

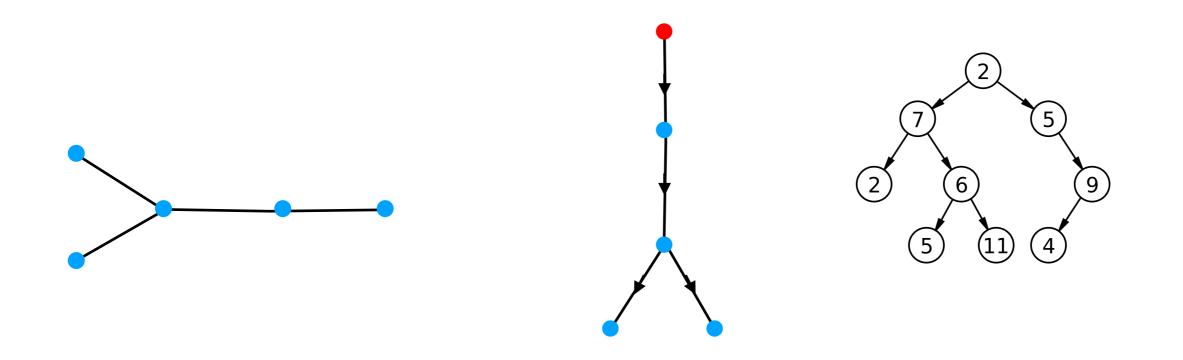
1

Lecture 14

Trees

Types of trees (graphs)

- undirected (Ch. 8.8)
- directed (Ch. 9.4)
 - rooted (arborescence)
 - ordered rooted
- binary (Ch. 10)



Def. An undirected tree is an undirected acyclic connected graph.

Def. An directed tree is a directed connected graph without undirected cycles.

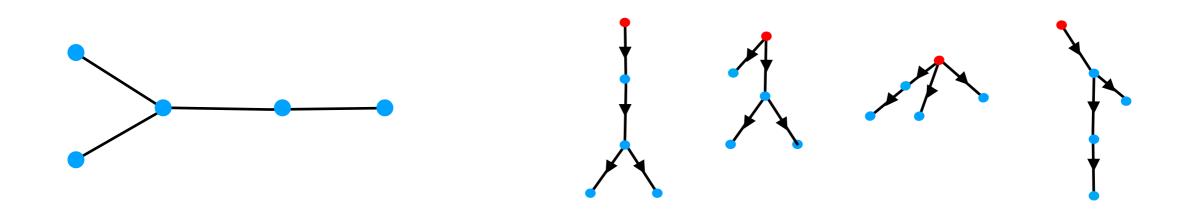
Def. A rooted tree is an undirected connected graph with a specal vertex called the root.

Def. DAG: directed acyclic graph: directed graph with no directed cycles.

Directed tree: DAG whose underlying undirected graph is a tree.

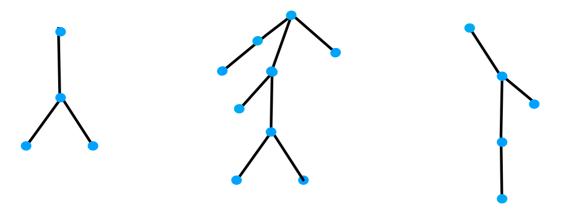
Def. A rooted tree is an undirected connected graph with a specal vertex called the root.

The root naturally induces a directionality in the graph, from the root to the leaves.



Def. A *forest* is an undirected graph without cycles (acyclic).

Every forest is a collection of trees.



Recall: graph is connected if there exists a simple path between any two vertices

Theorem. If a graph is acyclic and connected then there exists a unique simple path between any two vertices. Converse holds as well.

Proof: suppose there are two different simple paths from u to v, then the graph has a cycle. Contradiction.

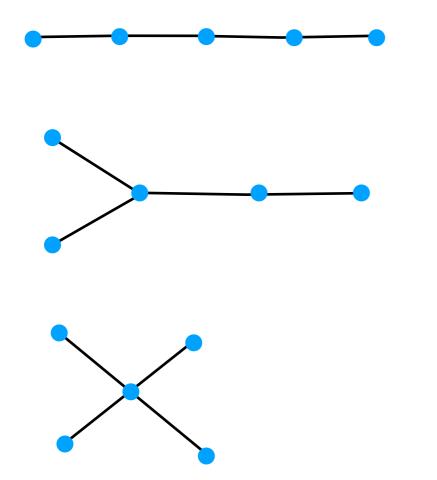
Recall: graph is connected if there exists a simple path between any two vertices

Theorem. If a graph is acyclic and connected then there exists a unique simple path between any two vertices. Converse holds as well.

Proof: suppose there are two different simple paths from u to v, then the graph has a cycle. Contradiction.

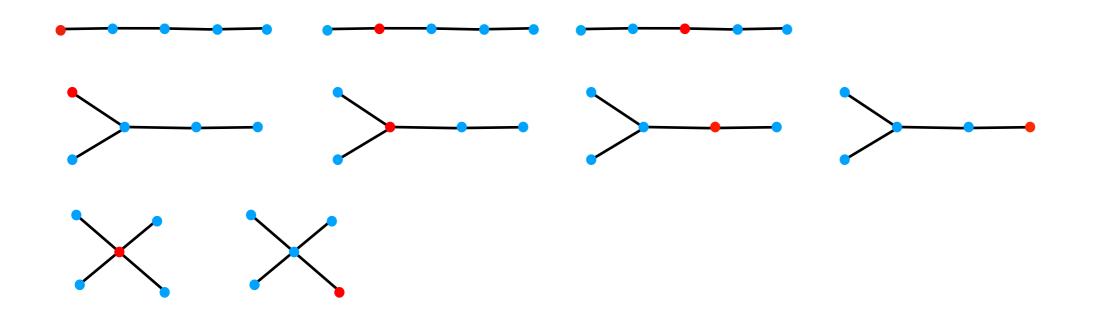
Trees with five vertices

• exactly 3 non-isomorphic connected acyclic graphs (trees):



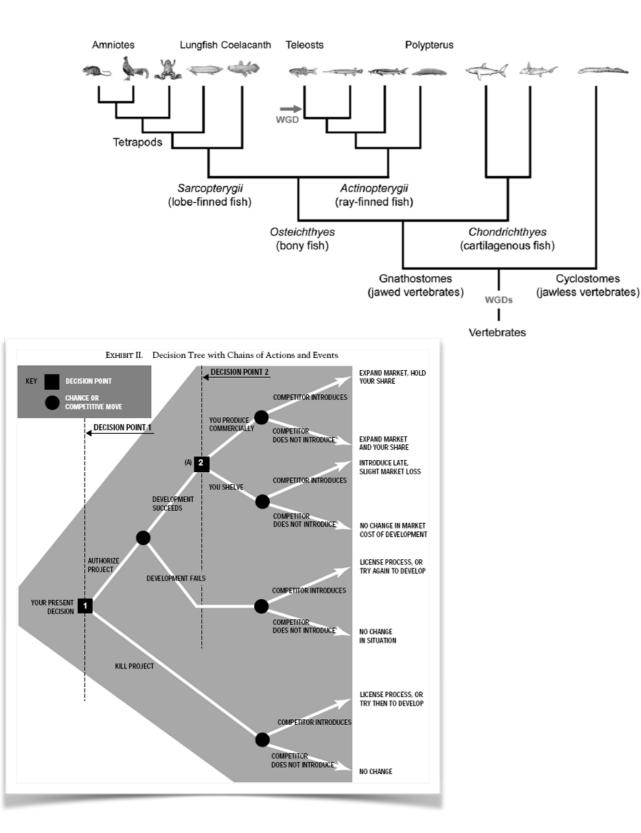
Trees with five vertices

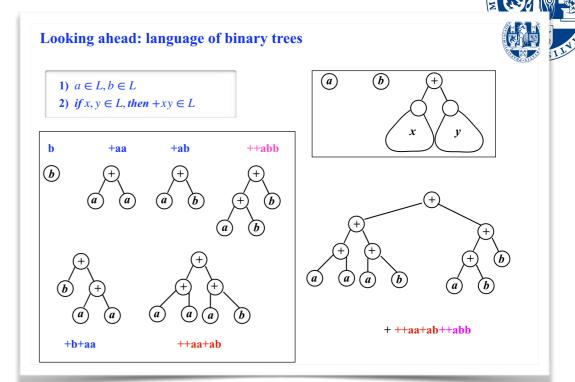
• more options for rooted trees



• each induces a different directed tree

Some examples

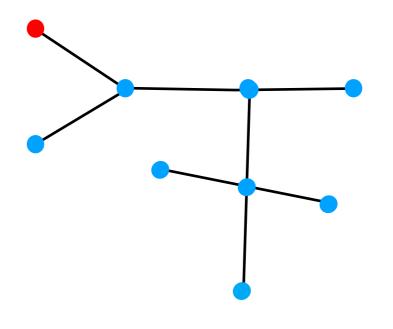




https://www.researchgate.net/figure/Phylogenetic-tree-of-vertebrates-A-simplified-phylogenetic-tree-focusing-on-the_fig1_316690258

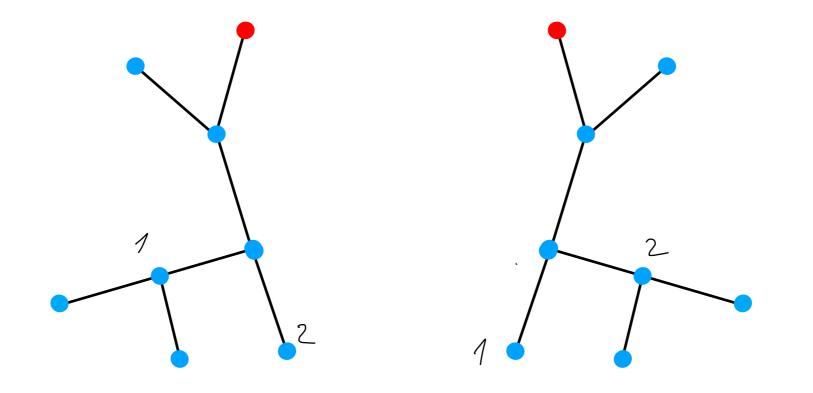
Trees: terminology and basic concepts contiued (Ch 10! — do read it)

- vertices (node):
 - leaf (degree 1)
 - internal vertex
- edge (branch)
- root (in rooted trees)
- child (in directed trees)
- sibling (in directed trees)
- parent (in directed trees)
- ancestor, descendant...



rooted tree

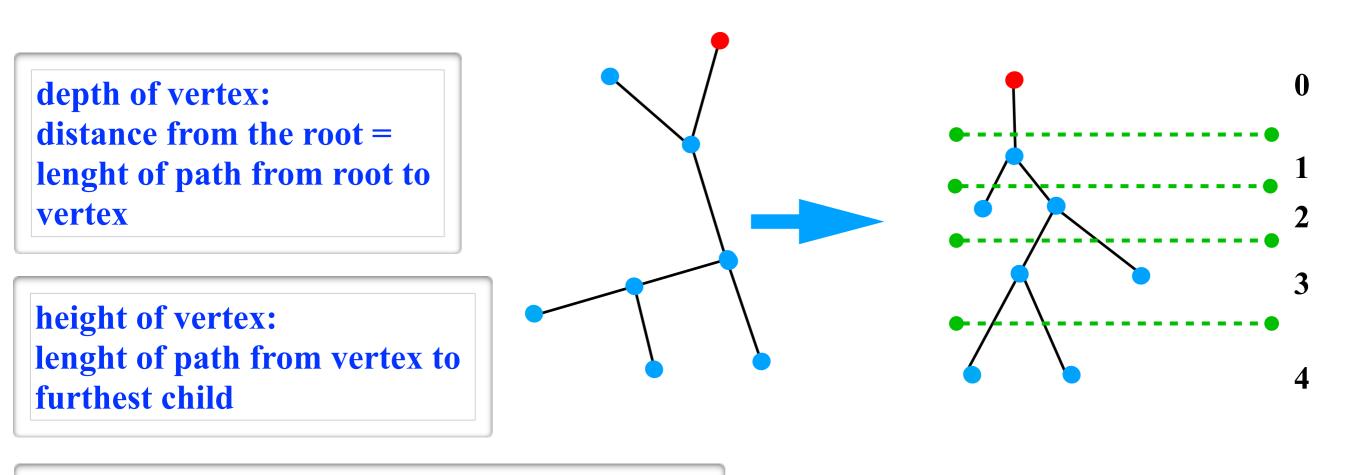
Terminology and basic concepts



ordered trees: children are ordered. "oldest" to "youngest", first, second, ... last... (think family tree)

example: isomorphic as unordered trees, not isomorphic as ordered.

Terminology and basic concepts (rooted tree): level and depth



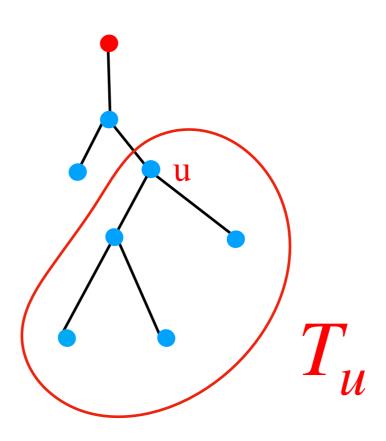
height of tree: height of root, equiv. depth of deepest vertex;

mostly depth is used.

Terminology and basic concepts: subtree

Subtree: induced subgraph which is a tree. More often in **rooted settings:**

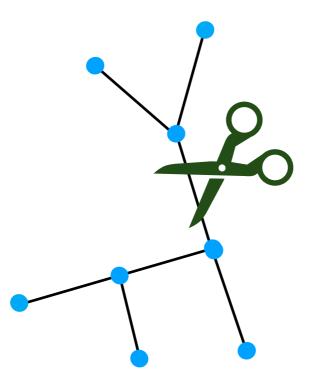
Let T = (V, E) a tree and u a vertex in T. Then T_u is the sub-tree of T consisting of the vertex **u**, all its successors and all (directed) branches between the vertices.



Basic properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be a tree with n>1 vertices, and let e be any edge. Then $G-\{e\}$ is not connected.



Proof: let $e = \{u,v\}$, and suppose G- $\{e\}$ is connected; Then there is a path, and hence a simple simple path from u to v. Adding e makes a cycle. So G has a cycle. contradiction.

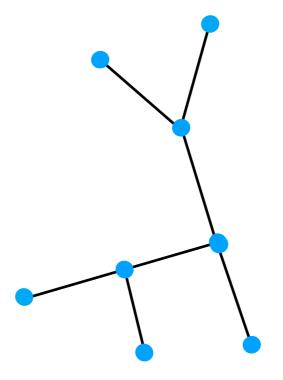
Basic properties of trees

WE STOPPED

HERE

recall: tree is an undirected acyclic graph

Lemma. Let T=(V,E) *be an [undirected] tree. Then* |E| = |V|-1



Comment: when dealing with tree graphs we customarily denote then "T" instead of "G"

recall: tree is an undirected acyclic graph

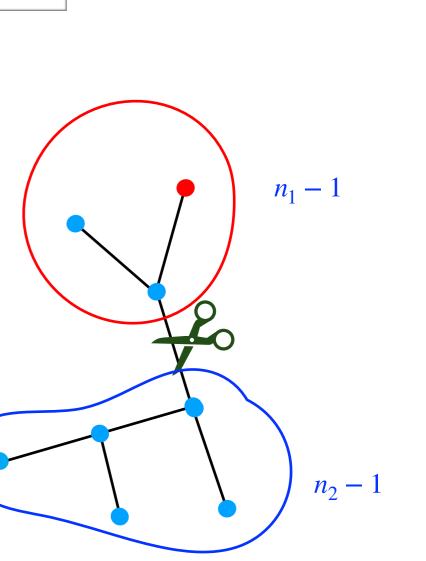
Lemma. Let G=(V,E) *be an [undirected] tree. Then* |E| = |V|-1

<u>Proof 1:</u> induction over the number of vertices.

(i) basis: n=1, works.

(ii) assume holds for all k<n.

take any tree of n vertices, and cut any edge. Now we have two trees with $n_1, n_2, n_1 + n_2 = n$ vertices, hence, by previous lemma, $n_1 - 1 + n_2 - 1 = n - 2$ edges in total. Since you cut one edge, the initial graph must have had n-1 edges



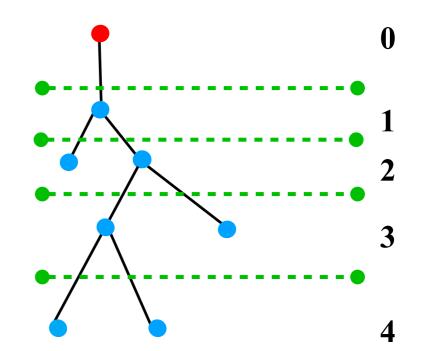
recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) *be an [undirected] tree. Then* |E| = |V|-1

Proof 2:

Choose a root and look at levels of rooted tree.

Each vertes has exactly one prececessor in previous level...except the root. So n-1 edges.



Lemma. Let G=(V,E) *be an [undirected] tree. Then* |E| = |V|-1

Proof 3 (very alternative):

Recall a simple recursive definition of undirected "TrEe":
(1) a vertex is a tree
(2) a graph obtained by adding a vertex and connecting it to one vertex of a tree is a tree.
(3) nothing else is a tree

Induction over vertices: Basis: 1 vertex tree true. Any n+1 vertex tree is obtained from an n vertex tree by adding an edge. Done.

NOTE: we have not yet proven that "TrEe" is the same as an undirected tree... is easy to see though.

Lemma. A connected graph with no cycles and at least one edge as at least two vertices of degree 1 (See exercise 8.38).

Proof 1: We have seen this. Consider longest path. What is the degree of first and last?

Lemma. A connected graph with no cycles and at least one edge as at least two vertices of degree 1 (See exercise 8.38).

Proof 2:

Assume that this is not true, so all but one vertex have degree 2 or higher. But then the number of degrees t_{tot} is at least 2(n-1) + 1 = 2n-1, so $t_{tot} \ge 2n-1$

By sum-degree formula we know $2|E| = t_{tot}$. So t_{tot} must be even so it is 2n, implying that |E| = n

But for trees we know that |E| = n-1. Contradiction.

Theorem (Characterization of trees 1).

For a graph G (over n vertices) the following are equivalent

(1) G is a tree

(2) G is maximally acyclic : adding an edge to G creates a cycle

(3) G is minimally connected: removing an edge makes it unconnected

Proofs

- connected + acyclic => tree per definition

Proofs

Theorem (Characterization of trees 2).

For a graph G (over n vertices) the following are equivalent

G is a tree
 G is acyclic and has n-1 edges
 G is connected and has n-1 edges

(1)=7(2) acyclic by definition. N-1 edges proven before,
(2)=)(3) acyclic + (N-1) edges => connected
Assure k components , all acyclic => trecs
=>
$$N_1 + N_2 - N_K = N$$
 & $N_1 - 1 + N_K - 1 = N - 1$
=> $N - K = N - 1$ => $K = 1$ - 1 tree => connected

Proofs

