
Foundations of Computer Science 1 — LIACS !1

Lecture 12

Foundations of Computer Science 1 — LIACS !2

Recursion and induction
(on numbers… and on structures!)

Foundations of Computer Science 1 — LIACS !3

Not a chapter in Schaum.
"Full induction" discussed as proof technique.

Discussions on recursively defined functions in Chapter 3.6.

Recursion is a computation / programming technique, see also
Programming methods (Programmeermethoden) and Algorithmics
(Algoritmiek).

Here we use recursion / induction to define functions / sets of objects.
There is a small dictation available for reading, made by H.J. Hoogeboom (in
Dutch). See the website of Fundamentele Informatica 1 of Prof. de Graaf.

We do not deal with the section on co-graphs here.
We also do not address the semantics of arithmetic expressions.

Recursion and induction

Foundations of Computer Science 1 — LIACS !4

Recursion versus induction

• Induction: a way of defining objects and sets of objects — defining bigger
object via their smaller parts.

• We then talk about “inductive definitions”.

• Recursion: Functions can also be defined using “smaller versions of
themselves” (their function on “smaller instances”).

• Then we talk about “recursively defined functions”.

• Induction in proofs: a way of proving properties of objects which are
inductively defined.

• If we use the recursive / inductive definition as a calculation or
programming technique to calculate, for example, a recursively defined
function, we speak of recursion. Usually has a simple iterative step.

Very abstract, will become clear through examples….

Foundations of Computer Science 1 — LIACS !5

Small caveat: Recursion versus induction

Inductive definition: start with the smallest objects and indicate
how smaller objects make up larger ones: from small to large

Recursive definition: indicate how a larger value / object is made
from smaller ones: from large to small.

The difference between induction and recursion is therefore often a
matter of perspective (and even context).

Foundations of Computer Science 1 — LIACS !6

Recursion and induction

Example; recursively (inductively) defined sequence:

a0 = 0
an = an−1 + n (n ≥ 1)

a1 = a0 + 1 = 1
a0 = 0

a2 = a1 + 2 = 1 + 2 = 3
0,1,3,6,10…a3 = a2 + 3 = 3 + 3 = 6
iterative….

Foundations of Computer Science 1 — LIACS !7

“Well-defined”

• The definition of a function is recursive it it (the definition) refers  
to the function itself in the definition.

• This sounds problematic (circular arguments).

• For the definition to make sense … for us to be able to compute it (for the
function to be “well-defined”) two conditions must be met:

• We need one or more basis cases, where the value of the function is
given explicitly (or via other well defined functions).

• The recursive step refers to smaller cases of the function (and other
independent objects), so the basic case is eventually reached

an = an−1 + n , (n ≥ 1)

a0 = 0 basis

recursive (inductive) step

Foundations of Computer Science 1 — LIACS !8

Well-defined

Sorites paradox

what a heap makes…

Foundations of Computer Science 1 — LIACS !9

Inductive, recursive and iterative

a0 = 0
an = an−1 + n (n ≥ 1)

a1 = a0 + 1 = 1
a0 = 0

a2 = a1 + 2 = 1 + 2 = 3

0,1,3,6,10…

a3 = a2 + 3 = 3 + 3 = 6

Iterative view…

a1 = a0 + 1
a0 = 0

a2 = a1 + 2
a3 = a2 + 3

Inductive view, “build up" Recursive view, reduce, reduce, reduce

Foundations of Computer Science 1 — LIACS !10

Liber abaci (1202)

historic book on arithmetic by Leonardo of Pisa, son of Bonacci

https://en.wikipedia.org/wiki/Liber_Abaci

A certain man put a pair of rabbits in a
place surrounded on all sides by a wall.

How many pairs of rabbits can be produced
from that pair in a year if it is supposed that
every month each pair begets a new pair
which from the second month on becomes
productive?

Foundations of Computer Science 1 — LIACS !11

From rabbits to deep math..

https://en.wikipedia.org/wiki/Liber_Abaci

number of pairs

1

1

2

3

5

Foundations of Computer Science 1 — LIACS !11

From rabbits to deep math..

https://en.wikipedia.org/wiki/Liber_Abaci

number of pairs

1

1

2

3

5

I
Fn

-r

Foundations of Computer Science 1 — LIACS !12

Fibonacci numbers

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181…

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

Working inductively a4Eisai

Fo = 0 Iz = Fztfn = It 1 = 2

Fn -- 1 Fy = Fztfz = 21-1 = 3

Fz = Int Fo-- 1

"
o : : iii.

Foundations of Computer Science 1 — LIACS !13

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181…

Working out a4 recursively

Fibonacci numbers

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

EE

FL
,
= F
, tf = F, t Fn t F , t Fo = FatFo tf n tf , t Fo = 3

Foundations of Computer Science 1 — LIACS !14

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

Fibonacci numbers

• Fibonacci numbers are inductively defined:  
we compute the next from two previous

• But they can be computed recursively.  
For any desired n, express it in terms of  
previous elements, and repeat for each. If  
we are not careful we will compute many  
values many times over…

 Recursive tree

Fs
- -
E
, ⑤
#I

⑤ - in

E¥ !!. ¥ !
.

tie
.

Foundations of Computer Science 1 — LIACS !15

Recursively defined functions

The definition refers to the function itself.  

 
Usable if the following two requirements must be met:

• one or more basic cases specified directly
• the self-referential part refers to a smaller input value

https://xkcd.com/244/

Again, must be well defined:

Foundations of Computer Science 1 — LIACS !16

Recursively defined functions

• f(0) = 1
• f(n) = n ! f(n-1), n>0×

Foundations of Computer Science 1 — LIACS !17

Recursively defined functions

• f(0) = 1
• f(n) = n ! f(n-1), n>0×

• f(6) = 6 ! f(5) =6 ! 5 ! f(4)= … =6 ! 5! 4! 3! 2! 1! f(0) = 6! × × × × × × × × ×

• Closed-form expressions, non-recursive definitions

• f(n) = n!

• !f(n) =
n

∏
k= 1

k

Foundations of Computer Science 1 — LIACS !18

Recursively defined functions

• g(0) = 0
• g(n) = n + g(n-1), n>0

Foundations of Computer Science 1 — LIACS !19

Recursively defined functions

• g(0) = 0
• g(n) = n + g(n-1), n>0

• g(6) = 6 + g(5) =6 +5 + g(4)= … =6+4+5+3+2+1+0 = 21  

• !

• g(n) = n(n+1)/2

g (n) =
n

∑
k= 1

k

Foundations of Computer Science 1 — LIACS !20

Recursively defined functions

• g(0) = 0
• g(n) = n + g(n-1), n>0

!

• g(6) = 6 + g(5) =6 +5 + g(4)= … =6+4+5+3+2+1+0 = 21  

• !

• g(n) = n(n+1)/2

g (n) =
n

∑
k= 1

k

Foundations of Computer Science 1 — LIACS !21

Going back to Fibonacci

• !
• !
• !

F0 = 0
F1 = 1
Fn+ 1 = Fn + Fn−1, n ≥ 1 • 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …  

Fibonnacci closed formula?

Foundations of Computer Science 1 — LIACS !22

Going back to Fibonacci

• !
• !
• !

F0 = 0
F1 = 1
Fn+ 1 = Fn + Fn−1, n ≥ 1 • 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …  

Fibonnacci closed formula?

Fn = 1
5 (1 + 5

2)
n

− (1 − 5
2)

n

Binet’s formula

Golden ratio

• !x2 = x + 1

Recursive function
• !f(n + 1) = f(n) + f(n − 1)

Fi:
ips

Foundations of Computer Science 1 — LIACS !23

Fibonacci numbers

A b

a

b

T
log spiral . -

Foundations of Computer Science 1 — LIACS !24

Recurrence relation — closed expression

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5,
6,

6+30-24+8 = 20,
20+36-36+8 = 28,

28+120-48+8 = 108,
108+168-60+8 = 208,
208+648-72 +8 = 792

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expression

Bimba
Tf-pfTtTTgggpTTw

Foundations of Computer Science 1 — LIACS !24

Recurrence relation — closed expression

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5,
6,

6+30-24+8 = 20,
20+36-36+8 = 28,

28+120-48+8 = 108,
108+168-60+8 = 208,
208+648-72 +8 = 792

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expressionerotogenic

Foundations of Computer Science 1 — LIACS !24

Recurrence relation — closed expression

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5,
6,

6+30-24+8 = 20,
20+36-36+8 = 28,

28+120-48+8 = 108,
108+168-60+8 = 208,
208+648-72 +8 = 792

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expression
MAYBE ITS ;

? ?

Foundations of Computer Science 1 — LIACS !25

Recurrence relation

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

tn = 3n + (−2)n + 2n + 3 closed expression

Simple recurrence relations allow a (simple) method for solving…
For this example, the secret recipe is in Schaum, Section 6.8,
by solving 2nd order homogeneous linear recurrence relations.
The above recurrence relation is not homogeneous,
but the secret recipe can be extended to non-homogeneous second order recurrence relation.

THIS IS NOT GOING INTO THE EXAM -

IS IT TRUE ? DEBT
.

Foundations of Computer Science 1 — LIACS !26

Recurrence relation

However;
Proving that a recurrence relation is satisfied by a closed expression

is something we will now learn how to do…
through induction…

Foundations of Computer Science 1 — LIACS !27

e. I

Mathematical (full) induction
is a proof technique

that can be used to prove that some property holds for (set of of) natural numbers

later..we will generalize all this to induction over structures!

-

Foundations of Computer Science 1 — LIACS !28

Mathematical induction

 - natural numbersℕ

Trying to check if some property P
holds for all numbers.

(i) base case 
ensure P(0) holds (is true)  

(ii) inductive step (step case)  
if P(k) holds, then so does P(k+1) (for all k)

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

induction hypothesis or inductive hypothesis

[P(0) ∧ ∀n (P(n) ⇒ P(n + 1))] ⇒ ∀n P(n)

Foundations of Computer Science 1 — LIACS !29

Mathematical induction

Intuition:
“chain reactions”

you want to make sure all the dominos fall…

so you check that all two neighbouring are close enough….

this ensures that … (ii) if the falls, then so does the kth (k + 1)th

So… if (ii) is true… and (i) the first one falls…
(i)+(ii) mean all will fall

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

Foundations of Computer Science 1 — LIACS !30

Example

Claim: is divisible by 3, for all n. 5n − 2n

(i) Base case

(ii) Inductive step

Foundations of Computer Science 1 — LIACS !30

Example

Claim: is divisible by 3, for all n. 5n − 2n

(i) Base case

(ii) Inductive step

5- 2=3 ✓

NEED TO SHOW '
. IF 31 5h - 2" then 3/54+1 - zhtn
⑧

g-
nth

- 2h " = 5 x 5h - 24×2 =

= 3×5
"

t 2×54-2×24=3×5 't 2×154-2
")

- -

div bys by assumption

Foundations of Computer Science 1 — LIACS !31

Another example

Claim: n(n+1)/2
n

∑
i= 1

i =

(i) Base case

(ii) Inductive step

Foundations of Computer Science 1 — LIACS !31

Another example

Claim: n(n+1)/2
n

∑
i= 1

i =

(i) Base case

(ii) Inductive step

Rx (htt t
n -- n ⇒ 1 = -2 = I ✓

II. i -- "
⇒ ÷ i =

i =
.

ii. 4th =

"Iff ' tasty =

" "¥t2" =

'¥11
,

Foundations of Computer Science 1 — LIACS !32

Use induction to solve expressions:

e.g. sum of squares

Sniff out solution

1 = 1 = 1·2·3 / 6
1+4 = 5 = 2·3·5 / 6

1+4+9 = 14 = 3·4·7 / 6
1+4+9+16 = 30 = 4·5·9 / 6

1+4+9+16+25 = 55 = 5·6·11 / 6

n

∑
i= 1

k2

6 ⋅
n

∑
k= 1

k2 = n(n + 1)(2n + 1)Guess:

Foundations of Computer Science 1 — LIACS !33

6 ⋅
n

∑
k

k2 = n(n + 1)(2n + 1)

Prove:

(i) Base case

(ii) Inductive step

6 ⋅
n+ 1

∑
k

k2 = 6 ⋅
n

∑
k

k2 + 6 ⋅ (n + 1)2 = n(n + 1)(2n + 1) + 6(n + 1)2 =

= (n + 1)[n(2n + 1) + 6(n + 1)] = (n + 1)[2n 2 + n + 6n + 6] =

= (n + 1)(2n 2 + 7n + 6) = (n + 1)(n + 2)(2n + 3)

y t t
,

=

Foundations of Computer Science 1 — LIACS !34

Mathematical induction - subset

 - natural numbersℕ

Trying to check if some property P
holds for subset of all numbers .n ≥ n0

(i) base case 
ensure holds

(ii) inductive step (step case)  
if P(k) holds, then so does P(k+1) (for all k)

P(n0)

≥n0

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

Foundations of Computer Science 1 — LIACS !35

Mathematical induction - equivalent formulation

 - natural numbersℕ

Trying to check if some property P
holds for all numbers.

(i) base case 
ensure P(0) holds (is true)  

(ii) inductive step (step case)  
prove that if P(k) holds for all value k<n then it holds for n.

(Just EX

I-1

(A) ⇒ (B)

Foundations of Computer Science 1 — LIACS !36

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

tn = 3n + (−2)n + 2n + 3

Recurrence relations: proving a debt

claim of closed form expression:

(i) Base case(s)

(ii) Inductive step

(n = 0) 1 + 1 + 3 = 5; (n = 1) 3 − 2 + 2 + 3 = 6

! tn+ 1 = tn + tn−1 + 12(n + 1) + 8

-

Foundations of Computer Science 1 — LIACS !37

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2 tn = 3n + (−2)n + 2n + 3

Recurrence relations

Foundations of Computer Science 1 — LIACS !37

• !
• !

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2 tn = 3n + (−2)n + 2n + 3

Recurrence relations

tnt , = th t 6th
- n
- 12km) 1-8

= I' tf
.

??
"

tht 's t 613
"'t

.

!?!
" ' 't 24-111-3) - Rental

+8=(2×34+5)t f-2T - 31-21
"

t 2h t 6×24 - n) - 121hm) t 31-3×61-8
on

= znt
"

+ f-2) fry
"

t 2h t.IE - I? !2n÷l2t3t 3×6+8=3
" 't f-2)

""

t 2h +3
.

- 24 e-
-
i 297

Foundations of Computer Science 1 — LIACS !38

Practice:

Prove: 1 +
n

∑
k= 1

(k × k!) = (n + 1)!, for n ≥ 1.

Foundations of Computer Science 1 — LIACS !38

Practice:

Prove: 1 +
n

∑
k= 1

(k × k!) = (n + 1)!, for n ≥ 1.

On board

Foundations of Computer Science 1 — LIACS !38

Practice:

Prove: 1 +
n

∑
k= 1

(k × k!) = (n + 1)!, for n ≥ 1.

Foundations of Computer Science 1 — LIACS !38

Practice:

Prove: 1 +
n

∑
k= 1

(k × k!) = (n + 1)!, for n ≥ 1.

