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Lecture 10 
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Graph Theory 
basics refresher & continuation
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Graphs

Definition. An undirected graph G is an ordered pair (V,E) where 
• V = V(G) is the set of vertices (or nodes) 
• E=E(G) is the set of edges  
• an edge is a set of two vertices
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3

5

4 V = {1,2,3,4,5}

E= {{1,3},{1,4},{1,5}, 
{2,4},{2,5},{3,5}}

-undirected
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Graphs

Definition. An undirected graph G is an ordered pair (V,E) where 
• V = V(G) is the set of vertices (or nodes) 
• E=E(G) is the set of edges  
• an edge is an ordered pair of two vertices

2

1

3

5

4 V = {1,2,3,4,5}

E= {(3,1),(1,4),(5,1), 
(4,1),(5,2),(5,3)}

-directed
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Graphs
-simple graphs: no loops, no multiple edges

2

1

3

5

4 V = {1,2,3,4,5}

E= {{1,3},{1,4},{1,4},{1,5}, 
{2,4},{2,5},{3,5},{2,2}}

2

1

3

5

4 V = {1,2,3,4,5}

E= {(3,1),(1,4),(4,1),(5,1), 
(4,1),(5,2),(5,3)}

In directed graphs: 
two edges of different  

directions  
are different! 

Still simple graph
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Graphs

-representations; directed graphs are binary relations 
-can be represented as adjacency matrices
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4 0 0 1 1 1
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

1 2 3 4 5
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4
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

1 2 3 4 5
1
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4
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Graphs

-basic concepts: incidence (vertex-edge), neighbour(hood), adjacency 
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-degree of vertex deg(v)
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Graphs

Degree-sum formula:

∑
v∈V

deg(v) = 2 |E |

Handshaking lemma: 
number of vertices with odd degree is even.

Proof: consider all incidence pairs (e,v)…

Proof: sum separately odd degree and even degree 
vertex degrees. Sum of odd degree must be even. 
But if a sum of odd numbers is even, there must 
be an even number of odd numbers… 
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Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)
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Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)
Isomorphic graphs: sets of vertices of same size, connected in the same way

1

2

3

a

b

c

G&H Isomorphic: there exists 
a bijection f from V(G) to V(H), 
which preserves edges: 

{x,y} is an edge in G if and only if 
{f(x),f(y)} is amn edge in H

https://en.wikipedia.org/wiki/Graph_isomorphism
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Graphs

Representations, equality and isomorphism

Equal graphs: same set of vertices, and edges (can be drawn differently!)
Isomorphic graphs: sets of vertices of same size, connected in the same way

1

2

3

a

b

c

https://en.wikipedia.org/wiki/Graph_isomorphism

isomorphism
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Graphs

Subgraphs, and vertex induced subgraphs

vertex induced  
subgraphs

subgraphs

subset of vertices, 
If {x,y} in E’ then {x,y} in E

(V,E)

(V’,E’)

(V’’,E’’)

subset of vertices, 
all legal edges in E 
(if x,y, in V’’ and  
{x,y} in E then {x,y} in E’’ 
and {x,y} in E’’ then {x,y} 
in E)
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Graphs

Edge and vertex removal: G-e = graph without edge e. 
G-v = graph without vertex v and all edges incident with G
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Walking the graph…
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Paths

Path: a sequence ! , with !v1, e1, v2, e2…, vn ek = {vk, vk+ 1}

Lenght of path = number of edges in path (n)

We say: path from !v1 to v2

Closed path: !v1 = vn

x

v

w

y

u

In graphs (not multigraphs), vertices suffice: 
!  v1, e1, v2, e2…, vn → (v1, v2, …, vn)

v1v2 …vn

v1 → v2 → … → vn

u → v → w → v → u
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Paths: more concepts

Closed path: !v1 = vn
x

v

w

y

u

cycle: closed path of length > 2, all distinct vertices  
except first/last (essentially, closed simple path) 
   
circuit: closed path, vertices may repeat, but edges cannot.

simple path (walk): distinct vertices 

trail: path with distinct edges
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Same thing:

x

v

w

y

u

u → v → w → y → x

cycle: closed path of length > 2 
Vertices cannot repeat. Edges cannot repeat (Closed) 
   
circuit:  
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:  
Vertices may not repeat.  
Edges may not repeat. 

trail:  
Vertices may repeat.  
Edges cannot repeat. (a s.p. is a special trail.)

simple path:  
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Same thing:

x

v

w

y

u

y → v → w → u → x → v → u → y
cycle: closed path of length > 2 
Vertices cannot repeat. Edges cannot repeat (Closed) 
   
circuit:  
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:  
Vertices may not repeat.  
Edges may not repeat. 

trail:  
Vertices may repeat.  
Edges cannot repeat.

trail (& not simp. path)
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Same thing:

x

v

w

y

u

y → v → w → u → x → y
cycle: closed path of length > 2 
Vertices cannot repeat. Edges cannot repeat (Closed) 
   
circuit:  
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:  
Vertices may not repeat.  
Edges may not repeat. 

trail:  
Vertices may repeat.  
Edges cannot repeat.

cycle:
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Same thing:

cycle: closed path of length > 2 
Vertices cannot repeat. Edges cannot repeat (Closed) 
   
circuit:  
(>2) Vertices may repeat. Edges cannot repeat (Closed)

simple path:  
Vertices may not repeat.  
Edges may not repeat. 

trail:  
Vertices may repeat.  
Edges cannot repeat. x

v

w

y

u

y → v → w → u → x → v → u → y → x

circuit (& not a cycle)
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Paths

Cycle and circuit not mutually exclusive. 

Terminology not fully consistent between bodies of 
work. Must be consistent within one work 
Check (and give) definitions
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Useful math… 

Every day you go from home to school, and your trail (“the way you take”)  
is such that you pass by the same bakery twice.  Is there a faster way to school?
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Theorem 8.2. (Schaum) If there is a path between vertices u and v, then there 
is a simple path between u and v.

Every day you go from home to school, and your trail (“the way you take”)  
is such that you pass by the same bakery twice.  Is there a faster way to school?

Graph theory: yes.

A theorem…  

since a simple path never sees the same vertex twice it is shorter by 
at least one.
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Theorem 8.2. If there is a path between vertices u and v, then there 
is a simple path between u and v.

In graphs, you can avoid going through the same vertex twice…

Constructive proof!  
(what are constructive proofs?)

Take
any path . . .

not simple ? I k s. t .

pry → V, → Vr →Vs → .
-
- →Vk → Wp →WL - - Wm → Vk -7 Vice , .

. . → ✓
-

Pu - U →Va - - Vu → Ven - - → ✓ is a path

Repeat until simple . - - ( each step decreases length - must terminate )
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Paths: more examples

t

p

r

q

s

p→t→r→t→q not simple,not trail (edge 
repeats)

p→r→t→p→s→q not simple, trail 
(only vertex repeats)

p→r→t→q→s simple trail

p not cycle

p→r→p not cycle (must be l>2)

r→t→p→s→q→t→r not cycle, not circuit

r→t→q→s→p→r cycle & circuit
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"Read Euler, read Euler, he is the master of us all.” - Laplace

Math culture: Euler, Seven Bridges of Königsberg and  
beginnings of graph theory.  

15 April 1707 – 18 September 1783
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Polyhedral formula : V −E + F = 2
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Can we cross that, and every other brige… but only once?

“This question is so banal, but seemed to me worthy of attention in that [neither] geometry, 
nor algebra, nor even the art of counting was sufficient to solve it.”
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Seven Bridges of Königsberg

A multigraph problem…

a

b

c

d

a

b

c

d

0 2 1 0
2 0 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d
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Seven Bridges of Königsberg

A multigraph problems a

b

c

d

0 2 1 0
2 1 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d

Definition. A graph G is an ordered pair  
(V,E) where 
• V = V(G) is the set of vertices 
• E=E(G) is the set of edges 

Graphs do not suffice… 
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Seven Bridges of Königsberg

a

b

c

d

0 2 1 0
2 1 1 2
1 1 0 1
0 2 1 0

a b c d
a
b
c
d

Definition. A graph G is an ordered pair  
(V,E) where 
• V = V(G) is the set of vertices 
• E=E(G) is the set of edges 

Euler proved impossibility, and tackled generalizations; the result is graph theory  
as we know it…solution soon! 
Main contribution: observation that only “connectedness” (topology), rather than actual positions matter… 
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A moment’s thought

concepts, "mathematical objects”, formalization, modelling, abstraction…

Bridges in reality, bridges on a map 

v.s.  

Graph — abstract concept  

v.s. 

graph (picture on paper), 
set-theoretical notation for a graph,  
adjacency matrix, 
incidence matrix, 

v.s. 

graph as a binary relation 
function (e.g. characteristic)



Foundations of Computer Science 1 — LIACS !33

Digression

Isomorphic? 

Check main  
properties…

- e
-

-

y
- q i

' H
/# l

/ Tx l
l

l l

I I

.
- -

No
,
G HAS TRIANGLES

H DOES NOT

Triangle = three pair -wise connected vertices
,

an isomorphism would preserve this
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Digression

Showing non-isomorphism can be hard

Note: isomorphism is a relation on Graphs. 
What kind?
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Graphs and connectedness

“there exists a path between” is  
 a relation on !V × V

reflexive 
symmetric  
transitive

Connected components: 
intuitive- “maximal” connected subgraphs

Definition. A graph is connected if every 
pair of vertices is connected by a path. 

( ! ) ∀ u , v ∈ V, ∃ path(u , v)
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Graphs: bridge and cutpoint

bridge, isthmus, cut-edge

cut point, cut vertex, articulation points

Def. Bridge is an edge e whose  
removal increases the number of  
connected components.

Def. Cut vertex is a vetex v whose  
removal increases the number of  
connected components.



Foundations of Computer Science 1 — LIACS !37

Graphs: bridge and cutpoint

bridge, isthmus, cut-edge

cut point, cut vertex, articulation points

Def. Bridge is an edge e whose  
removal increases the number of  
connected components.

Def. Cut vertex is a vetex v whose  
removal increases the number of  
connected components.

⑧
←
"
s
:c:.
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Graphs: distance

Def. The distance ! between vertices u,v in graph G is the lenght of the 
shortest path between u and v in G.

d(u , v)

Comment. If there is no path (u and v are in distinct connected components) 
we say the distance is infinite, !d(u , v) = ∞

Theorem. Vertex distance obeys the triangle inequality: 
!For all u , v, w ∈ V, d(u , v) + d(v, w) ≥d(v, w)

Def. The diameter of the graph G , denoted diam(G), is the distance between  
two maximally distant nodes which are connected by a path

Proof. Cannot be more. Can be less. 
w

u

v
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Digression: graph centrality

A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality,  
D) Degree centrality, E) Harmonic Centrality and F) Katz centrality

https://en.wikipedia.org/wiki/Centrality
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Digression: graph centrality

A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality,  
D) Degree centrality, E) Harmonic Centrality and F) Katz centrality

https://en.wikipedia.org/wiki/Centrality
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Social network analysis:  how "central" nodes are in a graph. 
measure of importance.  
That can be, for example, a measure that indicates  
(a) how many paths run through that node,  
(b)  the total / average distance to the other nodes, 
(c)  the degree of the node  
 
The red side of spectrum indicates “more central”

http://liacs.leidenuniv.nl/~takesfw/SNACS/
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Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once. 
A graph with an Euler trail is called a Traversible graph.

“Can you draw the following without crossing any edge twice, ending where 
you started from?”

Aslo Seven bridges on multigraph!

io④E

Vedran Dunjko


Vedran Dunjko
circuit:
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Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once.

“Can you draw the following without crossing any edge twice, ending where 
you started from?”

Theorem 8.3 (Euler): a finite connected graph 
has an Euler trail if and only if evey edge has an 
even degree.

Boog

gadgeteer
Easter

mutant

Vedran Dunjko
vertex

Vedran Dunjko


Vedran Dunjko
Graphs with an Euler (Eulerian) trail are called Traversible

Vedran Dunjko
circuit if and only if

Vedran Dunjko
Euler  trail:  a  trail  which  uses  each  edge  exactly  once.
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Traversible and Eulerian Graphs

Def. Euler trail: a closed trail which uses each edge exactly once.

“Can you draw the following without crossing any edge twice?”

Corollary. An undirected connected graph  
has an Eulerian trail if and only if exactly  
zero or two vertices have odd degree.

iowa

K
"

E.
circuit ! !

Euler trail ⇒ 0 or 2 odd degree E. trail
not

Euler circuit ⇒ all even degree E. circuit

In

hope
!

Vedran Dunjko
Euler  trail:  a  trail  which  uses  each  edge  exactly  once.
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Traversible and Eulerian Graphs

Corollary. An undirected connected graph  
has an Eulerian trail if and only if exactly  
zero or two vertices have odd degree.

Almost a proof:

Imagine an “inner” vertex of the trail

if degree odd, you are trapped

*
k

r
od

-ko

= proof of necessity of 0/2 vertex

criterion
,
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Traversible and Eulerian Graphs

Corollary. An undirected connected graph  
has an Eulerian trail if and only if exactly  
zero or two vertices have odd degree.

HE STOPPED HERE
. . .
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Eulerian Graphs

The numbers of (connected) Eulerian graphs  
with n nodes are 1, 0, 1, 1, 4, 8, 37, 184,  
1782, ... OEIS A003049

http://mathworld.wolfram.com/EulerianGraph.html
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://en.wikipedia.org/wiki/Regular_dodecahedron
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Hamilton cycles

Def. Hamilton cycle: a closed path which uses each vertex exactly once. 
(closed = starts where it ends)

https://www.puzzlemuseum.com/month/picm02/200207icosian.htm
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v

Euler v.s. Hamilton

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

Leonhard Euler 
Bridges of Königsburg 
Closed, each line once  
 
Simple characterization 
Easy to detect 

William Rowan Hamilton

Icosian game 
Closed, each vertex once  

“Travelling salesperson problem” 

Ore (1960). A graph with n-vertices (n >3) is Hamiltonian if,  
for each pair of non-adjacent vertices, the sum of their degrees  
is n or greater. 

If but not if and only if….NP-complete…
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Euler v.s. Hamilton (Schaum)
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Euler v.s. Hamilton

Hamiltonian and non-Eulerian Eulerian and non-Hamiltonian

“Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices,  
while a Hamiltonian circuit visits each vertex exactly once but may repeat edges.” Schaum p.161



Foundations of Computer Science 1 — LIACS !56

Euler v.s. Hamilton

Schaum p.162 Theorem 8.5 (Dirac, 1952):  
Let G be a connected graph with n vertices.  
Then G is Hamiltonian if n > 3 and n/2 ≤ deg(v) for each vertex v in G.

No need to know this theorem (for this course). 
It is an illustration of the type of propositions  
that have been obtained to encompass the concept of Hamiltonian. 

TYPOS and mistakes HAPPEN!
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Labeled graphs & weights
Labeled graph: information on the edges 
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance) 

• weight of a path: 
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm 
• shortest (“cheapest”) paths; Dijksta’s algorithm

IN OTHER
MINIMUM SPANNING TREE

COURSES

Dijkstra
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Labeled graphs & weights
Labeled graph: information on the edges 
Weighted graph: values (numbers) on the edges  

!w : E → Labels; or w : E → ℝ; w(e)

Can mean: capacity (conductance, diameter), cost (time, distance) 

• weight of a path: 
• minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm 
• shortest (“cheapest”) paths; Dijksta’s algorithm
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Special graphs

complete graph "  
bipartite graph 
complete bipartite graph "  

Kn

Km,n (or Km×n)

k-regular graph: all vertices degree k

K5 K3,2
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Complete graphs

https://en.wikipedia.org/wiki/Complete_graph

How many edges?
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Complete graphs

Extra info: Complete induced subgraphs are called cliques



Foundations of Computer Science 1 — LIACS !62

Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the 
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.
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Trees (graphs)

https://commons.wikimedia.org/wiki/File:Tree_without_leaves_2.jpg

Def. Tree is a connected graph with no cycles.

The following are equivalent:  
1) G is a tree;  
2) G has no cycles and n-1 edges;  
3) G is connected and has n-1 edges;
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Bipartite graphs

Def. A graph is bipartite if there exists a bipartition of the 
vertices s.t. (such that) there are no edges within the partitions.

K3,2Theorem. A graph is bipartite if it has no cycles of odd lenght.

One way is easy… 
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Counting edges

A connected graph with n vertices has: 
• at least n-1 edges 

• at most !  edges(n
2) = n(n−1)

2

K5
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Digression:

1.How many (distinct) 3-regular graphs with 4 vertices are there? 
2.How many 3- regular graphs with 5 vertices are there? 
3.How many complete bipartite graphs with 4 vertices are there? 

(we only consider connected undirected graphs)
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Digression

3-regular graphs are also called cubic graphs…

http://mathworld.wolfram.com/CubicGraph.html

0, 1, 2, 5, 19, 85, 509, 4060, 41301, ... (OEIS A002851).
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Planar graphs

Water, Gas and Electricity

Connect each house to source… no lines crossing!
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Planar graphs

http://www.archimedes-lab.org/How_to_Solve/Water_gas.html

?
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Planar graphs

Planar graphs can be drawn (on a plane) without intersecting edges.  
Euler proved the following relationship for planar graphs: 
  
where r stands for the faces: “regions” the plane is cut into, including the outermost. 

Kuratowski: A finite graph is planar if and only if it  
does not contain a subgraph that is a subdivision of the complete graph K5  
or the complete bipartite graph K3,3

|V | −|E | + r = 2;

Explain a bit… 
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Directed graphs

Definition. A directed graph G — a digraph — is an ordered pair (V,E) where 
• V = V(G) is the set of vertices (or nodes) 
• E=E(G) is the set of directed edges (or arrows, or arcs)

directed edges e=(u,v) are ordered pairs of vertices, from u to v

we also say the edge begins in u and ends in v, u precedes v, or v follows u

Loops possible. Parallel edges not (anti-parallel yes!). 

t

p

r

q

s

u

E = {(p, s), (p, t), (q, u ), (r, p), (s, p),
(s, q), (t, q), (t, r), (u , s), (u , u )}
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Caveat: mistakes and inconsistencies happen 

In example 9.1 in Schaum (p 202), graph (a) contains two parallel arrows:  
(B, A) appears twice in the set E (G). That is not in line with the definition of a 
set. So this graph is actually a directed multigraaf. Oh well. Note that for 
defining a directed or undirected multigraph for E, we could use the concept of 
a multiset. In the book and the lecture, multigraphs (directed or undirected) are 
used informally. 
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t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p  q  r  s  t  u
p   
q   
r   
s   
t  
u

from…   

to…   

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges 
in-degree indeg(v): number of inbound edges 

Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.
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t

p

r

q

s

u

0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1

p  q  r  s  t  u
p   
q   
r   
s   
t  
u

from…   

to…   

Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges 
in-degree indeg(v): number of inbound edges 

Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.
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Directed graphs: main concepts

out-degree outdeg(v): number of outbound edges 
in-degree indeg(v): number of inbound edges 

Source: vertex v with indeg(v)=0. 
Sink: vertex v with outdeg(v)=0.

t

p

r

q

s

u

Theorem. In a directed grap G 
the following holds: 

!∑
v∈V

ou tdeg(v) = |E | = ∑
v∈V

indeg(v)

“number of starts” = “number of ends"
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Directed graphs: main concepts

directed path: a sequence ! , with !v1, e1, v2, e2…, vn ek = (vk, vk+ 1)

Lenght of path = number of (directed) edges in path (n)

simple: differing vertices 
cycle: closed path (first vertex = last vertex) 
trail: differing edges 
circuit: closed trail  

spanning path: passes all vertices (recall Hamilton) 

semipath: undirected path; path in the underlying  
undirected graph 
( !  OR !  ) ek = (vk, vk+ 1) ek = (vk+ 1, vk)

t

p

r

q

s

u

path: q→u→s→p→t→r 
semipath : p→s→q←t→r
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Caveat: mistakes and inconsistencies happen 

In Schaum, the term cycle is not dealt with very consistently. According to the 
definition, loops and a closed path such as s, p, s in the example of the previous 
previous would be cycles. After all, Schaum does not limit the length of the 
closed path, as was the case with undirected graph. However, in the example on 
page 221 (problem 9.1 (d)), Z, W, Z is not counted as a cycle. Oh, well. 
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Digraphs and connectedness

Definition. A digraph is strongly connected if every pair of vertices 
is connected by a directed path.

Definition. A digraph is weakly connected if every pair of vertices 
is connected by a semipath.

Theorem 9.2. a) strongly connected if and only a closed spanning path exists  
b) weakly connected if and only if a spanning semipath exists  f

Theorem 9.3. A directed graph G without cycles has a source and a sink.

Theorem 9.3. If G is a directed graph without cycles, then there 
exists a topological ordering of G (and converse)
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Digraphs: topological ordering

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an 
enumeration)  of all the vertices of of G such that  
  
Or: you can draw the vertices of the graph in such a configuration that the arrows always point 
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j

a topological ordering: 
7,5,11,2,3,10,8,9
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Digraphs: topological ordering

1 2

3

Rock, Paper, Scissors, Lizard, Spock?

A topological ordering (topological sorting) of a directed graph G = (V, E) is a sequence (an 
enumeration)  of all the vertices of of G such that  
  
Or: you can draw the vertices of the graph in such a configuration that the arrows always point 
left to right.

v1, v2, …, vn (vi, vj) ∈ E, ⇒ i < j


