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Lecture 12 - part 2 
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Recap last lecture: 

1. Finished general graphs (digraphs, topological sort/ordering) 
2. Basic combinatorics:  

sequences ( ! ), permutations ( ! ), combinations ( ! ) 

3. Recursion/induction

kn n! (n
k) = n!

(n− k)!k!
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Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word 

mississippi
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Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word 

mississippi
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Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word 

mississippi

Combinatorics will show up on the final exam. 
Homework: Read Schaum 5.1 - 5.5! 
Solve the solved problems pg 96!

ooo#FmmBBmmBBEBB
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Recap recursions

 
 

 

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n> 1)

findBinary(decimal){
if (decimal == 0)
      binary = 0
   else
      binary = decimal mod 2 + 10 * (findBinary(decimal div 2)}



Foundations of Computer Science 1 — LIACS !6

Recap recursions

 
 

 

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n> 1)

findBinary(decimal){
if (decimal == 0)
      binary = 0
   else
      binary = decimal mod 2 + 10 * (findBinary(decimal div 2)}

Inductive/recursive  
step to smaller

Fixed behaviour for  
initial cases

Fixed behaviour for  
initial cases

Inductive/recursive  
step to smaller
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Closed expressions…

n(n+ 1)(2n+ 1)/6
f(1) = 1
f(n) = n2 + f(n− 1)

!  
!  
t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n+ 8, n≥ 2 tn = 3n+ (−2)n+ 2n+ 3

How? Need to prove something is true *for all numbers n*
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Proving that something holds *for all n*: induction

(i) base case 
ensure P(0) holds (is true) [can start at some l>0]  

(ii) inductive step (step case)  
prove that [if P(k) holds, then so does P(k+1)] (for all k) 

Alternatively: 
(ii) inductive step (step case)’  

prove that [prove that if P(k’) holds for all value k’<k  
then it holds for k] (for all k) 
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Proving that something holds *for all n*: induction

Prove:  1 +
n

∑
k= 1

(k × k!) = (n+ 1)!,  for n≥ 1.

Base: k=1; 1+1x1! =   2    = 2!

Step: show that if the claim is true for k (assumption),  
then it is also true for k+1

Usual trick: express the (k+1) expression in terms of the k-expression,  
use assumption 

age Bse
Ha
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Proving that something holds *for all n*: induction

Assumption: 1 +
k

∑
l= 1

(l × l!) = (k + 1)!

1 +
k+ 1

∑
l= 1

(l × l!) = 1 +
k

∑
l= 1

(l × l!) + [(k + 1) × (k + 1)!] = (k + 1)!
by assu mption

+ [(k + 1) × (k + 1)!]

Want to show: 1 +
k+ 1

∑
l= 1

(l × l!) = (k + 2)!

= (k + 1)! + [(k + 1) × (k + 1)!] = (k + 2) × (k + 1)! = (k + 2)! ∎

Step: show that if the claim is true for k (assumption),  
then it is also true for k+1

Usual trick: express the (k+1) expression in terms of the k-expression,  
use assumption 
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Moving on: uses of induction beyond sequences and functions

Recursively defined functions and proofs
over integers via induction will appear in exam.

Homework: read Schaum 3.6.
Schaum 1.8; 11.3.

images
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Moving on: uses of induction beyond sequences and functions
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Moving on: uses of induction beyond sequences and functions

Can be used to provide definitions of:  
• sets,  
• relations, 
• sequences, 
• functions, 
• trees, 
• orders, 
• syntax…

Structural induction:  
• proving various properties of 

structures (e.g. trees, as we will see)
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Induction is behind the meaning of dots…

E = {1,3,5,7,…}
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The meaning of dots…

E = {1,3,5,7,…}

Definition. The set of odd natural numbers is defined as follows: 
 
basis (basis clause) 
  1)   

inductive step (inductive clause) 
  2)  if then  

exclusion (extremal clause) 
  3) E has no other elements beside those specified by 1 and 2.

1 ∈ E

x ∈ E, x + 2 ∈ E

Basis and induction steps may be complicated and contain many lines
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• The odd natural numbers are often specified using dots: {1,3,5,7, ...} with dots (“etc.”). Same for even. 

• This is ambiguous. How about “odd numbers divisible only with 1 and themselves” (primes + 1) 

• Inductive defition is fully unambiguous. 

• Languages (a term in CS) are often defined inductively (examples next). 

• These languages also define the preorder traversal for binary trees (explained later) 

• This symmetric arrangement is a way to enumerate nodes in a binary tree.  
More about (binary) trees in the next lectures. 

Examples
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Induction over structures 

(how to prove something holds 
*for all* objects in some (infinite)  

inductively defined set)
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Language: an important concept in CS… 

-Set of “letters” or “symbols” denoted ,  

e.g.  

Σ
Σ = {0,1}; Σ = {a, b, c, . . . , z};
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Language: an important concept in CS… 

-Set of “letters” or “symbols” denoted , e.g.  Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :  
 
-00101010, 000, 111;  abba, benelux, aaaaa; 

Σ Σ
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Language: an important concept in CS… 

-Set of “letters” or “symbols” denoted , e.g.  Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :  
 
-00101010, 000, 111;  abba, benelux, aaaaa; 

set of all strings denoted using the “Kleene star”: 

)

Σ Σ

Σ* =
∞

⋃
k= 0

Σk; Σk = {x1x2x3…xn|xj ∈ Σ}

-empty string:  (sometimes )ϵ λ



Foundations of Computer Science 1 — LIACS !20

Language: an important concept in CS… 

-Set of “letters” or “symbols” denoted , e.g.  Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :  
 
-00101010, 000, 111;  abba, benelux, aaaaa; 

Σ Σ

A language is a subset of strings over some alphabet 

(a collection of words)

Will do this more seriously shortly
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Language: subset of strings

Definition. The language L over  is defined as follows: 
 
basis (basis clause) 
  1)   

inductive step (inductive clause) 
  2)  if then  

exclusion (extremal clause) 
  3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b}

b ∈ L

x ∈ L, abx ∈ L
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Language: subset of strings

Definition. The language L over  is defined as follows: 
 
basis (basis clause) 
  1)   

inductive step (inductive clause) 
  2)  if then  

exclusion (extremal clause) 
  3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b}

b ∈ L

x ∈ L, abx ∈ L

b, abb, ababb, abababb…ababababb

In other words, words of the form (ab)nb, n≥ 0
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Looking ahead: language of binary trees over {a,b}

Definition. The language L over  is defined as follows: 
 
basis (basis clause) 
  1)   

inductive step (inductive clause) 
  2)  if then  

exclusion (extremal clause) 
  3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b, + }

a ∈ L, b ∈ L

x, y ∈ L, + xy ∈ L

b, +aa, +ab, ++abb, +b+aa, ++aa+ab, +++aa+ab++abb…

These are encoded binary trees
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Looking ahead: language of binary trees

b, +aa, +ab, ++abb, +b+aa, ++aa+ab, +++aa+ab++abb…

Why are these trees?!!?
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  1)   
  2)  if then 

a ∈ L, b ∈ L
x, y ∈ L, + xy ∈ L

Looking ahead: language of binary trees

a b +

x y

Looking ahead
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  1)   
  2)  if then 

a ∈ L, b ∈ L
x, y ∈ L, + xy ∈ L

Looking ahead: language of binary trees

a b +

x y

+ +b +

+

+

+

+

+ +

b

b

b

b

b

a a a

a

aaaa a

b +aa +ab ++abb

+b+aa ++aa+ab

+

+

+ +

baaa

+

+

b

b

a

++aa+ab++abb+

Looking ahead
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Trees

Basic idea (extended binary trees): 

1) the empty set is an extended binary tree 
2) a vertex r (the root of T ) and the left (a) and right (b)  

subtree (also trees) whose roots are the children of r .

More on this in subsequent lectures

Looking ahead
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Inductive defs. continued: relations

  1)   
  2)  if  then  
  3)  the relation  has no other elements aside 
from what is specified by 1)&2)

0 < 1
x < y x < y + 1 and x + 1 < y + 1

<

0<1

0<2 1<2

2<30<3 1<3

0<4 1<4 2<4 3<4

0<5 1<5 2<5 3<5 4<5

equivalently: 
1)  
2)  
3) no other elements

(0,1) ∈ <
I f (x, y) ∈ < th en (x, y + 1), (x + 1,y + 1) ∈ <

Seen so far: inductively defined sets  

• numbers 
• strings  
• relations (pairs)
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We can prove properties of inductively defined objects… 

Checking if some property P holds all elements of some  
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x)  
holds for all x  from which y can be constructed

we again move to the “smaller”  cases
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We can prove properties of inductively defined objects… 

Checking if some property P holds all elements of some  
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x)  
holds for all x  from which y can be constructed

Inductively defined sets look like: 
 
basis:  1)  explicit elements are  

inductive step (inductive clause) 
  2)  if then some consturctions of x...z  

exclusion (extremal clause) 
  3) V has no other elements beside those specified by 1 and 2.

∈ V

x, . . . , z ∈ V, ∈ V
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Intuitive example

Unstructured tree graph: 
1) A single vertex is a tree 
2) If T is a tree, then the graph obtained by  

adding a vertex and connecting it to one of the vertices of T is a tree 
3) Only graphs obtainable by 1) and 2) are trees

Lemma: a tree over n vertices has n-1 edges. 

induction over vertex numbers of trees!  
-basis: n=1 true; 
-step: consider any n-vertex graph G; it was constructed from an n-1 vertex graph G’ by inductive definition, 
by adding one edge to a new vertex. 
By assumption G has n-2 edges. But since G’ was obtained by adding one new edge, G’ has n+1 edges. 
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Digression

Give an inductive definition of the set L of strings that consist of  
a number of a's followed by the same number of b’s. 
L over  and {a, b} L = {anbn|n≥ 0}

Solving . . .
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Digression

Give an inductive definition of the set L of strings that consist of  
a number of a's followed by the same number of b’s. 
L over  and {a, b} L = {anbn|n≥ 0}

Solving . . .

1) EEL

2) XEL ⇒ axb EL
3) Nothing else is in L

.
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Recursive/inductive definitions in (programming) languages: 
synthax

“integers” (whole numbers)

<integer>::=<sign><natural> | <natural> 
<natural>::= <digit>|<digit><natural> 
<digit>::= 0|1|2|3|4|5|6|7|8|9 
<sign>::= + | -

<integer>⇒<sign><natural>⇒ - <natural>⇒ - <digit><natural> 
⇒ - 4<natural> ⇒ - 4<digit> ⇒ - 42

So - 42 is an interger…
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synthax: statements

<assignment>::=<variable> = <expression> 

<statement>::= <assignment>|<compound-statement>| 
<if-statement> | <while-statement> 

<if-statement>::=if <test> then <statement> | 
if <test> then <statement> else <statement> 

<while-statement>::=while <test> do <statement> 

BNF: Backus-Naur form
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Arithmetic expressions

D = {0,1,2,3,4,5,6,7,8,9}   
1)  every element of  is in R 
2)  if  
     if  
 [3)  R has no other elements]

D* − {λ}
x ∈ R, th en (−x) ∈ R
x, y ∈ L, th en (x + y) ∈ R, (x − y) ∈ R, (x * y) ∈ R, (x /y) inR

This defines a language. “+”, “-”, “*”, “/” are symbols, with no intrisic meaning.

27
0014 
-(0014)
((1+13)*8)(8/(2-2))
(27/(15+12-27))
(3-(-(-(5/7))))

Which are valid “arithmetic expressions”?

Try to not interpret…

R

p
also denoted E -

- empty word

BB

homemade
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In the definition of arithmetic expressions we make a distinction between  

• the synthax  (the form; the valid strings; the arithmetic expression)  
and  
• semantics (the meaning; the interpretation; the value or an integer). 

Based on the inductive syntax definition, we can define the semantics precisely, 
so that each syntactically correct string acquires a unique meaning. 

See also §2.2
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This statement 
is unprovable

SKIPPED
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SKIPPED
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Mu Puzzle

  1)   
  2)  if  
       if  
       if  
       if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

MI

MIU MII

MIIIIMIUIU MIIU

M(IU)4 M(IIU)4 MUI MI8

SKIPPED



Foundations of Computer Science 1 — LIACS !41

Mu Puzzle

  1)   
  2)  if  
       if  
       if  
       if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Example: 

MI→MII→MIIII→MIIIIIIII→MIIIIIIIIIIIIIIII→ 
MIIIIIIIUIIIIII→ 	MIIIIIIIUUIII→MIIIIIIIUUU→ 
MIIIIIIIUUUU→MIIIIIIIUU→MIIIIIII→MIIUII

SKIPPED
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Mu Puzzle

  1)   
  2)  if  
       if  
       if  
       if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

MU ∈ L
?

Example: 

MI→MII→MIIII→MIIIIIIII→MIIIIIIIIIIIIIIII→ 
MIIIIIIIUIIIIII→ 	MIIIIIIIUUIII→MIIIIIIIUUU→ 
MIIIIIIIUUUU→MIIIIIIIUU→MIIIIIII→MIIUII

SKIPPED
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Recursion — digression
“self-similar” objects…

Fractals are self-similar geometric objects.
One of the best known fractals is the Mandelbrot fractal. 
 
 

The point c will be colored, if this sequence is 
not bounded from above. Color depends on 
when it grows above some value.

Unlike many other fractals, this figure does not repeat  
itself when zoomed. But it is self similar

zn+ 1 = z2
n + c; z0 = 0

SKIPPED
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1.000 100.000

1 10 SKIPPED
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100.000.000 1.000.000.000

100.000.000.00010.000.000.000

SKIPPED
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1 1000 100.000

1.000.000.000 100.000.000.000

SKIPPED
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10.000.000.000.000.000 = 1016

1022

1040
1044 1076

SKIPPED
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10198

SKIPPED
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Mu Puzzle
  1)   
  2)  (a) if  
       (b) if  
       (c) if  
       (d) if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. Every word in L begins with “M”.

(i) base step  

       MI begins with M  

(ii) induction over the construction 

       (a) if xI begins with M, then so does xIU 
       (b) Mxx begins with M  
       (c) if xIIIy begins with M then so does xUy  
       (d) if xUUy begins with M then so does  xy 

SKIPPED



Foundations of Computer Science 1 — LIACS !50

Principle of induction (structural) 

Checking if some property P holds all elements of some  
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x) holds for all x  
from which y can be constructed 

we again move to the “smaller”  cases
Induction over size again . - so integers
"under the hood

"

. ..
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Mu Puzzle

  1)   
  2)  (a) if  
       (b) if  
       (c) if  
       (d) if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. The number of letters I in the  
word w of L is never divisible by 3. 

Call this property P of the word w

(i) base step  

       MI has one “I” 

(ii) induction over the construction 

       (a) if xI satisfies P, then so does xIU 
       (b) Mxx has a double number of Is as M, so P holds 
       (c) if xIIIy satisfies P then so does xUy  
       (d) if xUUy satisfies P then so does  xy 

SKIPPED
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Mu Puzzle

  1)   
  2)  (a) if  
       (b) if  
       (c) if  
       (d) if  
  3)   has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. The number of letters I in the  
word w of L is never divisible by 3. 

Call this property P of the word w

Comment… properties like P which are maintained 
by the construcitons are called invariants…

0 IS divisible by 3. 
P(MU) is false 

SKIPPED
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The Blurpsen set is the smallest set with the following properties: 
(1)  Δ is a Blurps. 
(2)  If x is a Blurps, then xΔΔ and ◊xx◊ are Blurps. 
(3)  If x and y are Blurps, then xΔy is also a Blurps. 

Show that all (words in the laguage) Blurps have an odd number of triangles Δ  
or contain at least one diamond ◊. 

Practice: 

(exercise 66 in exercise sheet)


