Lecture 12

Foundations of Computer Science 1 — LIACS

Recursion and induction
(on numbers... and on structures!)

Foundations of Computer Science 1 — LIACS

Recursion and induction

Not a chapter in Schaum.
"Full induction" discussed as proof technique.

Discussions on recursively defined functions in Chapter 3.6.

Recursion is a computation / programming technique, see also
Programming methods (Programmeermethoden) and Algorithmics

(Algoritmiek).

Here we use recursion / induction to define functions / sets of objects.
There 1s a small dictation available for reading, made by H.J. Hoogeboom (in
Dutch). See the website of Fundamentele Informatica 1 of Prof. de Graaf.

We do not deal with the section on co-graphs here.
We also do not address the semantics of arithmetic expressions.

Foundations of Computer Science 1 — LIACS

Recursion versus induction

Induction: a way of defining objects and sets of objects — defining bigger
object via their smaller parts.

 We then talk about “inductive definitions”.

* Recursion: Functions can also be defined using “smaller versions of
themselves™ (their function on “smaller instances™).

* Then we talk about “recursively defined functions”.

* Induction in proofs: a way of proving properties of objects which are
inductively defined.

e [f we use the recursive / inductive definition as a calculation or

programming technique to calculate, for example, a recursively defined
function, we speak of recursion. Usually has a simple iterative step.

Very abstract, will become clear through examples....

Foundations of Computer Science 1 — LIACS

Small caveat: Recursion versus induction

Inductive definition: start with the smallest objects and indicate
how smaller objects make up larger ones: from small to large

Recursive definition: indicate how a larger value / object 1s made
from smaller ones: from large to small.

The difference between induction and recursion 1s therefore often a
matter of perspective (and even context).

Foundations of Computer Science 1 — LIACS

Recursion and induction

Example; recursively (inductively) defined sequence:

aOZO
a,=a, +nn=1)

aOZO

al :ao‘l‘l:l

a=a+2=14+2=3 iterative....
G =a,+3=3+3=6 0.1.3.6.10...

Foundations of Computer Science 1 — LIACS

“Well-defined”

e The definition of a function is recursive 1t it (the definition) refers
to the function itself in the definition.

* This sounds problematic (circular arguments).

 For the definition to make sense ... for us to be able to compute it (for the
function to be “well-defined”) two conditions must be met:

 We need one or more basis cases, where the value of the function 1s
given explicitly (or via other well defined functions).

* The recursive step refers to smaller cases of the function (and other
independent objects), so the basic case 1s eventually reached

aO:O

a,=a, +n,nz=1)

basis

recursive (inductive) step

Foundations of Computer Science 1 — LIACS

Well-defined

Sorites paradox

what a heap makes...

Foundations of Computer Science 1 — LIACS

Inductive, recursive and iterative

Cl():()
a,=a, +nn=1)

Inductive view, “build up" Recursive view, reduce, reduce, reduce
ao — O a3 — Cl2 -+ 3
a12a0+1:1 a2:a1+2
a2:a1+2:1+2:3 a1=a0+1
a;=a,+3=3+3=6 ap =0

Iterative view...

0,1,3,6,10...

Foundations of Computer Science 1 — LIACS

Liber abaci (1202)

historic book on arithmetic by Leonardo of Pisa, son of Bonacci

aiie
17
s’
- |

N
Sepn
2 15
o
7 5
ns‘ﬂll‘.
18

0O

~
11
"
A \.'
CEE
el

y A §

A certain man put a pair of rabbits in a
place surrounded on all sides by a wall.

How many pairs of rabbits can be produced
from that pair in a year if it 1s supposed that
every month each pair begets a new pair
which from the second month on becomes
productive?

https://en.wikipedia.org/wiki/Liber_Abaci

Foundations of Computer Science 1 — LIACS

From rabbits to deep math..

number of pairs

1

1

https://en.wikipedia.org/wiki/Liber_Abaci

Foundations of Computer Science 1 — LIACS

From rabbits to deep math..

number of pairs

https://en.wikipedia.org/wiki/Liber_Abaci

Foundations of Computer Science 1 — LIACS

Fibonacci numbers

Fnan—l+Fn—2 0 (n> 1)

Working F;, inductively
Tq = T+f = AH1 = L

O"O

-F/lf/\ FL(_—_’\:,S{_’-FL: ’LJ./(—._}
FL‘: ‘F,\+TO‘—/]

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181...
RN
Ol v a4 Yk

Foundations of Computer Science 1 — LIACS

Fibonacci numbers

Fn=FI’l—1+FI’l—2 0 (n> 1)

Working out £, recursively

—

"'L‘_: F1+FL': FL"’F,\ e ?’l{--{:a -

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181...

Foundations of Computer Science 1 — LIACS

Fibonacci numbers

Fnan—1+Fn—2 0 (n> 1)

Recursive tree

« Fibonacci numbers are inductively defined:
we compute the next from two previous

* But they can be computed recursively.
For any desired n, express it in terms of
previous elements, and repeat for each. If
we are not careful we will compute many
values many times over...

Foundations of Computer Science 1 — LIACS

Recursively defined functions

The definition refers to the function itself. YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES

Again, must be well defined:
START WHITTLING DICE AND
GET OUT SOME PARCHMENT

Usable 1f the following two requirements must be met: FOR CHARACTER SHEETS.
\ HEY, NO RECURSING.

* one or more basic cases specified directly

* the self-referential part refers to a smaller input value

https://xkcd.com/244/

Foundations of Computer Science 1 — LIACS

Recursively defined functions

* J(0) =1
e f(n) =n X f(n-1), n>0

Foundations of Computer Science 1 — LIACS

Recursively defined functions

* J(0) =1
e f(n) =n X f(n-1), n>0

* f(6) = 6 X f(5) =6 X 5 X f{4)= ... =6X5X4X3IX2XIX[(0) = 6!

e Closed-form expressions, non-recursive definitions

* i) = !
S =]]*
k=1

Foundations of Computer Science 1 — LIACS

Recursively defined functions

* 2(0) =10
* g(n) =n+gn-1), n>0

Foundations of Computer Science 1 — LIACS

Recursively defined functions

* 2(0) =10
* g(n) =n+gn-1), n>0

¢ 9(6) = 6 t+g(5) =6 +5+ g(4)= .. =6+4+5+3+2+1+0 =21

. g(n) = Z k

* g(n) = n(n+])/2

Foundations of Computer Science 1 — LIACS

Recursively defined functions

* 2(0) =10
* g(n) =n+gn-1), n>0

¢ 9(6) = 6+ g(5) =6 +5+ g(4)= ... =6+4+5+3+2+1+0 = 21

OB
* g(n) = nk(:n1+])/2

Foundations of Computer Science 1 — LIACS

Going back to Fibonacci

.FO:O
’F1=1
eF, =F,+F,_,n>1 0,112 358 13 21,34 ..

Fibonnacci closed formula?

Foundations of Computer Science 1 — LIACS

Going back to Fibonacci

’FO=O
‘F1=1
eF, =F,+F,_,n>1 0,112 358 13 21,34 ..

Fibonnacci closed formula?

" " AR
1 1 +4/5 1 —4/5
Binet’s formula F,=— (2\/_) — (\/_ > Worh

\/g 2
Golden ratio ?\‘\
/
[x2 = X 1 - - — — o a o b o
N N~ —
I
- et b= ‘ a b

a+bistoaasalstob

Foundations of Computer Science 1 — LIACS

Fibonacci numbers

Bull Math Biol. 2008 Apr;70(3):643-53. Epub 2007 Nov 10.

Nucleotide frequencies in human genome and fibonacci numbers.
Yamagishi ME1, Shimabukuro Al.

Author information

Abstract

This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-
stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be
valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two
hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci
string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions
of an optimization problem, which is commonplace in many of nature's phenomena.

PMIN: 170042AR NNI- 10 10N7/e11R82R-NN7-Q2R1-A

Foundations of Computer Science 1 — LIACS

T_

(o& Sfirk\ -

380.00

Fibonacci
Retracement

\ ,ﬁr ﬂlrl

&
J

|

|
Iﬁ .|l

370.00

360.00

350.00

. 340.00

e

)
w |

I

320.00

310.00

300.00

290.00

280.00

270.00

260.00

250.00

Feb Mar Apr May Jun Jul Aug Sep Oct Nov

TradingView.

240.00

230.00

Recurrence relation — closed expression

't0=5, t1=6
et =t _,+6t,_,—12n+8, n>?2

Work out the first elements...

Foundations of Computer Science 1 — LIACS

Recurrence relation — closed expression

't0=5, t1=6
et =t _,+6t,_,—12n+8, n>?2

Work out the first elements...

5,

0,

6+30-24+8 = 20,
20+30-36+8 = 26, secret rule?

28+120-48+8 = 108,

[108+168-60+8 = 208,

208+648-72 +8 = 792

Foundations of Computer Science 1 — LIACS

Recurrence relation — closed expression

't0=5, t1=6
et =t _,+6t,_,—12n+8, n>?2

Work out the first elements...

5,

0,

6+30-24+8 = 20,
20+30-36+8 = 26, secret rule?

28+120-48+8 = 108,

[108+168-60+8 = 208,

208+648-72 +8 = 792

MAVYLE (TS
t, =3"+(=2)"+2n+3

Foundations of Computer Science 1 — LIACS

closed expression
a9

Recurrence relation

't0=5, t1=6
et =t _,+6t,_,—12n+8, n>?2

Work out the first elements...

Simple recurrence relations allow a (simple) method for solving...
For this example, the secret recipe is in Schaum, Section 6.8,
by solving 2nd order homogeneous linear recurrence relations.

The above recurrence relation is not homogeneous,
but the secret recipe can be extended to non-homogeneous second order recurrence relation.

THIS IS NOT GOING INTO THE EXAM \

t,=3"+(=2)"+2n+3 closed expression

IS T teue’ DERT.

Foundations of Computer Science 1 — LIACS

Recurrence relation

However;
Proving that a recurrence relation 1s satisfied by a closed expression
18 something we will now learn how to do...
through induction. ..

Foundations of Computer Science 1 — LIACS

Mathematical (full) induction
1s a proof technique

that can be used to prove that some property holds for (set of of) natural numbers

later..we will generalize all this to induction over structures!

Foundations of Computer Science 1 — LIACS

Mathematical induction

\\\\\\\l\“m“m""" W R LR]uum‘: i /WIWI

A A mel[
M= iy
] i I ’

Ul mm““

N - natural numbers

Irying to check if some property P
holds for all numbers.

(i) base case
ensure P(0) holds (is true)

(ii) inductive step (step case)

if P(k) holds, then so does P(k+1) (for all k)
w—

induction hypothesis or inductive hypothesis

[P(0) AVn (P(n) = P(n+ 1))] = Vn P(n)

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

Foundations of Computer Science 1 — LIACS

Mathematical induction

\\\l\“\lllllll““" W pen]“mm i ””””

S |
JAMMARRREEEEE W
\"‘\ﬁ (e “"Mm“ ' ’ ’ i’ ul

iHH’I'

Intuition:
“chain reactions’”

you want to make sure all the dominos fall...

so you check that all two neighbouring are close enough....

this ensures that ... (i) if the k™ falls, then so does the (k + 1)"

... If (ii) is true... and (i) the first one falls...
(1)+(1i) mean all will fall

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

Foundations of Computer Science 1 — LIACS

Example

Claim: 5" — 2" is divisible by 3, for all n.

(i) Base case

(ii) Inductive step

Foundations of Computer Science 1 — LIACS

Example

Claim: 5" — 2" is divisible by 3, for all n.

(i) Base case S-1=r Vv

(ii) Inductive step

Foundations of Computer Science 1 — LIACS

Another example

Claim: Z ! = n(n+1)/2
i=1

(i) Base case

(ii) Inductive step

Foundations of Computer Science 1 — LIACS

Another example

Claim: Z ! = n(n+1)/2
i=1

(i) Base case W < / -~ 1= 7 = A -

(ii) Inductive step

Foundations of Computer Science 1 — LIACS

Use induction to solve expressions:

e.g. sum of squares Z k?

kK =1

Sniff out solution

1=1=12-3/6
1+4=5=2-3-5/6
1+4+9=14=3-4-7/ 6
1+4+9+16 =30=4-5-9/6
1+4+9+16+25=55=5-6-11/6

Guess: 6.) k2 =n(n+1)2n+ 1)
k=1

Foundations of Computer Science 1 — LIACS

Prove:

; L4 L
2

6: QK =nlnt DQAn+)) <

—* -
(i) Base case 7 LT T =

é\<7 AR h(””‘”
(ii) Inductive step _ (. @(mkml
n+1 n M "=

6- Y K2=6- YK +6-(n+1?=nn+1)2n+1)+6(n+ 1) =
k k B

=m+DnCn+D+6m+D]=m+D2n>+n+6n+6] =
)~ ———

=+ D2n*+Tn+6)=m+ Dn+2)2n +3)

Foundations of Computer Science 1 — LIACS

Mathematical induction - subset

\\\l\“\lllllll““" W pen]“mm i /’WWF

L L
1Y HH’I'

lmlmmumu

Ul mm““

N - natural numbers

Irying to check if some property P
holds for subset of all numbers n > n,,

(i) base case
ensure P(ng) holds

(ii) inductive step (step case)
if P(k) holds, then so does P(k+1) (for all k>n)

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

Foundations of Computer Science 1 — LIACS

Mathematical induction - equivalent formulation (. Fyy)

N - natural numbers

Irying to check if some property P
holds for all numbers.

(i) base case
ensure P(0) holds (is true)

(ii) inductive step (step case)
prove that if P(k) holds for all value k<n| thenlit holds for .

(I&\ = (B)

Foundations of Computer Science 1 — LIACS

Recurrence relations: proving a debt

't0=5, t1=6
et =t _,+6t,_,—12n+8, n>?2

claim of closed form expression: 7, = 3"+ (—2)" +2n + 3
(i) Base case(s)
n=0) 1+1+3=5(n=1) 3-2+2+3=6
(ii) Inductive step

n

Foundations of Computer Science 1 — LIACS

Recurrence relations

¢ t0=5, t1=6
et =t _,+6t_,—12n+8, n>?2 t,=3"+(=2)"+2n+3

Foundations of Computer Science 1 — LIACS 37

Recurrence relations

¢ t0=5, t1=6
et =t _,+6t_,—12n+8, n>2 t,=3"+(=2)"+2n+3

{:v\‘_,\ = tu b6 tu g —12(1/“_4] Y

9 - .
TEED ey U 2] D) <R + 8

\,‘ M
o)* SRR VER R b oxlna) ST (we) F oy v 3ebeg

hrA

. et
B Y S A R N R T R St A = I S

._.'LLf/ <- = v

Foundations of Computer Science 1 — LIACS 37

Practice:

Prove: 1 + Z(kxk!) =n+1)!, forn>1.
k=1

Foundations of Computer Science 1 — LIACS

Practice:

Prove: 1 + Z(kxk!) =n+1)!, forn>1.
k=1

0. boavA

Foundations of Computer Science 1 — LIACS

Practice:

Prove: 1 + Z(kxk!) =n+1)!, forn>1.
k=1

Foundations of Computer Science 1 — LIACS

Practice:

Prove: 1 + Z(kxk!) =n+1)!, forn>1.
k=1

Foundations of Computer Science 1 — LIACS

