
Foundations of Computer Science 1 — LIACS !1

Lecture 12 - part 2

Foundations of Computer Science 1 — LIACS !2

Recap last lecture:

1. Finished general graphs (digraphs, topological sort/ordering)
2. Basic combinatorics:  

sequences (!), permutations (!), combinations (!)

3. Recursion/induction

kn n! (n
k) = n!

(n− k)!k!

Foundations of Computer Science 1 — LIACS !3

Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word

mississippi

Foundations of Computer Science 1 — LIACS !4

Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word

mississippi

5

111
.

Htt -F. - 5

4,472T
=4

= 11-53-765=34650

T p T
"

p 's ④
I 's s 's 8

Foundations of Computer Science 1 — LIACS !4

Brain warm-up: a combinatorics problem:

How many different words (strings of letters) can you make from the word

mississippi

Combinatorics will show up on the final exam.
Homework: Read Schaum 5.1 - 5.5!
Solve the solved problems pg 96!

ooo#FmmBBmmBBEBB

Foundations of Computer Science 1 — LIACS !5

Recap recursions

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n> 1)

findBinary(decimal){
if (decimal == 0)
 binary = 0
 else
 binary = decimal mod 2 + 10 * (findBinary(decimal div 2)}

Foundations of Computer Science 1 — LIACS !6

Recap recursions

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 , (n> 1)

findBinary(decimal){
if (decimal == 0)
 binary = 0
 else
 binary = decimal mod 2 + 10 * (findBinary(decimal div 2)}

Inductive/recursive
step to smaller

Fixed behaviour for
initial cases

Fixed behaviour for
initial cases

Inductive/recursive
step to smaller

Foundations of Computer Science 1 — LIACS !7

Closed expressions…

n(n+ 1)(2n+ 1)/6
f(1) = 1
f(n) = n2 + f(n− 1)

!
!
t0 = 5, t1 = 6
tn = tn−1 + 6tn−2 − 12n+ 8, n≥ 2 tn = 3n+ (−2)n+ 2n+ 3

How? Need to prove something is true *for all numbers n*

Foundations of Computer Science 1 — LIACS !8

Proving that something holds *for all n*: induction

(i) base case 
ensure P(0) holds (is true) [can start at some l>0]  

(ii) inductive step (step case)  
prove that [if P(k) holds, then so does P(k+1)] (for all k)

Alternatively:
(ii) inductive step (step case)’  

prove that [prove that if P(k’) holds for all value k’<k  
then it holds for k] (for all k)

Foundations of Computer Science 1 — LIACS !9

Proving that something holds *for all n*: induction

Prove: 1 +
n

∑
k= 1

(k × k!) = (n+ 1)!, for n≥ 1.

Base: k=1; 1+1x1! = 2 = 2!

Step: show that if the claim is true for k (assumption),
then it is also true for k+1

Usual trick: express the (k+1) expression in terms of the k-expression,
use assumption

age Bse
Ha

Foundations of Computer Science 1 — LIACS !10

Proving that something holds *for all n*: induction

Assumption: 1 +
k

∑
l= 1

(l × l!) = (k + 1)!

1 +
k+ 1

∑
l= 1

(l × l!) = 1 +
k

∑
l= 1

(l × l!) + [(k + 1) × (k + 1)!] = (k + 1)!
by assu mption

+ [(k + 1) × (k + 1)!]

Want to show: 1 +
k+ 1

∑
l= 1

(l × l!) = (k + 2)!

= (k + 1)! + [(k + 1) × (k + 1)!] = (k + 2) × (k + 1)! = (k + 2)! ∎

Step: show that if the claim is true for k (assumption),
then it is also true for k+1

Usual trick: express the (k+1) expression in terms of the k-expression,
use assumption

Foundations of Computer Science 1 — LIACS !11

Moving on: uses of induction beyond sequences and functions

Recursively defined functions and proofs
over integers via induction will appear in exam.

Homework: read Schaum 3.6.
Schaum 1.8; 11.3.

images

Foundations of Computer Science 1 — LIACS !11

Moving on: uses of induction beyond sequences and functions

Foundations of Computer Science 1 — LIACS !12

Moving on: uses of induction beyond sequences and functions

Can be used to provide definitions of:
• sets,
• relations,
• sequences,
• functions,
• trees,
• orders,
• syntax…

Structural induction:
• proving various properties of

structures (e.g. trees, as we will see)

Foundations of Computer Science 1 — LIACS !13

Induction is behind the meaning of dots…

E = {1,3,5,7,…}

Foundations of Computer Science 1 — LIACS !14

The meaning of dots…

E = {1,3,5,7,…}

Definition. The set of odd natural numbers is defined as follows:
 
basis (basis clause)
 1)

inductive step (inductive clause)
 2) if then

exclusion (extremal clause)
 3) E has no other elements beside those specified by 1 and 2.

1 ∈ E

x ∈ E, x + 2 ∈ E

Basis and induction steps may be complicated and contain many lines

Foundations of Computer Science 1 — LIACS !15

• The odd natural numbers are often specified using dots: {1,3,5,7, ...} with dots (“etc.”). Same for even.

• This is ambiguous. How about “odd numbers divisible only with 1 and themselves” (primes + 1)

• Inductive defition is fully unambiguous.

• Languages (a term in CS) are often defined inductively (examples next).

• These languages also define the preorder traversal for binary trees (explained later)

• This symmetric arrangement is a way to enumerate nodes in a binary tree.  
More about (binary) trees in the next lectures.

Examples

Foundations of Computer Science 1 — LIACS !16

Induction over structures

(how to prove something holds
for all objects in some (infinite)

inductively defined set)

Foundations of Computer Science 1 — LIACS !17

Language: an important concept in CS…

-Set of “letters” or “symbols” denoted ,

e.g.

Σ
Σ = {0,1}; Σ = {a, b, c, . . . , z};

Foundations of Computer Science 1 — LIACS !18

Language: an important concept in CS…

-Set of “letters” or “symbols” denoted , e.g. Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :
 
-00101010, 000, 111; abba, benelux, aaaaa;

Σ Σ

Foundations of Computer Science 1 — LIACS !19

Language: an important concept in CS…

-Set of “letters” or “symbols” denoted , e.g. Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :
 
-00101010, 000, 111; abba, benelux, aaaaa;

set of all strings denoted using the “Kleene star”:

)

Σ Σ

Σ* =
∞

⋃
k= 0

Σk; Σk = {x1x2x3…xn|xj ∈ Σ}

-empty string: (sometimes)ϵ λ

Foundations of Computer Science 1 — LIACS !20

Language: an important concept in CS…

-Set of “letters” or “symbols” denoted , e.g. Σ Σ = {0,1}; Σ = {a, b, c, . . . , z};

-Strings: n-tuplet over , or finite sequence with values in :
 
-00101010, 000, 111; abba, benelux, aaaaa;

Σ Σ

A language is a subset of strings over some alphabet

(a collection of words)

Will do this more seriously shortly

Foundations of Computer Science 1 — LIACS !21

Language: subset of strings

Definition. The language L over is defined as follows:
 
basis (basis clause)
 1)

inductive step (inductive clause)
 2) if then

exclusion (extremal clause)
 3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b}

b ∈ L

x ∈ L, abx ∈ L

Foundations of Computer Science 1 — LIACS !22

Language: subset of strings

Definition. The language L over is defined as follows:
 
basis (basis clause)
 1)

inductive step (inductive clause)
 2) if then

exclusion (extremal clause)
 3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b}

b ∈ L

x ∈ L, abx ∈ L

b, abb, ababb, abababb…ababababb

In other words, words of the form (ab)nb, n≥ 0

Foundations of Computer Science 1 — LIACS !23

Looking ahead: language of binary trees over {a,b}

Definition. The language L over is defined as follows:
 
basis (basis clause)
 1)

inductive step (inductive clause)
 2) if then

exclusion (extremal clause)
 3) L has no other elements (words) beside those specified by 1 and 2.

Σ = {a, b, + }

a ∈ L, b ∈ L

x, y ∈ L, + xy ∈ L

b, +aa, +ab, ++abb, +b+aa, ++aa+ab, +++aa+ab++abb…

These are encoded binary trees

Foundations of Computer Science 1 — LIACS !24

Looking ahead: language of binary trees

b, +aa, +ab, ++abb, +b+aa, ++aa+ab, +++aa+ab++abb…

Why are these trees?!!?

Foundations of Computer Science 1 — LIACS !25

 1)
 2) if then

a ∈ L, b ∈ L
x, y ∈ L, + xy ∈ L

Looking ahead: language of binary trees

a b +

x y

Looking ahead

Foundations of Computer Science 1 — LIACS !26

 1)
 2) if then

a ∈ L, b ∈ L
x, y ∈ L, + xy ∈ L

Looking ahead: language of binary trees

a b +

x y

+ +b +

+

+

+

+

+ +

b

b

b

b

b

a a a

a

aaaa a

b +aa +ab ++abb

+b+aa ++aa+ab

+

+

+ +

baaa

+

+

b

b

a

++aa+ab++abb+

Looking ahead

Foundations of Computer Science 1 — LIACS !27

Trees

Basic idea (extended binary trees):

1) the empty set is an extended binary tree
2) a vertex r (the root of T) and the left (a) and right (b)  

subtree (also trees) whose roots are the children of r .

More on this in subsequent lectures

Looking ahead

Foundations of Computer Science 1 — LIACS !28

Inductive defs. continued: relations

 1)
 2) if then
 3) the relation has no other elements aside
from what is specified by 1)&2)

0 < 1
x < y x < y + 1 and x + 1 < y + 1

<

0<1

0<2 1<2

2<30<3 1<3

0<4 1<4 2<4 3<4

0<5 1<5 2<5 3<5 4<5

equivalently:
1)
2)
3) no other elements

(0,1) ∈ <
I f (x, y) ∈ < th en (x, y + 1), (x + 1,y + 1) ∈ <

Seen so far: inductively defined sets

• numbers
• strings
• relations (pairs)

Foundations of Computer Science 1 — LIACS !29

We can prove properties of inductively defined objects…

Checking if some property P holds all elements of some
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x)  
holds for all x from which y can be constructed

we again move to the “smaller” cases

Foundations of Computer Science 1 — LIACS !30

We can prove properties of inductively defined objects…

Checking if some property P holds all elements of some
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x)  
holds for all x from which y can be constructed

Inductively defined sets look like:
 
basis: 1) explicit elements are

inductive step (inductive clause)
 2) if then some consturctions of x...z

exclusion (extremal clause)
 3) V has no other elements beside those specified by 1 and 2.

∈ V

x, . . . , z ∈ V, ∈ V

Foundations of Computer Science 1 — LIACS !31

Intuitive example

Unstructured tree graph:
1) A single vertex is a tree
2) If T is a tree, then the graph obtained by  

adding a vertex and connecting it to one of the vertices of T is a tree
3) Only graphs obtainable by 1) and 2) are trees

Lemma: a tree over n vertices has n-1 edges.

induction over vertex numbers of trees!
-basis: n=1 true;
-step: consider any n-vertex graph G; it was constructed from an n-1 vertex graph G’ by inductive definition,
by adding one edge to a new vertex.
By assumption G has n-2 edges. But since G’ was obtained by adding one new edge, G’ has n+1 edges.

Foundations of Computer Science 1 — LIACS !32

Digression

Give an inductive definition of the set L of strings that consist of
a number of a's followed by the same number of b’s.
L over and {a, b} L = {anbn|n≥ 0}

Solving . . .

Foundations of Computer Science 1 — LIACS !33

Digression

Give an inductive definition of the set L of strings that consist of
a number of a's followed by the same number of b’s.
L over and {a, b} L = {anbn|n≥ 0}

Solving . . .

1) EEL

2) XEL ⇒ axb EL
3) Nothing else is in L

.

Foundations of Computer Science 1 — LIACS !34

Recursive/inductive definitions in (programming) languages:
synthax

“integers” (whole numbers)

<integer>::=<sign><natural> | <natural>
<natural>::= <digit>|<digit><natural>
<digit>::= 0|1|2|3|4|5|6|7|8|9
<sign>::= + | -

<integer>⇒<sign><natural>⇒ - <natural>⇒ - <digit><natural>
⇒ - 4<natural> ⇒ - 4<digit> ⇒ - 42

So - 42 is an interger…

Foundations of Computer Science 1 — LIACS !35

synthax: statements

<assignment>::=<variable> = <expression>

<statement>::= <assignment>|<compound-statement>| 
<if-statement> | <while-statement>

<if-statement>::=if <test> then <statement> |
if <test> then <statement> else <statement>

<while-statement>::=while <test> do <statement>

BNF: Backus-Naur form

Foundations of Computer Science 1 — LIACS !36

Arithmetic expressions

D = {0,1,2,3,4,5,6,7,8,9}
1) every element of is in R
2) if
 if  
 [3) R has no other elements]

D* − {λ}
x ∈ R, th en (−x) ∈ R
x, y ∈ L, th en (x + y) ∈ R, (x − y) ∈ R, (x * y) ∈ R, (x /y) inR

This defines a language. “+”, “-”, “*”, “/” are symbols, with no intrisic meaning.

27
0014
-(0014)
((1+13)*8)(8/(2-2))
(27/(15+12-27))
(3-(-(-(5/7))))

Which are valid “arithmetic expressions”?

Try to not interpret…

R

p
also denoted E -

- empty word

BB

homemade

Foundations of Computer Science 1 — LIACS !37

In the definition of arithmetic expressions we make a distinction between

• the synthax (the form; the valid strings; the arithmetic expression)
and
• semantics (the meaning; the interpretation; the value or an integer).

Based on the inductive syntax definition, we can define the semantics precisely,
so that each syntactically correct string acquires a unique meaning.

See also §2.2

Foundations of Computer Science 1 — LIACS !38

This statement
is unprovable

SKIPPED

Foundations of Computer Science 1 — LIACS !39

SKIPPED

Foundations of Computer Science 1 — LIACS !40

Mu Puzzle

 1)
 2) if
 if
 if
 if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

MI

MIU MII

MIIIIMIUIU MIIU

M(IU)4 M(IIU)4 MUI MI8

SKIPPED

Foundations of Computer Science 1 — LIACS !41

Mu Puzzle

 1)
 2) if
 if
 if
 if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Example:

MI→MII→MIIII→MIIIIIIII→MIIIIIIIIIIIIIIII→
MIIIIIIIUIIIIII→ 	MIIIIIIIUUIII→MIIIIIIIUUU→
MIIIIIIIUUUU→MIIIIIIIUU→MIIIIIII→MIIUII

SKIPPED

Foundations of Computer Science 1 — LIACS !42

Mu Puzzle

 1)
 2) if
 if
 if
 if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

MU ∈ L
?

Example:

MI→MII→MIIII→MIIIIIIII→MIIIIIIIIIIIIIIII→
MIIIIIIIUIIIIII→ 	MIIIIIIIUUIII→MIIIIIIIUUU→
MIIIIIIIUUUU→MIIIIIIIUU→MIIIIIII→MIIUII

SKIPPED

Foundations of Computer Science 1 — LIACS !43

Recursion — digression
“self-similar” objects…

Fractals are self-similar geometric objects.
One of the best known fractals is the Mandelbrot fractal.
 
 

The point c will be colored, if this sequence is
not bounded from above. Color depends on
when it grows above some value.

Unlike many other fractals, this figure does not repeat  
itself when zoomed. But it is self similar

zn+ 1 = z2
n + c; z0 = 0

SKIPPED

Foundations of Computer Science 1 — LIACS !44

1.000 100.000

1 10 SKIPPED

Foundations of Computer Science 1 — LIACS !45

100.000.000 1.000.000.000

100.000.000.00010.000.000.000

SKIPPED

Foundations of Computer Science 1 — LIACS !46

1 1000 100.000

1.000.000.000 100.000.000.000

SKIPPED

Foundations of Computer Science 1 — LIACS !47

10.000.000.000.000.000 = 1016

1022

1040
1044 1076

SKIPPED

Foundations of Computer Science 1 — LIACS !48

10198

SKIPPED

Foundations of Computer Science 1 — LIACS !49

Mu Puzzle
 1)
 2) (a) if
 (b) if
 (c) if
 (d) if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. Every word in L begins with “M”.

(i) base step

 MI begins with M

(ii) induction over the construction

 (a) if xI begins with M, then so does xIU
 (b) Mxx begins with M
 (c) if xIIIy begins with M then so does xUy
 (d) if xUUy begins with M then so does xy

SKIPPED

Foundations of Computer Science 1 — LIACS !50

Principle of induction (structural)

Checking if some property P holds all elements of some
inductively defined set V

(i) base case 
ensure P holds for the basis of the induction of V  

(ii) inductive step (step case)  
Prove that P(y) holds for all y in V assuming that P (x) holds for all x  
from which y can be constructed

we again move to the “smaller” cases
Induction over size again . - so integers
"under the hood

"

. ..

Foundations of Computer Science 1 — LIACS !51

Mu Puzzle

 1)
 2) (a) if
 (b) if
 (c) if
 (d) if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. The number of letters I in the
word w of L is never divisible by 3.

Call this property P of the word w

(i) base step

 MI has one “I”

(ii) induction over the construction

 (a) if xI satisfies P, then so does xIU
 (b) Mxx has a double number of Is as M, so P holds
 (c) if xIIIy satisfies P then so does xUy
 (d) if xUUy satisfies P then so does xy

SKIPPED

Foundations of Computer Science 1 — LIACS !52

Mu Puzzle

 1)
 2) (a) if
 (b) if
 (c) if
 (d) if  
 3) has no other elements

MI ∈ L
xI ∈ L, th en xIU ∈ L
Mx ∈ L, th en Mxx ∈ L
xIIIy ∈ L, th en xUy ∈ L
xUUy ∈ L, th en xy ∈ L

L

Theorem. The number of letters I in the
word w of L is never divisible by 3.

Call this property P of the word w

Comment… properties like P which are maintained
by the construcitons are called invariants…

0 IS divisible by 3.
P(MU) is false

SKIPPED

Foundations of Computer Science 1 — LIACS !53

The Blurpsen set is the smallest set with the following properties:
(1) Δ is a Blurps.
(2) If x is a Blurps, then xΔΔ and ◊xx◊ are Blurps.
(3) If x and y are Blurps, then xΔy is also a Blurps.

Show that all (words in the laguage) Blurps have an odd number of triangles Δ
or contain at least one diamond ◊.

Practice:

(exercise 66 in exercise sheet)

