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Graph Theory 
refresher & continuation



Foundations of Computer Science 1 — LIACS !3

-definition; basic types (directed, undirected, simple)

Graph Theory: concepts so far

-adjacency matrix, incidence matrix, degree

-sum-degree formula and handshaking lemma

-equality and isomorphism

-(induced) subgraph, vertex and edge removal

- connected components, bridge, cut vertex

-path: simple, trail, closed, circuit, cycle

- distance and diameter
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Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.
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Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.

Graphs with an Euler (Eulerian) trail are called traversible
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Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.

Def. Euler circuit: a closed trail which uses each edge exactly once. 
(finish where you start)

Graphs with an Euler (Eulerian) circuit are called Eulerian graphs
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Traversible and Eulerian Graphs

Theorem 8.3 (Euler): a finite connected graph 
has an Euler circuit if and only if evey vertex has an 
even degree.

Corollary: a finite connected graph 
has an Euler trail if and only if evey vertex has an 
even degree or exactly two vertices have an odd degree
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Traversible and Eulerian Graphs

Corollary. An undirected connected graph  
has an Eulerian trail if and only if exactly  
zero or two vertices have odd degree.

Almost a proof:

Imagine an “inner” vertex of the trail

if degree odd, you are trapped intuition for sufficiency…



Foundations of Computer Science 1 — LIACS !9

Theorem 8.3 (Euler): a finite connected graph 
has an Euler circuit if and only if evey vertex has an 
even degree.

If a graph has two vertices v,w of odd degree (other even),  
then it has an Euler trail starting at v, ending at w?

Assuming:

Can you prove:
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Theorem 8.3 (Euler): a finite connected graph 
has an Euler circuit if and only if evey vertex has an 
even degree.

If a graph has two vertices v,w of odd degree (other even),  
then it has an Euler trail starting at v, ending at w?

Assuming:

Can you prove:
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Traversible and Eulerian Graphs

Corollary. An undirected connected graph  
has an Eulerian trail if and only if exactly  
zero or two vertices have odd degree.
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Traversible graph: an Eulerian trail exists 

Eulerian graphs: an Eulerian circuit exists
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Eulerian Graphs

The numbers of (connected) Eulerian graphs  
with n nodes are 1, 0, 1, 1, 4, 8, 37, 184,  
1782, ... OEIS A003049

http://mathworld.wolfram.com/EulerianGraph.html
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

->Travelling salesperson problem
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://www.puzzlemuseum.com/month/picm02/200207icosian.htm

icost AN GAME
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v

Euler v.s. Hamilton

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

Leonhard Euler 
Bridges of Königsburg 
Closed, each line once  
 
Simple characterization 
Easy to detect 

William Rowan Hamilton

Icosian game 
Closed, each vertex once  

“Travelling salesperson problem” 

Ore (1960). A graph with n-vertices (n >3) is Hamiltonian if,  
for each pair of non-adjacent vertices, the sum of their degrees  
is n or greater. 

If but not if and only if….NP-complete…
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Euler v.s. Hamilton (Schaum)
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Euler v.s. Hamilton

Hamiltonian and non-Eulerian Eulerian and non-Hamiltonian

“Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices,  
while a Hamiltonian circuit visits each vertex exactly once but may repeat edges.” Schaum p.161

Huh?
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Euler v.s. Hamilton

Schaum p.162 Theorem 8.5 (Dirac, 1952):  
Let G be a connected graph with n vertices.  
Then G is Hamiltonian if n > 3 and n/2 ≤ deg(v) for each vertex v in G.

No need to know this theorem (for this course). 
It is an illustration of the type of propositions  
that have been obtained to encompass the concept of Hamiltonian. 

TYPOS and mistakes HAPPEN!
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Special graphs

complete graph "  
bipartite graph 
complete bipartite graph "  

Kn

Km,n (or Km×n)

k-regular graph: all vertices degree k

K5 K3,2
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Complete graphs

https://en.wikipedia.org/wiki/Complete_graph

How many edges?

hint = ( Y )
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Complete graphs

Extra info: Complete induced subgraphs are called cliques
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Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the 
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.
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Trees (graphs)

https://commons.wikimedia.org/wiki/File:Tree_without_leaves_2.jpg

Def. Tree is a connected graph with no cycles.

The following are equivalent:  
1) G is a tree;  
2) G has no cycles and n-1 edges;  
3) G is connected and has n-1 edges;

WILL DO
THIS

EXTENSIVELY .

.

( over n vertices )
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Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the 
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy… 
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Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the 
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy… 
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Digression

3-regular graphs are also called cubic graphs…

http://mathworld.wolfram.com/CubicGraph.html

0, 1, 2, 5, 19, 85, 509, 4060, 41301, ... (OEIS A002851).
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Planar graphs

Water, Gas and Electricity

Connect each house to source… no lines crossing!
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Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?
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Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?
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Planar graphs

Planar graphs can be drawn (on a plane) without intersecting edges.  
Euler proved the following relationship for planar graphs: 
  
where r stands for the faces: “regions” the plane is cut into, including the outermost. 

Kuratowski: A finite graph is planar if and only if it  
does not contain a subgraph that is a subdivision of the complete graph K5  
or the complete bipartite graph K3,3

|V | − |E | + r = 2;

Explain a bit… 

Subdivision = graph expansion by subdivision

• see Wikipedia

6¥ ⇒ OH for petty picturesI
.-or
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Counting edges

A connected graph with n vertices has: 
• at least n-1 edges 

• at most !  edges(n
2) = n(n− 1)

2

K5
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Labeled graphs & weights
Labeled graph: information on the edges 
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance) 

• weight of a path: sum of weights across a path 
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm 
• shortest (“cheapest”) paths; Dijksta’s algorithm
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Labeled graphs & weights
Labeled graph: information on the edges 
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

• minimal spanning tree and Prim’s algorithm
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1
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• Prim’s greedy algorithm…

• add lightest tree edge to the tree
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Labeled graphs & weights
Labeled graph: information on the edges 
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance) 

• shortest (“cheapest”) paths; Dijksta’s algorithm
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• Dijksta’s algorithm
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• Dijksta’s algorithm
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Directed graphs

Definition. A directed graph G — a digraph — is an ordered pair (V,E) where 
• V = V(G) is the set of vertices (or nodes) 
• E=E(G) is the set of directed edges (or arrows, or arcs)

directed edges e=(u,v) are ordered pairs of vertices, from u to v

we also say the edge begins in u and ends in v, u precedes v, or v follows u

Loops possible. Parallel edges not (anti-parallel yes!). 

t

p

r

q

s

u

E = {(p, s), (p, t), (q, u ), (r, p), (s, p),
(s, q), (t, q), (t, r), (u , s), (u , u )}
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Caveat: mistakes and inconsistencies happen 

In example 9.1 in Schaum (p 202), graph (a) contains two parallel arrows:  
(B, A) appears twice in the set E (G). That is not in line with the definition of a 
set. So this graph is actually a directed multigraaf. Oh well. Note that for 
defining a directed or undirected multigraph for E, we could use the concept of 
a multiset. In the book and the lecture, multigraphs (directed or undirected) are 
used informally. 
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t
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0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p  q  r  s  t  u
p   
q   
r   
s   
t  
u

from…   

to…   

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges 
in-degree indeg(v): number of inbound edges 

Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.
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Directed graphs: main concepts
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Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.
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Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges 
in-degree indeg(v): number of inbound edges 

Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.
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Theorem. In a directed grap G 
the following holds: 

!∑
v∈V

ou tdeg(v) = |E | = ∑
v∈V

indeg(v)

“number of starts” = “number of ends"
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Directed graphs: main concepts

directed path: a sequence ! , with !v1, e1, v2, e2…, vn ek = (vk, vk+ 1)

Lenght of path = number of (directed) edges in path (n)

simple: differing vertices 
cycle: closed path (first vertex = last vertex) 
trail: differing edges 
circuit: closed trail  

spanning path: passes all vertices (recall Hamilton) 

semipath: undirected path; path in the underlying  
undirected graph 
( !  OR !  ) ek = (vk, vk+ 1) ek = (vk+ 1, vk)
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path: q→u→s→p→t→r 
semipath : p→s→q←t→r
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Caveat: mistakes and inconsistencies happen 

In Schaum, the term cycle is not dealt with very consistently. According to the 
definition, loops and a closed path such as s, p, s in the example of the previous 
previous would be cycles. After all, Schaum does not limit the length of the 
closed path, as was the case with undirected graph. However, in the example on 
page 221 (problem 9.1 (d)), Z, W, Z is not counted as a cycle. Oh, well. 



Foundations of Computer Science 1 — LIACS !47

Digraphs and connectedness

Definition. A digraph is strongly connected if every pair of vertices 
is connected by a directed path.

Definition. A digraph is weakly connected if every pair of vertices 
is connected by a semipath.

Theorem 9.2. a) strongly connected if and only a closed spanning path exists  
b) weakly connected if and only if a spanning semipath exists  f

Theorem 9.3. A directed graph G without cycles has a source and a sink.

Theorem 9.3. If G is a directed graph without cycles, then there 
exists a topological ordering of G (and converse)
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Digraphs: topological ordering

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an 
enumeration)  of all the vertices of of G such that  
  
Or: you can draw the vertices of the graph in such a configuration that the arrows always point 
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

a topological ordering: 
7,5,11,2,3,10,8,9
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Digraphs: topological ordering

1 2

3

Rock, Paper, Scissors, Lizard, Spock?

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an 
enumeration)  of all the vertices of of G such that  
  
Or: you can draw the vertices of the graph in such a configuration that the arrows always point 
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j
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5,7 , 3,11 , 8, 2,9, to

3,5 , 7 , 8 , M , 49,16
5 it is , 8 , Milo , 9,2


