
Foundations of Computer Science 1 — LIACS !1

Lecture 10

Foundations of Computer Science 1 — LIACS !2

Graph Theory
basics refresher & continuation

Foundations of Computer Science 1 — LIACS !3

Graphs

Definition. An undirected graph G is an ordered pair (V,E) where
• V = V(G) is the set of vertices (or nodes)
• E=E(G) is the set of edges
• an edge is a set of two vertices

2

1

3

5

4 V = {1,2,3,4,5}

E= {{1,3},{1,4},{1,5},
{2,4},{2,5},{3,5}}

-undirected

Foundations of Computer Science 1 — LIACS !4

Graphs

Definition. An undirected graph G is an ordered pair (V,E) where
• V = V(G) is the set of vertices (or nodes)
• E=E(G) is the set of edges
• an edge is an ordered pair of two vertices

2

1

3

5

4 V = {1,2,3,4,5}

E= {(3,1),(1,4),(5,1),
(4,1),(5,2),(5,3)}

-directed

Foundations of Computer Science 1 — LIACS !5

Graphs
-simple graphs: no loops, no multiple edges

2

1

3

5

4 V = {1,2,3,4,5}

E= {{1,3},{1,4},{1,4},{1,5},
{2,4},{2,5},{3,5},{2,2}}

2

1

3

5

4 V = {1,2,3,4,5}

E= {(3,1),(1,4),(4,1),(5,1),
(4,1),(5,2),(5,3)}

In directed graphs:
two edges of different

directions
are different!

Still simple graph

Foundations of Computer Science 1 — LIACS !6

Graphs

-representations; directed graphs are binary relations
-can be represented as adjacency matrices

2

1

3

5

4 0 0 1 1 1
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

1 2 3 4 5
1
2
3
4
5

from

2

1

3

5

4
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

1 2 3 4 5
1
2
3
4
5

to

i%

TF

Foundations of Computer Science 1 — LIACS !7

Graphs

-basic concepts: incidence (vertex-edge), neighbour(hood), adjacency

2

1

3

5

4 e

-degree of vertex deg(v)

t.ie.
~ ez 3

11

{ Client
, Cher)

,
12,4)

(2
, es)

,
(3,41,

13
, es) }

Foundations of Computer Science 1 — LIACS !8

Graphs

Degree-sum formula:

∑
v∈V

deg(v) = 2 |E |

Handshaking lemma:
number of vertices with odd degree is even.

Proof: consider all incidence pairs (e,v)…

Proof: sum separately odd degree and even degree
vertex degrees. Sum of odd degree must be even.
But if a sum of odd numbers is even, there must
be an even number of odd numbers…

Foundations of Computer Science 1 — LIACS !9

Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)

Foundations of Computer Science 1 — LIACS !10

Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)
Isomorphic graphs: sets of vertices of same size, connected in the same way

1

2

3

a

b

c

G&H Isomorphic: there exists
a bijection f from V(G) to V(H),
which preserves edges:

{x,y} is an edge in G if and only if
{f(x),f(y)} is amn edge in H

https://en.wikipedia.org/wiki/Graph_isomorphism

Foundations of Computer Science 1 — LIACS !11

Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)
Isomorphic graphs: sets of vertices of same size, connected in the same way

1

2

3

a

b

c

https://en.wikipedia.org/wiki/Graph_isomorphism

isomorphism

Foundations of Computer Science 1 — LIACS !12

Graphs

Subgraphs, and vertex induced subgraphs

vertex induced
subgraphs

subgraphs

subset of vertices,
If {x,y} in E’ then {x,y} in E

(V,E)

(V’,E’)

(V’’,E’’)

subset of vertices,
all legal edges in E
(if x,y, in V’’ and
{x,y} in E then {x,y} in E’’
and {x,y} in E’’ then {x,y}
in E)

Foundations of Computer Science 1 — LIACS !13

Graphs

Edge and vertex removal: G-e = graph without edge e.
G-v = graph without vertex v and all edges incident with G

Foundations of Computer Science 1 — LIACS !14

Walking the graph…

Foundations of Computer Science 1 — LIACS !15

Paths

Path: a sequence ! , with !v1, e1, v2, e2…, vn ek = {vk, vk+ 1}

Lenght of path = number of edges in path (n)

We say: path from !v1 to v2

Closed path: !v1 = vn

x

v

w

y

u

In graphs (not multigraphs), vertices suffice:
! v1, e1, v2, e2…, vn → (v1, v2, …, vn)

v1v2 …vn

v1 → v2 → … → vn

u → v → w → v → u

Foundations of Computer Science 1 — LIACS !16

Paths: more concepts

Closed path: !v1 = vn
x

v

w

y

u

cycle: closed path of length > 2, all distinct vertices
except first/last (essentially, closed simple path)

circuit: closed path, vertices may repeat, but edges cannot.

simple path (walk): distinct vertices

trail: path with distinct edges

Foundations of Computer Science 1 — LIACS !17

Same thing:

x

v

w

y

u

u → v → w → y → x

cycle: closed path of length > 2
Vertices cannot repeat. Edges cannot repeat (Closed)

circuit:
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:
Vertices may not repeat.
Edges may not repeat.

trail:
Vertices may repeat.
Edges cannot repeat. (a s.p. is a special trail.)

simple path:

Foundations of Computer Science 1 — LIACS !18

Same thing:

x

v

w

y

u

y → v → w → u → x → v → u → y
cycle: closed path of length > 2
Vertices cannot repeat. Edges cannot repeat (Closed)

circuit:
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:
Vertices may not repeat.
Edges may not repeat.

trail:
Vertices may repeat.
Edges cannot repeat.

trail (& not simp. path)

Foundations of Computer Science 1 — LIACS !19

Same thing:

x

v

w

y

u

y → v → w → u → x → y
cycle: closed path of length > 2
Vertices cannot repeat. Edges cannot repeat (Closed)

circuit:
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:
Vertices may not repeat.
Edges may not repeat.

trail:
Vertices may repeat.
Edges cannot repeat.

cycle:

Foundations of Computer Science 1 — LIACS !20

Same thing:

cycle: closed path of length > 2
Vertices cannot repeat. Edges cannot repeat (Closed)

circuit:
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:
Vertices may not repeat.
Edges may not repeat.

trail:
Vertices may repeat.
Edges cannot repeat. x

v

w

y

u

y → v → w → u → x → v → u → y → x

circuit (& not a cycle)

Foundations of Computer Science 1 — LIACS !21

Paths

Cycle and circuit not mutually exclusive.

Terminology not fully consistent between bodies of
work. Must be consistent within one work
Check (and give) definitions

Foundations of Computer Science 1 — LIACS !22

Useful math…

Every day you go from home to school, and your trail (“the way you take”)
is such that you pass by the same bakery twice. Is there a faster way to school?

Foundations of Computer Science 1 — LIACS !23

Theorem 8.2. (Schaum) If there is a path between vertices u and v, then there
is a simple path between u and v.

Every day you go from home to school, and your trail (“the way you take”)
is such that you pass by the same bakery twice. Is there a faster way to school?

Graph theory: yes.

A theorem…

since a simple path never sees the same vertex twice it is shorter by
at least one.

Foundations of Computer Science 1 — LIACS !24

Theorem 8.2. If there is a path between vertices u and v, then there
is a simple path between u and v.

In graphs, you can avoid going through the same vertex twice…

Constructive proof!
(what are constructive proofs?)

Take
any path . . .

not simple ? I k s. t .

pry → V, → Vr →Vs → .
-
- →Vk → Wp →WL - - Wm → Vk -7 Vice , .

. . → ✓
-

Pu - U →Va - - Vu → Ven - - → ✓ is a path

Repeat until simple . - - (each step decreases length - must terminate)

Foundations of Computer Science 1 — LIACS !25

Paths: more examples

t

p

r

q

s

p→t→r→t→q not simple,not trail (edge
repeats)

p→r→t→p→s→q not simple, trail
(only vertex repeats)

p→r→t→q→s simple trail

p not cycle

p→r→p not cycle (must be l>2)

r→t→p→s→q→t→r not cycle, not circuit

r→t→q→s→p→r cycle & circuit

Foundations of Computer Science 1 — LIACS !26

"Read Euler, read Euler, he is the master of us all.” - Laplace

Math culture: Euler, Seven Bridges of Königsberg and
beginnings of graph theory.

15 April 1707 – 18 September 1783

Foundations of Computer Science 1 — LIACS !27

Polyhedral formula : V −E + F = 2

Foundations of Computer Science 1 — LIACS !28

Can we cross that, and every other brige… but only once?

“This question is so banal, but seemed to me worthy of attention in that [neither] geometry,
nor algebra, nor even the art of counting was sufficient to solve it.”

Foundations of Computer Science 1 — LIACS !29

Seven Bridges of Königsberg

A multigraph problem…

a

b

c

d

a

b

c

d

0 2 1 0
2 0 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d

Foundations of Computer Science 1 — LIACS !30

Seven Bridges of Königsberg

A multigraph problems a

b

c

d

0 2 1 0
2 1 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d

Definition. A graph G is an ordered pair
(V,E) where
• V = V(G) is the set of vertices
• E=E(G) is the set of edges

Graphs do not suffice…

Foundations of Computer Science 1 — LIACS !31

Seven Bridges of Königsberg

a

b

c

d

0 2 1 0
2 1 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d

Definition. A graph G is an ordered pair
(V,E) where
• V = V(G) is the set of vertices
• E=E(G) is the set of edges

Euler proved impossibility, and tackled generalizations; the result is graph theory
as we know it…solution soon!
Main contribution: observation that only “connectedness” (topology), rather than actual positions matter…

Foundations of Computer Science 1 — LIACS !32

A moment’s thought

concepts, "mathematical objects”, formalization, modelling, abstraction…

Bridges in reality, bridges on a map

v.s.

Graph — abstract concept

v.s.

graph (picture on paper),
set-theoretical notation for a graph,
adjacency matrix,
incidence matrix,

v.s.

graph as a binary relation
function (e.g. characteristic)

Foundations of Computer Science 1 — LIACS !33

Digression

Isomorphic?

Check main
properties…

- e
-

-

y
- q i

' H
/# l

/ Tx l
l

l l

I I

.
- -

No
,
G HAS TRIANGLES

H DOES NOT

Triangle = three pair -wise connected vertices
,

an isomorphism would preserve this

Foundations of Computer Science 1 — LIACS !34

Digression

Showing non-isomorphism can be hard

Note: isomorphism is a relation on Graphs.
What kind?

Foundations of Computer Science 1 — LIACS !35

Graphs and connectedness

“there exists a path between” is  
 a relation on !V × V

reflexive
symmetric
transitive

Connected components:
intuitive- “maximal” connected subgraphs

Definition. A graph is connected if every
pair of vertices is connected by a path.

(!) ∀ u , v ∈ V, ∃ path(u , v)

Foundations of Computer Science 1 — LIACS !36

Graphs: bridge and cutpoint

bridge, isthmus, cut-edge

cut point, cut vertex, articulation points

Def. Bridge is an edge e whose
removal increases the number of
connected components.

Def. Cut vertex is a vetex v whose
removal increases the number of
connected components.

Foundations of Computer Science 1 — LIACS !37

Graphs: bridge and cutpoint

bridge, isthmus, cut-edge

cut point, cut vertex, articulation points

Def. Bridge is an edge e whose
removal increases the number of
connected components.

Def. Cut vertex is a vetex v whose
removal increases the number of
connected components.

⑧
←
"
s
:c:.

Foundations of Computer Science 1 — LIACS !38

Graphs: distance

Def. The distance ! between vertices u,v in graph G is the lenght of the
shortest path between u and v in G.

d(u , v)

Comment. If there is no path (u and v are in distinct connected components)
we say the distance is infinite, !d(u , v) = ∞

Theorem. Vertex distance obeys the triangle inequality:
!For all u , v, w ∈ V, d(u , v) + d(v, w) ≥d(v, w)

Def. The diameter of the graph G , denoted diam(G), is the distance between
two maximally distant nodes which are connected by a path

Proof. Cannot be more. Can be less.
w

u

v

Foundations of Computer Science 1 — LIACS !39

Digression: graph centrality

A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality,
D) Degree centrality, E) Harmonic Centrality and F) Katz centrality

https://en.wikipedia.org/wiki/Centrality

Foundations of Computer Science 1 — LIACS !40

Digression: graph centrality

A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality,
D) Degree centrality, E) Harmonic Centrality and F) Katz centrality

https://en.wikipedia.org/wiki/Centrality

Foundations of Computer Science 1 — LIACS !41

Social network analysis: how "central" nodes are in a graph.
measure of importance.
That can be, for example, a measure that indicates
(a) how many paths run through that node,
(b) the total / average distance to the other nodes,
(c) the degree of the node  
 
The red side of spectrum indicates “more central”

http://liacs.leidenuniv.nl/~takesfw/SNACS/

Foundations of Computer Science 1 — LIACS !42

Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once.
A graph with an Euler trail is called a Traversible graph.

“Can you draw the following without crossing any edge twice, ending where
you started from?”

Aslo Seven bridges on multigraph!

io④E

Vedran Dunjko

Vedran Dunjko
circuit:

Foundations of Computer Science 1 — LIACS !43

Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once.

“Can you draw the following without crossing any edge twice, ending where
you started from?”

Theorem 8.3 (Euler): a finite connected graph
has an Euler trail if and only if evey edge has an
even degree.

Boog

gadgeteer
Easter

mutant

Vedran Dunjko
vertex

Vedran Dunjko

Vedran Dunjko
Graphs with an Euler (Eulerian) trail are called Traversible

Vedran Dunjko
circuit if and only if

Vedran Dunjko
Euler trail: a trail which uses each edge exactly once.

Foundations of Computer Science 1 — LIACS !44

Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once.

“Can you draw the following without crossing any edge twice?”

Corollary. An undirected connected graph
has an Eulerian trail if and only if exactly
zero or two vertices have odd degree.

iowa

K
"

E.
circuit ! !

Euler trail ⇒ 0 or 2 odd degree E. trail
not

Euler circuit ⇒ all even degree E. circuit

In

hope
!

Vedran Dunjko
Euler trail: a trail which uses each edge exactly once.

Foundations of Computer Science 1 — LIACS !45

Traversible and Eulerian Graphs

Corollary. An undirected connected graph
has an Eulerian trail if and only if exactly
zero or two vertices have odd degree.

Almost a proof:

Imagine an “inner” vertex of the trail

if degree odd, you are trapped

*
k

r
od

-ko

= proof of necessity of 0/2 vertex

criterion
,

Foundations of Computer Science 1 — LIACS !46

Traversible and Eulerian Graphs

Corollary. An undirected connected graph
has an Eulerian trail if and only if exactly
zero or two vertices have odd degree.

HE STOPPED HERE
. . .

Foundations of Computer Science 1 — LIACS !47

Eulerian Graphs

The numbers of (connected) Eulerian graphs
with n nodes are 1, 0, 1, 1, 4, 8, 37, 184,
1782, ... OEIS A003049

http://mathworld.wolfram.com/EulerianGraph.html

Foundations of Computer Science 1 — LIACS !48

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

Foundations of Computer Science 1 — LIACS !49

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !50

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !51

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron

Foundations of Computer Science 1 — LIACS !52

Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once.
(closed = starts where it ends)

https://www.puzzlemuseum.com/month/picm02/200207icosian.htm

Foundations of Computer Science 1 — LIACS !53

v

Euler v.s. Hamilton

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

Leonhard Euler
Bridges of Königsburg
Closed, each line once  
 
Simple characterization
Easy to detect

William Rowan Hamilton

Icosian game
Closed, each vertex once  

“Travelling salesperson problem”

Ore (1960). A graph with n-vertices (n >3) is Hamiltonian if,
for each pair of non-adjacent vertices, the sum of their degrees
is n or greater.

If but not if and only if….NP-complete…

Foundations of Computer Science 1 — LIACS !54

Euler v.s. Hamilton (Schaum)

Foundations of Computer Science 1 — LIACS !55

Euler v.s. Hamilton

Hamiltonian and non-Eulerian Eulerian and non-Hamiltonian

“Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices,
while a Hamiltonian circuit visits each vertex exactly once but may repeat edges.” Schaum p.161

Foundations of Computer Science 1 — LIACS !56

Euler v.s. Hamilton

Schaum p.162 Theorem 8.5 (Dirac, 1952):
Let G be a connected graph with n vertices.
Then G is Hamiltonian if n > 3 and n/2 ≤ deg(v) for each vertex v in G.

No need to know this theorem (for this course).
It is an illustration of the type of propositions
that have been obtained to encompass the concept of Hamiltonian.

TYPOS and mistakes HAPPEN!

Foundations of Computer Science 1 — LIACS !57

Labeled graphs & weights
Labeled graph: information on the edges
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance)

• weight of a path:
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm
• shortest (“cheapest”) paths; Dijksta’s algorithm

IN OTHER
MINIMUM SPANNING TREE

COURSES

Dijkstra

Foundations of Computer Science 1 — LIACS !58

Labeled graphs & weights
Labeled graph: information on the edges
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance)

• weight of a path:
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm
• shortest (“cheapest”) paths; Dijksta’s algorithm

Foundations of Computer Science 1 — LIACS !59

Special graphs

complete graph "
bipartite graph
complete bipartite graph "

Kn

Km,n (or Km×n)

k-regular graph: all vertices degree k

K5 K3,2

Foundations of Computer Science 1 — LIACS !60

Complete graphs

https://en.wikipedia.org/wiki/Complete_graph

How many edges?

Foundations of Computer Science 1 — LIACS !61

Complete graphs

Extra info: Complete induced subgraphs are called cliques

Foundations of Computer Science 1 — LIACS !62

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

Foundations of Computer Science 1 — LIACS !63

Trees (graphs)

https://commons.wikimedia.org/wiki/File:Tree_without_leaves_2.jpg

Def. Tree is a connected graph with no cycles.

The following are equivalent:  
1) G is a tree;
2) G has no cycles and n-1 edges;
3) G is connected and has n-1 edges;

Foundations of Computer Science 1 — LIACS !64

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy…

Foundations of Computer Science 1 — LIACS !65

Counting edges

A connected graph with n vertices has:
• at least n-1 edges

• at most ! edges(n
2) = n(n−1)

2

K5

Foundations of Computer Science 1 — LIACS !66

Digression:

1.How many (distinct) 3-regular graphs with 4 vertices are there?
2.How many 3- regular graphs with 5 vertices are there?
3.How many complete bipartite graphs with 4 vertices are there?

(we only consider connected undirected graphs)

Foundations of Computer Science 1 — LIACS !67

Digression

3-regular graphs are also called cubic graphs…

http://mathworld.wolfram.com/CubicGraph.html

0, 1, 2, 5, 19, 85, 509, 4060, 41301, ... (OEIS A002851).

Foundations of Computer Science 1 — LIACS !68

Planar graphs

Water, Gas and Electricity

Connect each house to source… no lines crossing!

Foundations of Computer Science 1 — LIACS !69

Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?

Foundations of Computer Science 1 — LIACS !70

Planar graphs

Planar graphs can be drawn (on a plane) without intersecting edges.
Euler proved the following relationship for planar graphs:

where r stands for the faces: “regions” the plane is cut into, including the outermost.

Kuratowski: A finite graph is planar if and only if it
does not contain a subgraph that is a subdivision of the complete graph K5
or the complete bipartite graph K3,3

|V | −|E | + r = 2;

Explain a bit…

Foundations of Computer Science 1 — LIACS !71

Directed graphs

Definition. A directed graph G — a digraph — is an ordered pair (V,E) where
• V = V(G) is the set of vertices (or nodes)
• E=E(G) is the set of directed edges (or arrows, or arcs)

directed edges e=(u,v) are ordered pairs of vertices, from u to v

we also say the edge begins in u and ends in v, u precedes v, or v follows u

Loops possible. Parallel edges not (anti-parallel yes!).

t

p

r

q

s

u

E = {(p, s), (p, t), (q, u), (r, p), (s, p),
(s, q), (t, q), (t, r), (u , s), (u , u)}

Foundations of Computer Science 1 — LIACS !72

Caveat: mistakes and inconsistencies happen

In example 9.1 in Schaum (p 202), graph (a) contains two parallel arrows:
(B, A) appears twice in the set E (G). That is not in line with the definition of a
set. So this graph is actually a directed multigraaf. Oh well. Note that for
defining a directed or undirected multigraph for E, we could use the concept of
a multiset. In the book and the lecture, multigraphs (directed or undirected) are
used informally.

Foundations of Computer Science 1 — LIACS !73

t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p q r s t u
p
q
r
s
t
u

from…

to…

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

Foundations of Computer Science 1 — LIACS !74

t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p q r s t u
p
q
r
s
t
u

from…

to…

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

Foundations of Computer Science 1 — LIACS !75

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges
in-degree indeg(v): number of inbound edges

Source: vertex v with indeg(v)=0.
Sink: vertex v with outdeg(v)=0.

t

p

r

q

s

u

Theorem. In a directed grap G
the following holds:

!∑
v∈V

ou tdeg(v) = |E | = ∑
v∈V

indeg(v)

“number of starts” = “number of ends"

Foundations of Computer Science 1 — LIACS !76

Directed graphs: main concepts

directed path: a sequence ! , with !v1, e1, v2, e2…, vn ek = (vk, vk+ 1)

Lenght of path = number of (directed) edges in path (n)

simple: differing vertices
cycle: closed path (first vertex = last vertex)
trail: differing edges
circuit: closed trail

spanning path: passes all vertices (recall Hamilton)

semipath: undirected path; path in the underlying  
undirected graph
(! OR !) ek = (vk, vk+ 1) ek = (vk+ 1, vk)

t

p

r

q

s

u

path: q→u→s→p→t→r
semipath : p→s→q←t→r

Foundations of Computer Science 1 — LIACS !77

Caveat: mistakes and inconsistencies happen

In Schaum, the term cycle is not dealt with very consistently. According to the
definition, loops and a closed path such as s, p, s in the example of the previous
previous would be cycles. After all, Schaum does not limit the length of the
closed path, as was the case with undirected graph. However, in the example on
page 221 (problem 9.1 (d)), Z, W, Z is not counted as a cycle. Oh, well.

Foundations of Computer Science 1 — LIACS !78

Digraphs and connectedness

Definition. A digraph is strongly connected if every pair of vertices
is connected by a directed path.

Definition. A digraph is weakly connected if every pair of vertices
is connected by a semipath.

Theorem 9.2. a) strongly connected if and only a closed spanning path exists  
b) weakly connected if and only if a spanning semipath exists f

Theorem 9.3. A directed graph G without cycles has a source and a sink.

Theorem 9.3. If G is a directed graph without cycles, then there
exists a topological ordering of G (and converse)

Foundations of Computer Science 1 — LIACS !79

Digraphs: topological ordering

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an
enumeration) of all the vertices of of G such that

Or: you can draw the vertices of the graph in such a configuration that the arrows always point
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

a topological ordering:
7,5,11,2,3,10,8,9

Foundations of Computer Science 1 — LIACS !80

Digraphs: topological ordering

1 2

3

Rock, Paper, Scissors, Lizard, Spock?

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an
enumeration) of all the vertices of of G such that

Or: you can draw the vertices of the graph in such a configuration that the arrows always point
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

