

1

Lecture 10 & 11

Graph Theory *finishing*

Graph Theory: concepts so far 1

- -definition; basic types (directed, undirected, simple)
- -adjacency matrix, incidence matrix, degree
- -sum-degree formula and handshaking lemma
- -equality and isomorphism
- -(induced) subgraph, vertex and edge removal
- -paths: simple, trail, closed, circuit, cycle
- connected components, bridge, cut vertex, graph distance and diameter
- -Traversible and Eulerian circuits (+ characterization), Hamilton cycles

Graph Theory: concepts so far 2

-Traversible and Eulerian circuits (+ characterization), Hamilton cycles

-Special graphs: trees, bipartitie, complete, complete bipartite, clique, planar

-Counting edges ... more today!

-Labeled & Weighted graphs, (minimal) spanning trees (Prim's algorithm), shortest paths (Dijkstra's algorithm)

-Some specificities for directed graphs

Directed graphs, a.k.a <u>"digraphs"</u>

directed path: a sequence $v_1, e_1, v_2, e_2, \dots, v_n$, with $e_k = (v_k, v_{k+1})$

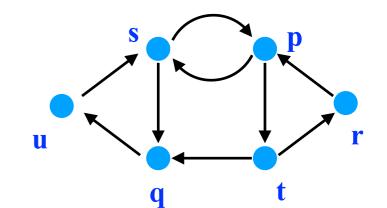
all concepts analogous (simple directed path, directed circuit, directed cycle) semipath (path relative to the underlying undirected graph)

Definition. A digraph is strongly connected if every pair of vertices is connected by a directed path.

Definition. A digraph is weakly connected if every pair of vertices is connected by a semipath.

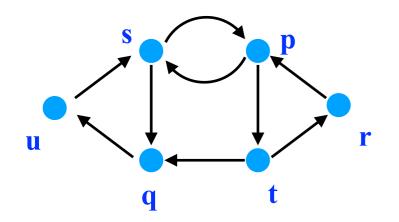
(directed) spanning path: passes all vertices (recall Hamilton)

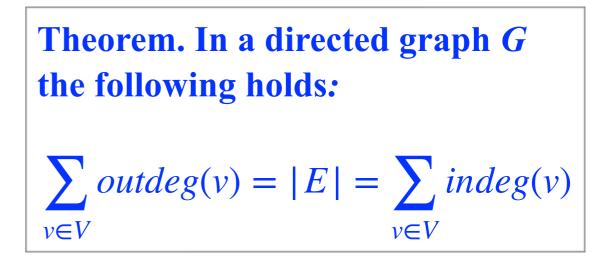
semipath: undirected path; path in the underlying undirected graph $(e_k = (v_k, v_{k+1}) \text{ OR } e_k = (v_{k+1}, v_k))$



Degrees and directed sum-degree

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges
Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.





"number of starts" = "number of ends"

Digraphs and connectedness

Definitions A digraph is **strongly connected** if **every pair of vertices i**s **connected by a directed path**. A digraph is **weakly connected** if **every pair of vertices** is **connected by a semipath**.

Theorem 9.2. a) strongly connected if and only a closed spanning path exists b) weakly connected if and only if a spanning semipath exists

a) => has path u to v and v to u; <= "circle has two ways"

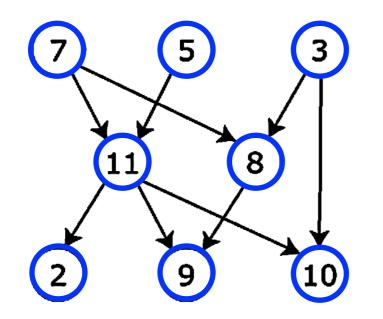
Theorem 9.3. A directed graph G without cycles has a source and a sink.

Essentially, see longest path. First and last vertex must be source and sink. See Schaum

Digraphs: topological ordering

A topological ordering *(topological sorting*) of a directed graph G = (V, E) is a sequence (an enumeration) $v_1, v_2, ..., v_n$ of all the vertices of of G such that $(v_i, v_j) \in E$, $\Rightarrow i < j$

Or: you can draw the vertices of the graph in such a configuration that the arrows always point left to right.

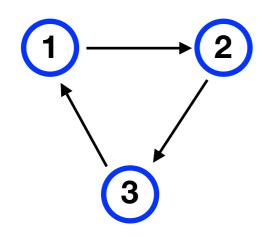


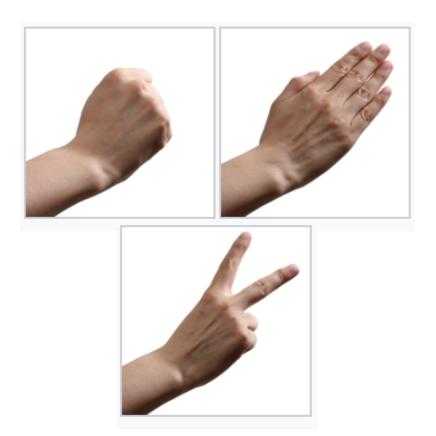
a topological ordering: 7,5,11,2,3,10,8,9

Digraphs: topological ordering

A topological ordering *(topological sorting*) of a directed graph G = (V, E) is a sequence (an enumeration) $v_1, v_2, ..., v_n$ of all the vertices of of G such that $(v_i, v_j) \in E$, $\Rightarrow i < j$

Or: you can draw the vertices of the graph in such a configuration that the arrows always point left to right.





Rock, Paper, Scissors, Lizard, Spock?

Digraphs: topological ordering

Theorem 9.8. If G is a directed graph without cycles, then there exists a topological ordering of G (and converse)

How many edges in an n-vertex complete graph?

How many graphs over n-vertices are there (including isomorphic)?

How many isomorphic complete graphs are there (over n vertices)?

Elementary combinatorics *(a reminder of counting)*

Counting ordered lists

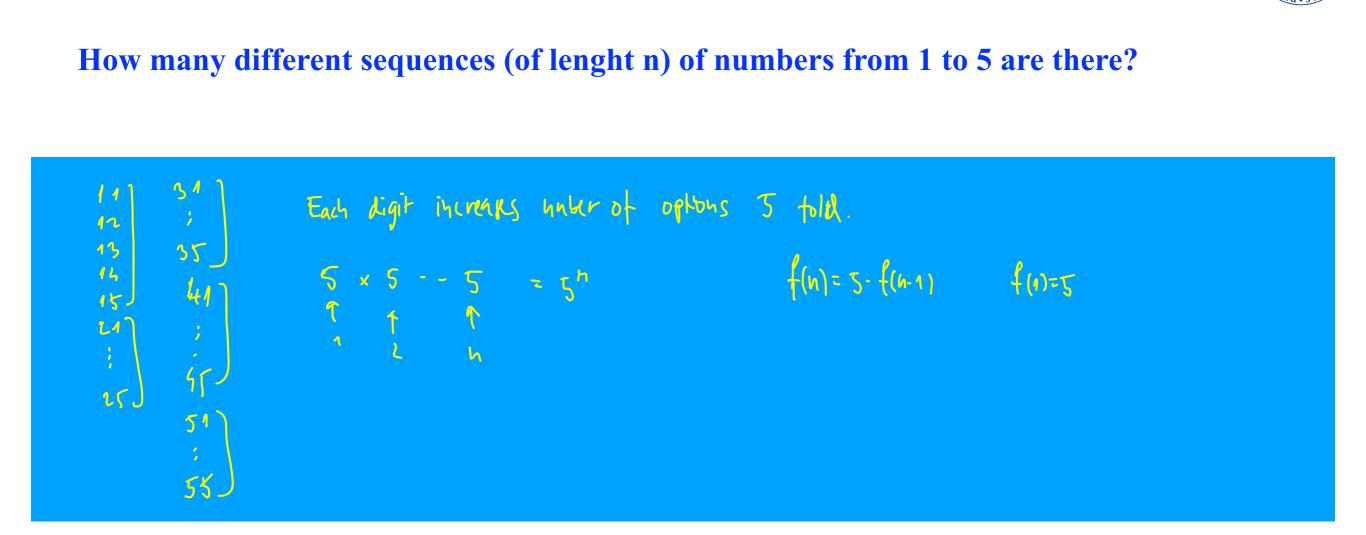
How many different sequences (of lenght n) of numbers from 1 to 5 are there?

Counting ordered lists

How many different sequences (of lenght n) of numbers from 1 to 5 are there?

Counting ordered lists

How many different sequences (of lenght n) of numbers from 1 to 5 are there?



answer: 5^n

Compare to counting subsets:

$$\{A, B, C \}$$

$$0 \quad 0 \quad 0 \quad \rightarrow \{\}$$

$$0 \quad 0 \quad 1 \quad \rightarrow \{C \}$$

$$0 \quad 1 \quad 0 \quad \rightarrow \{B \}$$

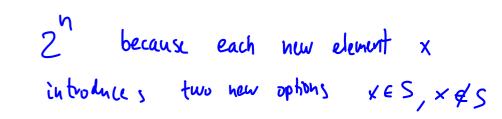
$$0 \quad 1 \quad 1 \quad \rightarrow \{B, C \}$$

$$1 \quad 0 \quad 0 \quad \rightarrow \{A \}$$

$$1 \quad 0 \quad 1 \quad \rightarrow \{A, C \}$$

$$1 \quad 1 \quad 0 \quad \rightarrow \{A, B \}$$

$$1 \quad 1 \quad 1 \quad \rightarrow \{A, B, C \}$$



binary counting $\mathscr{P}(\{A, B, C\})$

= "how many graphs incl. isomorphisms" = "do I include an edge or not..."

Counting different orderings: permutations

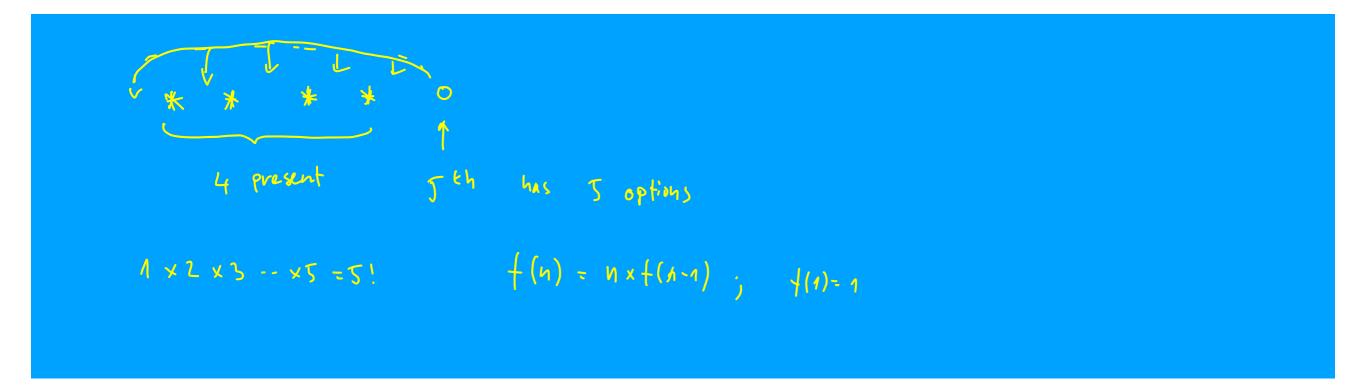
How many different sequences of length 5 can you make with the numbers 1 to 5 if each number can only occur once?

Or: how many permutations of sequences of numbers 1 to 5 are there?

Counting different orderings: permutations

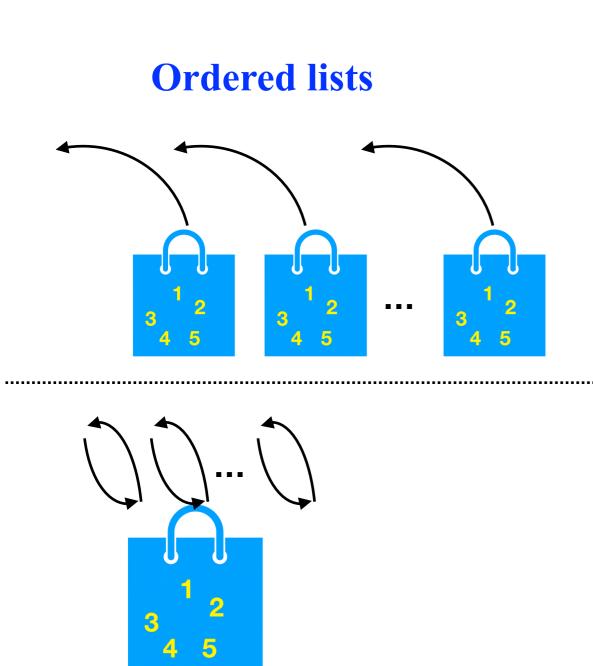
How many different sequences of length 5 can you make with the numbers 1 to 5 if each number can only occur once?

Or: how many permutations of sequences of numbers 1 to 5 are there?



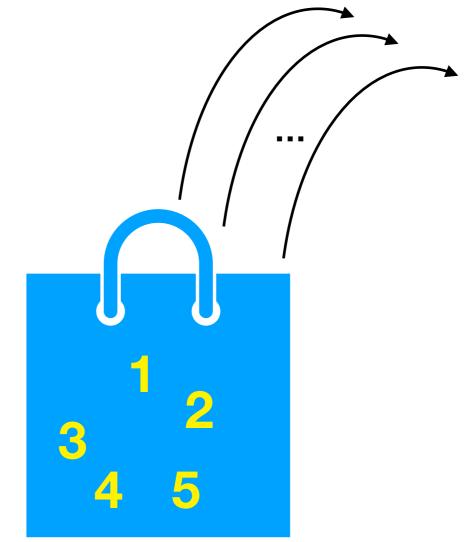
Answer: $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 = 5!$

Ordered lists v.s. Permutations



"With replacement"

Permutations



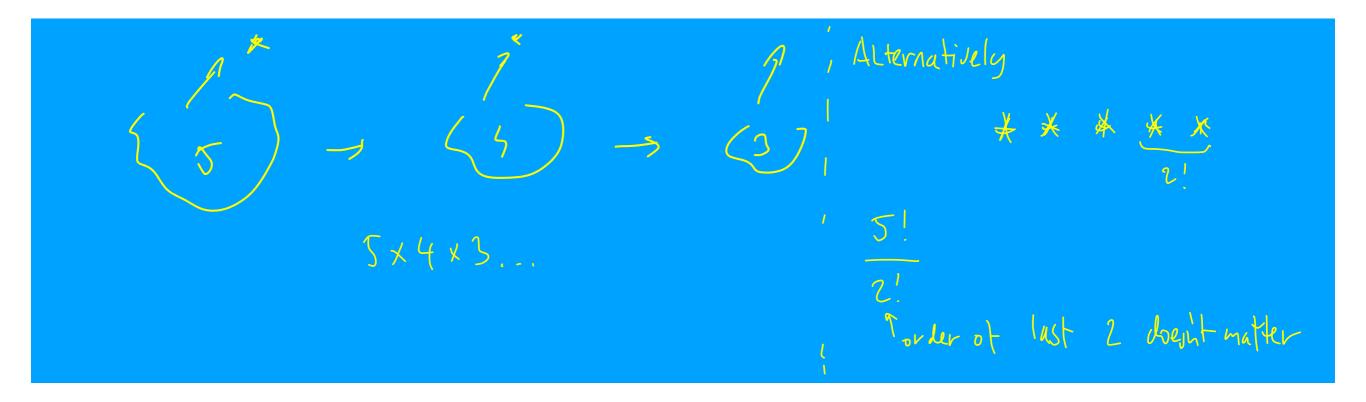
"Without replacement"

Permutations: a variant

How many different sequences of length 3 can you make with the numbers 1 to 5 if each number can only occur once?

Permutations: a variant

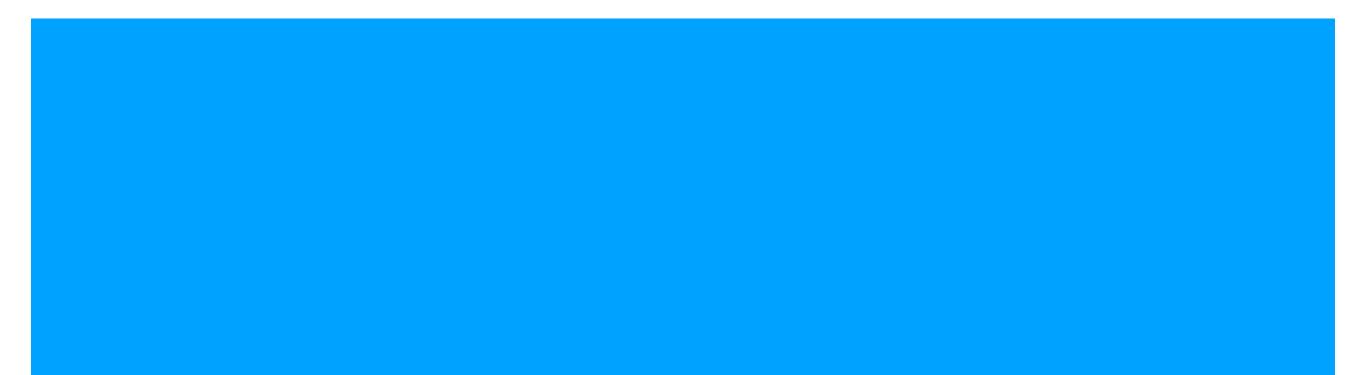
How many different sequences of length 3 can you make with the numbers 1 to 5 if each number can only occur once?



Answer: $5 \cdot 4 \cdot 3 = 60$

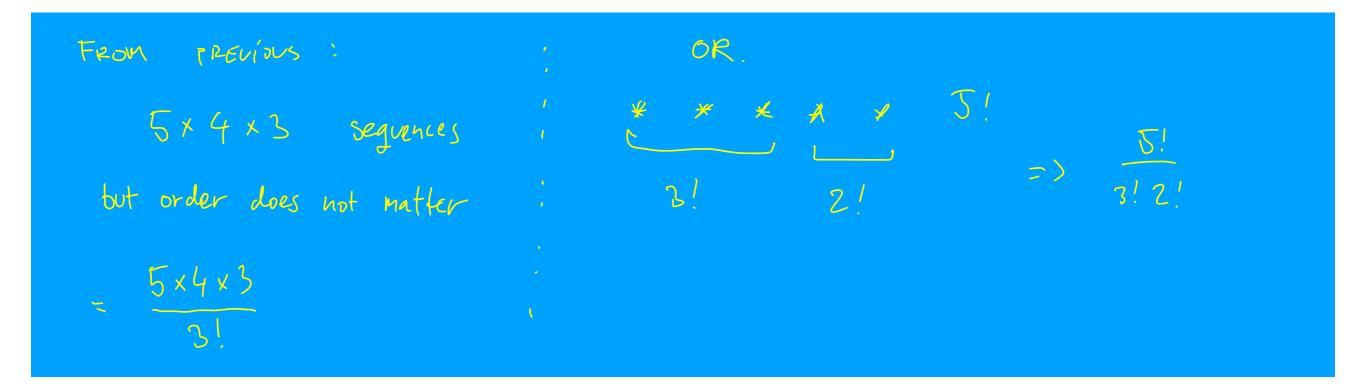
Combinations

How many different triplets can you choose from the numbers 1 to 5, with each number occurring only once (so distinct sets of 3 elements)?



Combinations

How many different triplets can you choose from the numbers 1 to 5, with each number occurring only once (so distinct sets of 3 elements)?



Answer: $(5 \cdot 4 \cdot 3)/(3 \cdot 2 \cdot 1) = 10$

Number of sequences of lenght k from set of size n: n^k (order matters, repetition ok — with replacement)

Number of permutations of sequence *n* distinct elements: $n! = n \cdot (n-1) \cdots 1$ (order matters, repetition not ok, all distinct— no replacement)

Number of ways to select *k* sized subsets out of *n* elements: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

(order irrelevant, repetition not ok, all distinct — no replacement)

distinct objects in a bag...

Also: number of <u>functions</u>, $f: A \to B$, |A| = k, |B| = n, is n^k

Number of <u>bijections</u> (bijective functions) $f: A \rightarrow A, |A| = n$, is n!

Binomial coefficients: lotto problem

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

there are interesting connections between the three..

How many edges in an n-vertex complete graph?

each edge is a set of two non-identical vertices so this is number of ways you can select two-element sets from a set of all vertices.

$$= \binom{n}{2} = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

How many graphs over n-vertices are there (including isomorphic)?

=each graph is a subset of the set of all vertices $=2^{\binom{n}{2}}$

How many isomorphic complete graphs are there?

=all complete graphs are isomorphic. so this number all bijections from V to V=n!

Basic elements of combinatorics

binomial coefficients (Schaum 5.3, 5.5.)

 $\binom{n}{k} = \frac{n!}{n!(n-k)!}$ pronounced "n choose k".

 $n! = n \cdot (n-1) \cdots 1$ pronounced "n factorial".

Example: $(a + b)^4 = 1 \cdot a^4 + 4 \cdot a^3b + 6 \cdot a^2b^2 + 4 \cdot ab^3 + 1 \cdot b^4$

Pascal's triangle...

Pascal's triangle...

 $(a+b)^4 = 1 \cdot a^4 + 4 \cdot a^3b + 6 \cdot a^2b^2 + 4 \cdot ab^3 + 1 \cdot b^4$

Recursive relations!

$$\binom{n}{k} = \binom{n}{k-1} + \binom{n-1}{k-1}$$

$$n! = n \cdot (n-1)!$$

Comment "n!" looks funky, but it is actually !(n), and "!" is a function...

For home: practice...

Leidsche Flesch needs a new board consisting of 5 people.

There are 8 candidates: 4 women and 4 men.

1. How many different boards can we elect?

2. Same question, but with more balance... we need boards with 2 men and 3 women

3. The same question as 1, but now we also must assign the position on the board! (president, ab-actis, Quaestor, Education assessor, External assessor).

4. The same question as 2, but also with assigning the position...