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Lecture 12 
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Recursion and induction 
(on numbers… and on structures!)
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Not a chapter in Schaum.  
"Full induction" discussed as proof technique.  

Discussions on recursively defined functions in Chapter 3.6.  

Recursion is a computation / programming technique, see also  
Programming methods (Programmeermethoden) and Algorithmics 
(Algoritmiek).  

Here we use recursion / induction to define functions / sets of objects.  
There is a small dictation available for reading, made by H.J. Hoogeboom (in 
Dutch). See the website of Fundamentele Informatica 1 of Prof. de Graaf.  

We do not deal with the section on co-graphs here.  
We also do not address the semantics of arithmetic expressions. 

Recursion and induction 
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Recursion versus induction 

• Induction: a way of defining objects and sets of objects — defining bigger 
object via their smaller parts. 

• We then talk about “inductive definitions”. 

• Recursion: Functions can also be defined using “smaller versions of 
themselves” (their function on “smaller instances”). 

• Then we talk about “recursively defined functions”. 

• Induction in proofs: a way of proving properties of objects which are 
inductively defined.  

• If we use the recursive / inductive definition as a calculation or 
programming technique to calculate,  for example, a recursively defined 
function, we speak of recursion. Usually has a simple iterative step. 

Very abstract, will become clear through examples….
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Small caveat: Recursion versus induction 

Inductive definition: start with the smallest objects and indicate 
how smaller objects make up larger ones: from small to large  

Recursive definition: indicate how a larger value / object is made 
from smaller ones: from large to small. 

The difference between induction and recursion is therefore often a 
matter of perspective (and even context). 
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Recursion and induction 

Example; recursively (inductively) defined sequence: 

 
 

a0 = 0
an = an−1 + n (n ≥ 1)

a1 = a0 + 1 = 1
a0 = 0

a2 = a1 + 2 = 1 + 2 = 3
0,1,3,6,10…a3 = a2 + 3 = 3 + 3 = 6
iterative….
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“Well-defined” 

• The definition of a function is recursive it it (the definition) refers  
to the function itself in the definition.  

• This sounds problematic (circular arguments). 

• For the definition to make sense … for us to be able to compute it (for the 
function to be  “well-defined”) two conditions must be met: 

• We need one or more basis cases, where the value of the function is 
given explicitly (or via other well defined functions).  

• The recursive step refers to smaller cases of the function (and other 
independent objects), so the basic case is eventually reached 

an = an−1 + n , (n ≥ 1)

a0 = 0 basis

recursive (inductive) step
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Well-defined 

Sorites paradox

what a heap makes…
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Inductive, recursive and iterative 

 
 

a0 = 0
an = an−1 + n (n ≥ 1)

a1 = a0 + 1 = 1
a0 = 0

a2 = a1 + 2 = 1 + 2 = 3

0,1,3,6,10…

a3 = a2 + 3 = 3 + 3 = 6

Iterative view…

a1 = a0 + 1
a0 = 0

a2 = a1 + 2
a3 = a2 + 3

Inductive view, “build up" Recursive view, reduce, reduce, reduce
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Liber abaci (1202) 

historic book on arithmetic by Leonardo of Pisa, son of Bonacci

https://en.wikipedia.org/wiki/Liber_Abaci

A certain man put a pair of rabbits in a 
place surrounded on all sides by a wall. 

How many pairs of rabbits can be produced 
from that pair in a year if it is supposed that 
every month each pair begets a new pair 
which from the second month on becomes 
productive?
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From rabbits to deep math.. 

https://en.wikipedia.org/wiki/Liber_Abaci

number of pairs

1

1

2

3

5
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From rabbits to deep math.. 

https://en.wikipedia.org/wiki/Liber_Abaci

number of pairs

1

1

2

3

5
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Fibonacci numbers 

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181…

 
 

 

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

Working  inductively a4Eisai

Fo = 0 Iz = Fztfn = It 1 = 2

Fn -- 1 Fy = Fztfz = 21-1 = 3

Fz = Int Fo-- 1

"
o : : iii.
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0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181…

Working out  a4 recursively

Fibonacci numbers 

 
 

 

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

EE

FL
,
= F
, tf = F, t Fn t F , t Fo = FatFo tf n tf , t Fo = 3
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F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n > 1)

Fibonacci numbers 

• Fibonacci numbers are inductively defined:  
we compute the next from two previous 

• But they can be computed recursively.  
For any desired n, express it in terms of  
previous elements, and repeat for each. If  
we are not careful we will compute many  
values many times over…  

 Recursive tree
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Recursively defined functions 

The definition refers to the function itself.  

 
Usable if the following two requirements must be met: 

• one or more basic cases specified directly 
• the self-referential part refers to a smaller input value 

https://xkcd.com/244/

Again, must be well defined:
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Recursively defined functions

• f(0) = 1 
• f(n) = n !  f(n-1), n>0×
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Recursively defined functions

• f(0) = 1 
• f(n) = n !  f(n-1), n>0×

• f(6) =  6 !  f(5) =6 !  5 !  f(4)= … =6 ! 5! 4! 3! 2! 1! f(0) = 6! × × × × × × × × ×

• Closed-form expressions, non-recursive definitions 

• f(n) = n! 

• !f(n) =
n

∏
k= 1

k
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Recursively defined functions

• g(0) = 0 
• g(n) = n + g(n-1), n>0
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Recursively defined functions

• g(0) = 0 
• g(n) = n + g(n-1), n>0

• g(6) =  6 + g(5) =6 +5 + g(4)= … =6+4+5+3+2+1+0 = 21  

• !  

• g(n) = n(n+1)/2

g (n) =
n

∑
k= 1

k
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Recursively defined functions

• g(0) = 0 
• g(n) = n + g(n-1), n>0

!  

• g(6) =  6 + g(5) =6 +5 + g(4)= … =6+4+5+3+2+1+0 = 21  

• !  

• g(n) = n(n+1)/2

g (n) =
n

∑
k= 1

k
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Going back to Fibonacci

• !  
• !  
• !

F0 = 0
F1 = 1
Fn+ 1 = Fn + Fn−1, n ≥ 1 • 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …  

Fibonnacci closed formula?
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Going back to Fibonacci

• !  
• !  
• !

F0 = 0
F1 = 1
Fn+ 1 = Fn + Fn−1, n ≥ 1 • 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …  

Fibonnacci closed formula?

Fn = 1
5 ( 1 + 5

2 )
n

− ( 1 − 5
2 )

n

Binet’s formula

Golden ratio

• !x2 = x + 1

Recursive function
• !f(n + 1) = f(n) + f(n − 1)

Fi:
ips
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Fibonacci numbers 

A b

a

b

T
log spiral . -
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Recurrence relation — closed expression

• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5, 
6, 

6+30-24+8 = 20, 
20+36-36+8 = 28, 

28+120-48+8 = 108, 
108+168-60+8 = 208, 
208+648-72 +8 = 792 

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expression

Bimba
Tf-pfTtTTgggpTTw
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Recurrence relation — closed expression

• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5, 
6, 

6+30-24+8 = 20, 
20+36-36+8 = 28, 

28+120-48+8 = 108, 
108+168-60+8 = 208, 
208+648-72 +8 = 792 

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expressionerotogenic
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Recurrence relation — closed expression

• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

5, 
6, 

6+30-24+8 = 20, 
20+36-36+8 = 28, 

28+120-48+8 = 108, 
108+168-60+8 = 208, 
208+648-72 +8 = 792 

…

secret rule?

tn = 3n + (−2)n + 2n + 3 closed expression
MAYBE ITS ;

? ?
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Recurrence relation

• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

Work out the first elements…

tn = 3n + (−2)n + 2n + 3 closed expression

Simple recurrence relations allow a (simple) method for solving… 
For this example, the secret recipe is in Schaum, Section 6.8,  
by solving 2nd order homogeneous linear recurrence relations.   
The above recurrence relation is not homogeneous,  
but the secret recipe can be extended to non-homogeneous second order recurrence relation. 

THIS IS NOT GOING INTO THE EXAM -

IS IT TRUE ? DEBT
.
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Recurrence relation

However;  
Proving that a recurrence relation is satisfied by a closed expression 

*is* something we will now learn how to do… 
through induction…
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e. I

Mathematical (full) induction 
is a proof technique 

that can be used to prove that some property holds for (set of of) natural numbers

later..we will generalize all this to induction over structures!

-
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Mathematical induction 

 - natural numbersℕ

Trying to check if some property P 
holds for all numbers.

(i) base case 
ensure P(0) holds (is true)  

(ii) inductive step (step case)  
if P(k) holds, then so does P(k+1) (for all k) 

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/

induction hypothesis or inductive hypothesis

[P(0) ∧ ∀n (P(n) ⇒ P(n + 1))] ⇒ ∀n P(n)
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Mathematical induction 

Intuition: 
“chain reactions” 

you want to make sure all the dominos fall… 

so you check that all two neighbouring are close enough…. 

this ensures that … (ii) if the  falls, then so does the kth (k + 1)th

So… if  (ii) is true… and (i) the first one falls… 
(i)+(ii) mean all will fall

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/
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Example 

Claim:  is divisible by 3, for all n. 5n − 2n

(i) Base case 

(ii) Inductive step 
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Example 

Claim:  is divisible by 3, for all n. 5n − 2n

(i) Base case 

(ii) Inductive step 

5- 2=3 ✓

NEED TO SHOW '
. IF 31 5h - 2" then 3/54+1 - zhtn
⑧

g-
nth

- 2h " = 5 x 5h - 24×2 =

= 3×5
"

t 2×54-2×24=3×5 't 2×154-2
" )

- -

div bys by assumption
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Another example 

Claim: n(n+1)/2 
n

∑
i= 1

i =

(i) Base case 

(ii) Inductive step 
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Another example 

Claim: n(n+1)/2 
n

∑
i= 1

i =

(i) Base case 

(ii) Inductive step 

Rx ( htt t
n -- n ⇒ 1 = -2 = I ✓

II. i -- "
⇒ ÷ i =

i =
.

ii. 4th =

"Iff ' tasty =

" "¥t2" =

'¥11
,
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Use induction to solve expressions:  

e.g. sum of squares  

Sniff out solution 

1 = 1 = 1·2·3 / 6  
1+4 = 5 = 2·3·5 / 6  

1+4+9 = 14 = 3·4·7 / 6  
1+4+9+16 = 30 = 4·5·9 / 6  

1+4+9+16+25 = 55 = 5·6·11 / 6  

n

∑
i= 1

k2

6 ⋅
n

∑
k= 1

k2 = n(n + 1)(2n + 1)Guess:
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6 ⋅
n

∑
k

k2 = n(n + 1)(2n + 1)

Prove:

(i) Base case 

(ii) Inductive step 

6 ⋅
n+ 1

∑
k

k2 = 6 ⋅
n

∑
k

k2 + 6 ⋅ (n + 1)2 = n(n + 1)(2n + 1) + 6(n + 1)2 =

= (n + 1)[n(2n + 1) + 6(n + 1)] = (n + 1)[2n 2 + n + 6n + 6] =

= (n + 1)(2n 2 + 7n + 6) = (n + 1)(n + 2)(2n + 3)

y t t
,

=
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Mathematical induction - subset 

 - natural numbersℕ

Trying to check if some property P 
holds for subset of all numbers .n ≥ n0

(i) base case 
ensure  holds 

(ii) inductive step (step case)  
if P(k) holds, then so does P(k+1) (for all k ) 

P(n0)

≥n0

Figure credit: https://pixabay.com/illustrations/domino-game-falling-communication-163523/
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Mathematical induction - equivalent formulation 

 - natural numbersℕ

Trying to check if some property P 
holds for all numbers.

(i) base case 
ensure P(0) holds (is true)  

(ii) inductive step (step case)  
prove that if P(k) holds for all value k<n then it holds for n.

( Just EX

# I-1

(A) ⇒ ( B )
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• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2

tn = 3n + (−2)n + 2n + 3

Recurrence relations: proving a debt 

claim of closed form expression: 

(i) Base case(s) 

(ii) Inductive step 

(n = 0) 1 + 1 + 3 = 5; (n = 1) 3 − 2 + 2 + 3 = 6

!  tn+ 1 = tn + tn−1 + 12(n + 1) + 8

-



Foundations of Computer Science 1 — LIACS !37

• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2 tn = 3n + (−2)n + 2n + 3

Recurrence relations 
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• !  
• !  

t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n + 8, n ≥ 2 tn = 3n + (−2)n + 2n + 3

Recurrence relations 

tnt , = th t 6th
- n
- 12km ) 1-8

= I' tf
.

??
"

tht 's t 613
"'t

.

!?!
" ' 't 24-111-3) - Rental

+8=(2×34+5)t f-2T - 31-21
"

t 2h t 6×24 - n ) - 121hm ) t 31-3×61-8
on

= znt
"

+ f-2) fry
"

t 2h t.IE - I? !2n÷l2t3t 3×6+8=3
" 't f-2)

""

t 2h +3
.

- 24 e-
-
i 297
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Practice: 

Prove:  1 +
n

∑
k= 1

(k × k!) = (n + 1)!,  for n ≥ 1.
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Practice: 

Prove:  1 +
n

∑
k= 1

(k × k!) = (n + 1)!,  for n ≥ 1.

On board
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Practice: 

Prove:  1 +
n

∑
k= 1

(k × k!) = (n + 1)!,  for n ≥ 1.
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Practice: 

Prove:  1 +
n

∑
k= 1

(k × k!) = (n + 1)!,  for n ≥ 1.


