
Foundations of Computer Science 1 — LIACS !1

Lecture 14

Foundations of Computer Science 1 — LIACS !2

Trees

Foundations of Computer Science 1 — LIACS !3

Types of trees (graphs)

• undirected (Ch. 8.8)
• directed (Ch. 9.4)

• rooted (arborescence)
• ordered rooted

• binary (Ch. 10)

Foundations of Computer Science 1 — LIACS !4

Def. An undirected tree is an undirected acyclic connected graph.

Def. A rooted tree is an undirected connected graph with a specal vertex called
the root.

Def. An directed tree is a directed connected graph without undirected cycles.

Def. DAG: directed acyclic graph: directed graph with no directed cycles.

Directed tree: DAG whose underlying undirected graph is a tree.

Foundations of Computer Science 1 — LIACS !5

Def. A rooted tree is an undirected connected graph with a specal vertex called
the root.

The root naturally induces a directionality in the graph, from the root to the leaves.

Foundations of Computer Science 1 — LIACS !6

Def. A forest is an undirected graph without cycles (acyclic).

Every forest is a collection of trees.

Foundations of Computer Science 1 — LIACS !7

Theorem. If a graph is acyclic and connected then there exists a unique simple path
between any two vertices. Converse holds as well.

Recall: graph is connected if there exists a simple path between any two vertices

Proof: suppose there are two different simple paths from u to v, then the graph
has a cycle. Contradiction.

Foundations of Computer Science 1 — LIACS !7

Theorem. If a graph is acyclic and connected then there exists a unique simple path
between any two vertices. Converse holds as well.

Recall: graph is connected if there exists a simple path between any two vertices

Proof: suppose there are two different simple paths from u to v, then the graph
has a cycle. Contradiction.

DETAILS : LET Pn & Pz BE TWO DISTINCT PATHS

U to V
,

Pa -- Uhm . . Vnv Pr -- Ury ' . . . Viv
N
'

v W→ C -

- Uh - - Vnvvnlvntn .
- riv is a circuit . DI

G has circuit ⇒ has cycle .
Find repeating vertex

, remove sequence
between

.

Foundations of Computer Science 1 — LIACS !8

Trees with five vertices

• exactly 3 non-isomorphic connected acyclic graphs (trees):

Foundations of Computer Science 1 — LIACS !9

Trees with five vertices

• more options for rooted trees

• each induces a different directed tree

Foundations of Computer Science 1 — LIACS !10

Some examples

https://www.researchgate.net/figure/Phylogenetic-tree-of-vertebrates-A-simplified-phylogenetic-tree-focusing-on-the_fig1_316690258

Foundations of Computer Science 1 — LIACS !11

Trees” terminology and basic concepts contiued (Ch 10! — do read it)

• vertices (node):
• leaf (degree 1)
• internal vertex

• edge (branch)  

• root (in rooted trees)  

• child (in directed trees)

• sibling 

• parent (in directed trees)  

• ancestor, descendant…
rooted tree

go

(in directed trees)

Foundations of Computer Science 1 — LIACS !12

Terminology and basic concepts

example: isomorphic as unordered trees, not isomorphic as ordered.

ordered trees: children are ordered. “oldest” to “youngest”,
first, second, … last… (think family tree)

1
2 3 1 2 3quoth Brook doe Ganga

2
y

Foundations of Computer Science 1 — LIACS !13

Terminology and basic concepts (rooted tree): level and depth

depth of vertex:
distance from the root =
lenght of path from root to
vertex

height of vertex:
lenght of path from vertex to
furthest child

height of tree:
height of root, equiv. depth of deepest vertex;

1

0

2

3

4

mostly depth is used.

Foundations of Computer Science 1 — LIACS !14

Terminology and basic concepts: subtree

Subtree: induced subgraph which is a tree. More often in rooted settings:

Let T = (V, E) a tree and u a vertex in T.
Then is the sub-tree of T consisting of the vertex u,
all its successors and all (directed) branches between the vertices.

Tu

Tu

u

Foundations of Computer Science 1 — LIACS !15

Basic properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be a tree with n>1 vertices, and let e be any edge.
Then G-{e} is not connected.

Proof: let e = {u,v}, and suppose G-{e} is connected; Then there is a path, and
hence a simple simple path from u to v. Adding e makes a cycle. So G has a cycle.
contradiction.

Foundations of Computer Science 1 — LIACS !16

Basic properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let T=(V,E) be an [undirected] tree. Then |E| = |V|+1

Comment: when dealing with tree graphs we customarily denote then “T” instead of “G”

WE STOPPED

HERE

Vedran Dunjko

Vedran Dunjko

Vedran Dunjko

Vedran Dunjko
-

Foundations of Computer Science 1 — LIACS !17

Properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 1: induction over the number of vertices.

(i) basis: n=1, works.

(ii) assume holds for all k<n.

take any tree of n vertices, and cut any edge.
Now we have two trees with vertices,
hence, by previous lemma, edges in total.
Since you cut one edge, the initial graph must have had n-1 edges

n1, n2, n1 + n2 = n
n1 − 1 + n2 − 1 = n − 2

basis

n1 − 1

n2 − 1

Vedran Dunjko

Vedran Dunjko
-

Foundations of Computer Science 1 — LIACS !18

Properties of trees

recall: tree is an undirected acyclic graph

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 2:

Choose a root and look at levels of rooted tree.

1

0

2

3

4

Each vertes has exactly one prececessor
in previous level…except the root.
So n-1 edges.

Vedran Dunjko

Vedran Dunjko
-

Foundations of Computer Science 1 — LIACS !19

Properties of trees

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 3 (very alternative):

Recall a simple recursive definition of undirected “TrEe”:
(1) a vertex is a tree
(2) a graph obtained by adding a vertex and connecting it to one vertex of a tree is a tree.
(3) nothing else is a tree

Induction over vertices: Basis: 1 vertex tree true.
Any n+1 vertex tree is obtained from an n vertex tree by adding an edge.
Done.

NOTE: we have not yet proven that “TrEe” is the same as an undirected tree…
is easy to see though.

Vedran Dunjko

Foundations of Computer Science 1 — LIACS !20

Properties of trees

Lemma. A connected graph with no cycles and at least one edge as at least two
vertices of degree 1 (See exercise 8.38).

Proof 1:
We have seen this. Consider longest path. What is the degree of first and last?

Foundations of Computer Science 1 — LIACS !21

Properties of trees

Lemma. A connected graph with no cycles and at least one edge as at least two
vertices of degree 1 (See exercise 8.38).

Proof 2:

Assume that this is not true, so all but one vertex have degree 2 or higher.
But then the number of degrees is at least 2(n-1) +1 = 2n-1, so 2n-1

By sum-degree formula we know 2|E| = . So must be even so it is 2n, implying
that |E| = n

But for trees we know that |E| = n-1. Contradiction.

ttot ttot≥

ttot ttot

Foundations of Computer Science 1 — LIACS !22

Properties of trees

Theorem (Characterization of trees 1).

For a graph G (over n vertices) the following are equivalent

(1) G is a tree
(2) G is maximally acyclic : adding an edge to G creates a cycle
(3) G is minimally connected: removing an edge makes it unconnected

Foundations of Computer Science 1 — LIACS !23

Properties of trees

Proofs

(1) ⇒ (2) : a) is acyclic r
b) adding edge males a cycle :

add new e -- { Yw } ; But 9 was connected

→ F simple path V.vn . - W. (and Murli snot in)
so Vila . .

W
, V

is a cycle .

(2)⇒ 11) (z) ⇒ - connected .
Otherwise connecting two unconnected

components doesn't make a cycle

- connected t acyclic ⇒ true per definition

Foundations of Computer Science 1 — LIACS !23

Properties of trees

Proofs

(1) ⇒ (3) tree ⇒ connected
,

& acyclic .

⇒ removing edge disconnects (or cycle !) [seen before't
⇒ minimally connected

(3)⇒ (t) minimally connected ⇒ connected

need acyclic .

Abune connected & cyclic ⇒ cut cycle
→ not disconnected

. ⇒ acyclic . tree
.

Foundations of Computer Science 1 — LIACS !24

Properties of trees

Theorem (Characterization of trees 2).

For a graph G (over n vertices) the following are equivalent

(1) G is a tree
(2) G is acyclic and has n-1 edges
(3) G is connected and has n-1 edges

(1) ⇒ (2) acyclic by definition . h - n edges torovenbetore
.

(2) ⇒ (3) acyclic th -Hedges
.

⇒ connected

Assure k components' yall acyclic ⇒ trees

⇒ h , the - .hu -
- h & n

,
-1 the - n t - he -1=7-1

⇒ n - K -

- h - n =) 1<=1 -

A tree ⇒ connected

Foundations of Computer Science 1 — LIACS !25

Proofs

Properties of trees

(3) ⇒ (t) Asumne connected
,
her edges & cycle

.

⇒ can remove edge .

⇒ connected graph over n vertices with h- L

edge$ (see 8.39)

connected ⇒ has spanning tree ⇒ n - n edges 4

