
Foundations of Computer Science 1 — LIACS !1

Lecture 14 



Foundations of Computer Science 1 — LIACS !2

Trees
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Types of trees (graphs) 

• undirected (Ch. 8.8) 
• directed (Ch. 9.4) 

• rooted (arborescence) 
• ordered rooted 

• binary (Ch. 10) 
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Def. An undirected tree is an undirected acyclic connected graph.

Def. A rooted tree is an undirected connected graph with a specal vertex called 
the root. 

Def. An directed tree is a directed connected graph without undirected cycles.

Def. DAG: directed acyclic graph: directed graph with no directed cycles. 

Directed tree: DAG whose underlying undirected graph is a tree.
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Def. A rooted tree is an undirected connected graph with a specal vertex called 
the root. 

The root naturally induces a directionality in the graph, from the root to the leaves. 
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Def. A forest is an undirected graph without cycles (acyclic).

Every forest is a collection of trees.



Foundations of Computer Science 1 — LIACS !7

Theorem. If a graph is acyclic and connected then there exists a unique simple path 
between any two vertices. Converse holds as well.

Recall: graph is connected if there exists a simple path between any two vertices

Proof: suppose there are two different simple paths from u to v, then the graph 
has a cycle. Contradiction. 
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Theorem. If a graph is acyclic and connected then there exists a unique simple path 
between any two vertices. Converse holds as well.

Recall: graph is connected if there exists a simple path between any two vertices

Proof: suppose there are two different simple paths from u to v, then the graph 
has a cycle. Contradiction. 

DETAILS : LET Pn & Pz BE TWO DISTINCT PATHS
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Trees with five vertices 

• exactly 3 non-isomorphic connected acyclic graphs (trees):
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Trees with five vertices 

• more options for rooted trees

• each induces a different directed tree
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Some examples 

https://www.researchgate.net/figure/Phylogenetic-tree-of-vertebrates-A-simplified-phylogenetic-tree-focusing-on-the_fig1_316690258
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Trees” terminology and basic concepts contiued (Ch 10! — do read it) 

• vertices (node): 
• leaf (degree 1) 
• internal vertex

• edge (branch)  

• root (in rooted trees)  

• child (in directed trees) 

• sibling 

• parent (in directed trees)  

• ancestor, descendant… 
rooted tree 

go

( in directed trees )
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Terminology and basic concepts 

example: isomorphic as unordered trees, not isomorphic as ordered. 

ordered trees: children are ordered. “oldest” to “youngest”, 
first, second, … last… (think family tree)

1
2 3 1 2 3quoth Brook doe Ganga
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Terminology and basic concepts (rooted tree): level and depth 

depth of vertex: 
distance from the root = 
lenght of path from root to 
vertex

height of vertex: 
lenght of path from vertex to 
furthest child

height of tree: 
height of root, equiv. depth of deepest vertex;

1

0

2

3

4

mostly depth is used.
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Terminology and basic concepts: subtree 

Subtree: induced subgraph which is a tree. More often in rooted settings: 

Let T = (V, E) a tree and u a vertex in T.  
Then  is the sub-tree of T consisting of  the vertex u,  
all its successors and all (directed) branches between the vertices. 

Tu

Tu

u
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Basic properties of trees 

recall: tree is an undirected acyclic graph 

Lemma. Let G=(V,E) be a tree with n>1 vertices, and let e be any edge. 
Then G-{e} is not connected.

Proof: let e = {u,v}, and suppose  G-{e}  is connected; Then there is a path, and  
hence a simple simple path from u to v. Adding e makes a cycle. So G has a cycle. 
contradiction.
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Basic properties of trees 

recall: tree is an undirected acyclic graph 

Lemma. Let T=(V,E) be an [undirected] tree. Then |E| = |V|+1

Comment: when dealing with tree graphs we customarily denote then “T” instead of “G”  

WE STOPPED

HERE

Vedran Dunjko


Vedran Dunjko


Vedran Dunjko


Vedran Dunjko
-
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Properties of trees 

recall: tree is an undirected acyclic graph 

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 1: induction over the number of vertices. 

(i) basis: n=1, works.

(ii) assume holds for all k<n.

take any tree of n vertices, and cut any edge.  
Now we have two trees with  vertices,  
hence, by previous lemma,  edges in total. 
Since you cut one edge, the initial graph must have had n-1 edges 

n1, n2, n1 + n2 = n
n1 − 1 + n2 − 1 = n − 2

basis

n1 − 1

n2 − 1

Vedran Dunjko


Vedran Dunjko
-
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Properties of trees 

recall: tree is an undirected acyclic graph 

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 2:

Choose a root and look at levels of rooted tree. 

1

0

2

3

4

Each vertes has exactly one prececessor 
in previous level…except the root. 
So n-1 edges.

Vedran Dunjko


Vedran Dunjko
-
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Properties of trees 

Lemma. Let G=(V,E) be an [undirected] tree. Then |E| = |V|+1

Proof 3 (very alternative):

Recall a simple recursive definition of undirected “TrEe”: 
(1) a vertex is a tree 
(2) a graph obtained by adding a vertex and connecting it to one vertex of a tree is a tree. 
(3) nothing else is a tree 

Induction over vertices: Basis: 1 vertex tree true. 
Any n+1 vertex tree is obtained from an n vertex tree by adding an edge. 
Done.

NOTE: we have not yet proven that “TrEe” is the same as an undirected tree…  
is easy to see though.

Vedran Dunjko
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Properties of trees 

Lemma. A connected graph with no cycles and at least one edge as at least two 
vertices of degree 1 (See exercise 8.38).

Proof 1:  
We have seen this. Consider longest path. What is the degree of first and last?
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Properties of trees 

Lemma. A connected graph with no cycles and at least one edge as at least two 
vertices of degree 1 (See exercise 8.38).

Proof 2:  

Assume that this is not true, so all but one vertex have degree 2 or higher. 
But then the number of degrees  is at least  2(n-1) +1 = 2n-1, so  2n-1 

By sum-degree formula we know 2|E| = . So  must be even so it is 2n, implying 
that |E| = n 

But for trees we know that |E| = n-1. Contradiction. 

ttot ttot≥

ttot ttot
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Properties of trees 

Theorem (Characterization of trees 1).  

For a graph G (over n vertices) the following are equivalent 

(1) G is a tree 
(2) G is maximally acyclic : adding an edge to G creates a cycle 
(3) G is minimally connected: removing an edge makes it unconnected
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Properties of trees 

Proofs 

(1) ⇒ (2) : a) is acyclic r
b) adding edge males a cycle :

add new e -- { Yw } ; But 9 was connected

→ F simple path V.vn . - W. ( and Murli snot in )
so Vila . .

W
, V

is a cycle .

(2)⇒ 11 ) ( z) ⇒ - connected .
Otherwise connecting two unconnected

components doesn't make a cycle

- connected t acyclic ⇒ true per definition
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Properties of trees 

Proofs 

(1) ⇒ (3) tree ⇒ connected
,

& acyclic .

⇒ removing edge disconnects (or cycle ! ) [seen before't
⇒ minimally connected

(3)⇒ ( t ) minimally connected ⇒ connected

need acyclic .

Abune connected & cyclic ⇒ cut cycle
→ not disconnected

. ⇒ acyclic . tree
.
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Properties of trees 

Theorem (Characterization of trees 2).  

For a graph G (over n vertices) the following are equivalent 

(1) G is a tree 
(2) G is acyclic and has n-1 edges 
(3) G is connected and has n-1 edges

(1) ⇒ (2) acyclic by definition . h - n edges torovenbetore
.

(2) ⇒ (3) acyclic th -Hedges
.

⇒ connected

Assure k components' yall acyclic ⇒ trees

⇒ h , the - .hu -
- h & n

,
-1 the - n t - he -1=7-1

⇒ n - K -

- h - n =) 1<=1 -

A tree ⇒ connected
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Proofs 

Properties of trees 

(3) ⇒ ( t ) Asumne connected
,
her edges & cycle

.

⇒ can remove edge .

⇒ connected graph over n vertices with h- L

edge$ ( see 8.39 )

connected ⇒ has spanning tree ⇒ n - n edges 4


