual classes

Consider the equivalence relation R = congruence mod n

[x]R = {y |xRy} = {an+ k |a ∈ ℤ, k is remainder of dividing x with n}

y ∈ [x]R, such that y ≠ x

[x]R = [y]R

nonetheless:

Representative does not matter: well-defined

Foundations of Computer Science 1 — LIACS !63

Computing using residual classes

Can do arithmetic!

[x]R + [y]R = [x + y]R

E.g. mod 7. [3] + [3] = [6]; [3] + [4] = [7] = [0].

Mathematically, this is addition mod 7 (n).

Alsonotation: x̄ + ȳ = x + y

Foundations of Computer Science 1 — LIACS !64

Computing using residual classes

Can do arithmetic!

[x]R × [y]R = [x × y]R

E.g. mod 7. [3] x [3] = [9] = [2]; [3]x[4] = [12] = [5].

Mathematically, this is multiplication mod 7 (n).

Alsonotation: x̄ × ȳ = x × y

Foundations of Computer Science 1 — LIACS !65

Computing using residual classes

Interesting thing happens when n is not prime…

[x]R × [y]R = [x × y]R

E.g. mod 6.
[3] x [2] = [6] = [0]

So modular arithmetic behaves almost the same but,

if the order (n) is not prime !a × b (mod n) ⇏ a = 0 or b = 0.

if n is prime all good.

Foundations of Computer Science 1 — LIACS !66

Computing using residue classes

We denote these structures (of mod n) arithmetic !ℤn

On one hand, elements are integers, and operations are mod n

On the other, the elements of ! are residue classes (subsets) [k].ℤn

These structures are isomorphic.

Foundations of Computer Science 1 — LIACS !67

Computing using residue classes

ℤ6

Foundations of Computer Science 1 — LIACS !68

Computing using residue classes

ℤ7

Foundations of Computer Science 1 — LIACS !69

Exercises:

(i) NLR (PREORDER)
A

⑧ Cii) LNR (INORDEK)B1 Ic
g g Ciii) IRN (POST ORDER)

11 IFDOO E O l
119
⑨ O

G H

Foundations of Computer Science 1 — LIACS !69

Exercises:

(i) NLR (PREORDER)
A

00
B / Ic

(ii) LNR (INORDEK)
O O Ciii) IRN (POST ORDER)

11 'OFDOO E O l
119
⑨ O

G H

ABDEGHCFI

DBGEHACIF
DGHEBIFCA

Foundations of Computer Science 1 — LIACS !70

I - n is divisible by 8
, for

odd X

t d y
inductive direct

X1 -1=0 mod 8
basis o - (X - 1) (Xml

T M X
'

A mod 8
em even

4th
'
-
A

adhd one is [I] -7 12--1=-1 not g

= +2+4×+4 - y
div with h

. [2,] 5=9 It -a g

[5] 51-25=1 .

= In t 4×+4

([7] 72--49=-1 !

= X
'
- n t 4 (xtn) V
w u w
✓ u even 5T 8k
in

elements
✓

=) (5t8kT= left Tx8kt2T
V u w

✓

Foundations of Computer Science 1 — LIACS !71

Is

224=768 mod 8
-

IN 2-
is

.

with - a we denote XE 21

St Xta=0 (mollis

-3 ?

IN ZA - 15 ?

