
Foundations of Computer Science 1 — LIACS !1

Lecture 10

Foundations of Computer Science 1 — LIACS !2

Graph Theory
refresher & continuation

Foundations of Computer Science 1 — LIACS !3

-definition; basic types (directed, undirected, simple)

Graph Theory: concepts so far

-adjacency matrix, incidence matrix, degree

-sum-degree formula and handshaking lemma

-equality and isomorphism

-(induced) subgraph, vertex and edge removal

- connected components, bridge, cut vertex

-path: simple, trail, closed, circuit, cycle

- distance and diameter

Foundations of Computer Science 1 — LIACS !4

Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.

Foundations of Computer Science 1 — LIACS !5

Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.

Graphs with an Euler (Eulerian) trail are called traversible

Foundations of Computer Science 1 — LIACS !6

Traversible and Eulerian Graphs

Def. Euler trail: a trail which uses each edge exactly once.

Def. Euler circuit: a closed trail which uses each edge exactly once.
(finish where you start)

Graphs with an Euler (Eulerian) circuit are called Eulerian graphs

I 3

2

TIE ,
No TIE , No T

,
E
, NO

Foundations of Computer Science 1 — LIACS !7

Traversible and Eulerian Graphs

Theorem 8.3 (Euler): a finite connected graph
has an Euler circuit if and only if evey vertex has an
even degree.

Corollary: a finite connected graph
has an Euler trail if and only if evey vertex has an
even degree or exactly two vertices have an odd degree

I s

2

Foundations of Computer Science 1 — LIACS !8

Traversible and Eulerian Graphs

Corollary. An undirected connected graph
has an Eulerian trail if and only if exactly
zero or two vertices have odd degree.

Almost a proof:

Imagine an “inner” vertex of the trail

if degree odd, you are trapped intuition for sufficiency…

Foundations of Computer Science 1 — LIACS !9

Theorem 8.3 (Euler): a finite connected graph
has an Euler circuit if and only if evey vertex has an
even degree.

If a graph has two vertices v,w of odd degree (other even),
then it has an Euler trail starting at v, ending at w?

Assuming:

Can you prove:

Foundations of Computer Science 1 — LIACS !9

Theorem 8.3 (Euler): a finite connected graph
has an Euler circuit if and only if evey vertex has an
even degree.

If a graph has two vertices v,w of odd degree (other even),
then it has an Euler trail starting at v, ending at w?

Assuming:

Can you prove:

U l

H
(2)

÷÷÷Ent

Foundations of Computer Science 1 — LIACS !10

Traversible and Eulerian Graphs

Corollary. An undirected connected graph
has an Eulerian trail if and only if exactly
zero or two vertices have odd degree.

Foundations of Computer Science 1 — LIACS !11

Traversible graph: an Eulerian trail exists

Eulerian graphs: an Eulerian circuit exists

Foundations of Computer Science 1 — LIACS !12

Eulerian Graphs

The numbers of (connected) Eulerian graphs
with n nodes are 1, 0, 1, 1, 4, 8, 37, 184,
1782, ... OEIS A003049

http://mathworld.wolfram.com/EulerianGraph.html

Foundations of Computer Science 1 — LIACS !13

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

->Travelling salesperson problem

Foundations of Computer Science 1 — LIACS !14

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !15

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !16

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !17

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://www.puzzlemuseum.com/month/picm02/200207icosian.htm

icost AN GAME

Foundations of Computer Science 1 — LIACS !18

v

Euler v.s. Hamilton

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

Leonhard Euler
Bridges of Königsburg
Closed, each line once  
 
Simple characterization
Easy to detect

William Rowan Hamilton

Icosian game
Closed, each vertex once  

“Travelling salesperson problem”

Ore (1960). A graph with n-vertices (n >3) is Hamiltonian if,
for each pair of non-adjacent vertices, the sum of their degrees
is n or greater.

If but not if and only if….NP-complete…

Foundations of Computer Science 1 — LIACS !19

Euler v.s. Hamilton (Schaum)

Foundations of Computer Science 1 — LIACS !20

Euler v.s. Hamilton

Hamiltonian and non-Eulerian Eulerian and non-Hamiltonian

“Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices,
while a Hamiltonian circuit visits each vertex exactly once but may repeat edges.” Schaum p.161

Huh?

Foundations of Computer Science 1 — LIACS !21

Euler v.s. Hamilton

Schaum p.162 Theorem 8.5 (Dirac, 1952):
Let G be a connected graph with n vertices.
Then G is Hamiltonian if n > 3 and n/2 ≤ deg(v) for each vertex v in G.

No need to know this theorem (for this course).
It is an illustration of the type of propositions
that have been obtained to encompass the concept of Hamiltonian.

TYPOS and mistakes HAPPEN!

Foundations of Computer Science 1 — LIACS !24

Special graphs

complete graph "
bipartite graph
complete bipartite graph "

Kn

Km,n (or Km×n)

k-regular graph: all vertices degree k

K5 K3,2

Foundations of Computer Science 1 — LIACS !25

Complete graphs

https://en.wikipedia.org/wiki/Complete_graph

How many edges?

hint = (Y)

Foundations of Computer Science 1 — LIACS !26

Complete graphs

Extra info: Complete induced subgraphs are called cliques

Foundations of Computer Science 1 — LIACS !27

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

Foundations of Computer Science 1 — LIACS !28

Trees (graphs)

https://commons.wikimedia.org/wiki/File:Tree_without_leaves_2.jpg

Def. Tree is a connected graph with no cycles.

The following are equivalent:  
1) G is a tree;
2) G has no cycles and n-1 edges;
3) G is connected and has n-1 edges;

WILL DO
THIS

EXTENSIVELY .

.

(over n vertices)

Foundations of Computer Science 1 — LIACS !29

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy…

Foundations of Computer Science 1 — LIACS !29

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy…

and only it

r

A B

%) ONLY NEED TO CONSIDER CONNECTED GRAPHS
pg

4 ODD CYCLE ⇒ NOT BIPARTITE
.

A

qoILENGTH h
. R A

- - -
- - -

- - - - -
- - -

- -
-

D o_O

3) No odd cycles .
- put all Even distance in B I

choose vertex v
.

- al ! :L ! infinity!:c in A
cpgnwebne

. ⑧①
a. Mr C- A

, adjacent =) Un - - an
,
are - Va } odd walk 3- odd cycle

Foundations of Computer Science 1 — LIACS !30

Digression

3-regular graphs are also called cubic graphs…

http://mathworld.wolfram.com/CubicGraph.html

0, 1, 2, 5, 19, 85, 509, 4060, 41301, ... (OEIS A002851).

Foundations of Computer Science 1 — LIACS !31

Planar graphs

Water, Gas and Electricity

Connect each house to source… no lines crossing!

Foundations of Computer Science 1 — LIACS !32

Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?

Foundations of Computer Science 1 — LIACS !32

Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?
iwoppm
B

*

Foundations of Computer Science 1 — LIACS !33

Planar graphs

Planar graphs can be drawn (on a plane) without intersecting edges.
Euler proved the following relationship for planar graphs:

where r stands for the faces: “regions” the plane is cut into, including the outermost.

Kuratowski: A finite graph is planar if and only if it
does not contain a subgraph that is a subdivision of the complete graph K5
or the complete bipartite graph K3,3

|V | − |E | + r = 2;

Explain a bit…

Subdivision = graph expansion by subdivision

• see Wikipedia

6¥ ⇒ OH for petty picturesI
.-or

Foundations of Computer Science 1 — LIACS !34

Counting edges

A connected graph with n vertices has:
• at least n-1 edges

• at most ! edges(n
2) = n(n− 1)

2

K5

Foundations of Computer Science 1 — LIACS !35

Labeled graphs & weights
Labeled graph: information on the edges
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance)

• weight of a path: sum of weights across a path
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm
• shortest (“cheapest”) paths; Dijksta’s algorithm

Foundations of Computer Science 1 — LIACS !36

Labeled graphs & weights
Labeled graph: information on the edges
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

• minimal spanning tree and Prim’s algorithm

1

4 23

5

1

4 23

5

1

4 23

5

Foundations of Computer Science 1 — LIACS !37

1

4 23

5

1

4 23

5

1

4 23

5

1

4 23

5

• Prim’s greedy algorithm…

• add lightest tree edge to the tree

Foundations of Computer Science 1 — LIACS !38

Labeled graphs & weights
Labeled graph: information on the edges
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance)

• shortest (“cheapest”) paths; Dijksta’s algorithm

1

3

7

2
7

1A B E

DC

5

Foundations of Computer Science 1 — LIACS !39

• Dijksta’s algorithm

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

* - • A *

to

→ →

•
.
•

0 a - O z
f -

✓
-

-
-
-
- - -

- 1+3=4
I 7 - 1 7 a ••

" I

,,•o•
i'smallest

• dione

visited 2 * 2 VV
1 4 n 4¥ * 9 a 4

. 9
A *

I

•• o •

µ 2 VV 2 0 it yo

Foundations of Computer Science 1 — LIACS !39

• Dijksta’s algorithm

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5
1

3

7
2

7

1A B E

DC

5

÷
.

÷ :

.

"

:

T¥÷i÷÷÷÷⇐*¥:Ei÷E÷¥imdb.io#oii.tn"
"

YI! "are rent . non -visita nous
, son r .

Foundations of Computer Science 1 — LIACS !40

Directed graphs

Definition. A directed graph G — a digraph — is an ordered pair (V,E) where
• V = V(G) is the set of vertices (or nodes)
• E=E(G) is the set of directed edges (or arrows, or arcs)

directed edges e=(u,v) are ordered pairs of vertices, from u to v

we also say the edge begins in u and ends in v, u precedes v, or v follows u

Loops possible. Parallel edges not (anti-parallel yes!).

t

p

r

q

s

u

E = {(p, s), (p, t), (q, u), (r, p), (s, p),
(s, q), (t, q), (t, r), (u , s), (u , u)}

Foundations of Computer Science 1 — LIACS !41

Caveat: mistakes and inconsistencies happen

In example 9.1 in Schaum (p 202), graph (a) contains two parallel arrows:
(B, A) appears twice in the set E (G). That is not in line with the definition of a
set. So this graph is actually a directed multigraaf. Oh well. Note that for
defining a directed or undirected multigraph for E, we could use the concept of
a multiset. In the book and the lecture, multigraphs (directed or undirected) are
used informally.

Foundations of Computer Science 1 — LIACS !42

t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p q r s t u
p
q
r
s
t
u

from…

to…

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

Foundations of Computer Science 1 — LIACS !43

t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p q r s t u
p
q
r
s
t
u

from…

to…

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

Foundations of Computer Science 1 — LIACS !44

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

t

p

r

q

s

u

Theorem. In a directed grap G
the following holds:

!∑
v∈V

ou tdeg(v) = |E | = ∑
v∈V

indeg(v)

“number of starts” = “number of ends"

Foundations of Computer Science 1 — LIACS !45

Directed graphs: main concepts

directed path: a sequence ! , with !v1, e1, v2, e2…, vn ek = (vk, vk+ 1)

Lenght of path = number of (directed) edges in path (n)

simple: differing vertices
cycle: closed path (first vertex = last vertex)
trail: differing edges
circuit: closed trail

spanning path: passes all vertices (recall Hamilton)

semipath: undirected path; path in the underlying  
undirected graph
(! OR !) ek = (vk, vk+ 1) ek = (vk+ 1, vk)

t

p

r

q

s

u

path: q→u→s→p→t→r
semipath : p→s→q←t→r

Foundations of Computer Science 1 — LIACS !46

Caveat: mistakes and inconsistencies happen

In Schaum, the term cycle is not dealt with very consistently. According to the
definition, loops and a closed path such as s, p, s in the example of the previous
previous would be cycles. After all, Schaum does not limit the length of the
closed path, as was the case with undirected graph. However, in the example on
page 221 (problem 9.1 (d)), Z, W, Z is not counted as a cycle. Oh, well.

Foundations of Computer Science 1 — LIACS !47

Digraphs and connectedness

Definition. A digraph is strongly connected if every pair of vertices
is connected by a directed path.

Definition. A digraph is weakly connected if every pair of vertices
is connected by a semipath.

Theorem 9.2. a) strongly connected if and only a closed spanning path exists  
b) weakly connected if and only if a spanning semipath exists f

Theorem 9.3. A directed graph G without cycles has a source and a sink.

Theorem 9.3. If G is a directed graph without cycles, then there
exists a topological ordering of G (and converse)

Foundations of Computer Science 1 — LIACS !48

Digraphs: topological ordering

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an
enumeration) of all the vertices of of G such that

Or: you can draw the vertices of the graph in such a configuration that the arrows always point
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

a topological ordering:
7,5,11,2,3,10,8,9

Foundations of Computer Science 1 — LIACS !49

Digraphs: topological ordering

1 2

3

Rock, Paper, Scissors, Lizard, Spock?

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an
enumeration) of all the vertices of of G such that

Or: you can draw the vertices of the graph in such a configuration that the arrows always point
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

÷±¥÷÷

5,7 , 3,11 , 8, 2,9, to

3,5 , 7 , 8 , M , 49,16
5 it is , 8 , Milo , 9,2

