
Mining Multivariate Time Series with Mixed Sampling Rates

Ricardo Cachucho, Marvin Meeng, Ugo Vespier, Siegfried Nijssen, Arno Knobbe
LIACS, Leiden University, the Netherlands

{r.cachucho,m.meeng,u.vespier,s.nijssen,a.j.knobbe}@liacs.leidenuniv.nl

ABSTRACT
Fitting sensors to humans and physical structures is becom-
ing more and more common. These developments provide
many opportunities for ubiquitous computing, as well as chal-
lenges for analyzing the resulting sensor data. From these
challenges, an underappreciated problem arises: modeling
multivariate time series with mixed sampling rates. Although
mentioned in several application papers using sensor systems,
this problem has been left almost unexplored, often hidden in
a preprocessing step or solved manually as a one-pass proce-
dure (feature extraction/construction). This leaves an oppor-
tunity to formalize and develop methods that address mixed
sampling rates in an automatic fashion.

We approach the problem of dealing with multiple sampling
rates from an aggregation perspective. We propose Accor-
dion, a new embedded method that constructs and selects ag-
gregate features iteratively, in a memory-conscious fashion.
Our algorithms work on both classification and regression
problems. We describe three experiments on real-world time
series datasets, with satisfying results.

Author Keywords
Multivariate Time Series; Mixed Sampling Rates;
Aggregation; Feature Construction; Sensor Data

ACM Classification Keywords
G.3 Probability and Statistics: Time Series; I.5.2 Pattern
Recognition - Design Methodology: Classifier design and e-
valuation

INTRODUCTION
This paper presents a practical modeling task in the field of
multivariate time series analysis, and algorithms to solve this
task. In real-world applications involving time series, specif-
ically those produced by multiple sensors, one is often con-
fronted with the challenge of analyzing data captured at var-
ious sampling rates. This might occur when one wants to
include sensors that measure processes at various rates, for
example the vibration (high sampling rate) and temperature
(low rate) of a large windmill. In this paper, we analyze a

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.

specific instantiation of such a problem, where the aim is to
model a target time series, that is captured at (much) lower
rates than the remaining series. To model the target series in
terms of the remaining ones, we will somehow have to ‘slow
down’ the high-frequency measurements in order to match
the target.

As a motivating example, consider the problem of activity
recognition. In this problem, the task is to classify a per-
son’s activities into a finite set of classes, typically at a fairly
slow rate. The activity will be predicted using body-worn
or environmental sensors, for example measuring physiolog-
ical parameters (e.g. heart rate), acceleration or position in
space. The practical problem here is that modern sensors tend
to measure at high sampling rates (typically 1 Hz or higher),
whereas activity is registered at much lower rates (e.g. once
every 60 seconds). Therefore, each period to be classified
is described by many measurements (per sensor). The most
obvious solution is to combine multiple measurements into
a single value characterising the period, for example, the av-
erage heart rate or the highest acceleration experienced over
this period.

In this paper, we approach this challenge from an aggrega-
tion perspective: for a given sensor and a given time interval
(a window of data), an aggregate function will summarize a
sequence of sensor readings into a single numeric value. An
aggregate feature is composed of three main components: a
sensor measuring at high rates (the predictor), a window over
which values of the sensor are aggregated, and finally an ag-
gregate function that combines these values into a single out-
come. Assuming a target series sampled at low frequency
fr and the remaining time series at higher frequency fS, the
proportion fS/fr denotes the number of measurements per
sensor that correspond to a single target value. To allow for
phenomena that involve unknown degrees of integration over
time, our algorithm will be allowed to consider windows both
longer and shorter than fS/fr.

To illustrate how the optimal window size may be somewhat
larger or smaller than the proportion fS/fr, consider the chal-
lenge of modeling a person’s sleep quality (one of our appli-
cations mentioned in the experimental section) from various
sensors, both body-worn and placed in the environment. In
this case, 24 hours of sensor data naturally correspond to a
single target value describing the sleep quality of one night.
However, one can imagine that a feature capturing the amount
of strenuous activity during the four hours prior to sleep might
play an important role, which corresponds to a window size
of only 1/6th of the ‘natural’ window. Similarly, windows

1

covering more than than 24 hours are imaginable, such as
those related to the nutrition over the last 48 hours. Clearly, a
fixed window size based on the mentioned proportion will not
guarantee optimal results, and we will have to include and op-
timize the size of the window as a parameter in the definition
of features.

Although a feature construction step (even including aggre-
gation) is the backbone of many activity recognition projects
[5], all too often this step is presented as a one-pass pro-
cess [3, 16, 18, 19], such that only a fixed set of features be-
comes available for the actual modeling step. The resulting
features are static and constructed manually, either based on
some domain knowledge about the physics involved, or by
making default choices. It is not hard to imagine that this
step is, in fact, the result of several iterations of trial and er-
ror. Moreover, this fixed set is required to be relatively small,
for reasons of memory or storage. The iterative method we
propose, Accordion, is an embedded approach that does both
feature construction (building candidate aggregate features),
and feature selection automatically, allowing for features to
be created dynamically during the search process.

At each iteration in the search process, Accordion transform-
s high frequency predictors into a set of candidate aggregate
features at the lower frequency of the target, searching for the
best combination of the components that compose an aggre-
gate feature. From this set of aggregate features, only the
most promising candidate feature is selected and material-
ized, in a greedy fashion. Therefore we categorize our algo-
rithms as memory-conscious. With the dynamic construction
of features proposed here, we aim to solve both the issue of
choosing the right features and estimating their parameters, as
well as the varying requirements for the informative features
that occur while modeling the data (for example, further down
in a decision tree). In order to do so, the feature construction
and selection steps are closely tied with the final modeling
process, in both the regression and classification setting. In-
spired by Brush’s challenge of enhancing reproducibility and
clarity [4], our algorithms and activity recognition datasets
will be made available to the research community1.

When thinking of the aggregate feature construction possibil-
ities, it is good to note that the search space is potentially very
large, due to the choices of sensor, aggregate function and
window size (which may vary substantially, as noted). There-
fore, we search for (candidate) aggregate features heuristi-
cally. We propose algorithms that consider a feasable set of
candidate features by a) limiting the actual choice of aggre-
gate functions to a small set (min, max, avg, . . .), b) perform-
ing a moderate search over the possible window sizes, and
c) selecting the final aggregate features at different degrees
of greediness. On top of these choices, we tackle the poten-
tially large size of the final dataset by materializing only the
selected features.

In general, we distinguish between two types of applications,
one where the slow target series is numeric, and we are ef-
fectively dealing with a regression problem, and one where
1Link to data and sources to be placed here for the camera-ready
version.

the target is nominal and we need a classification model. The
feature selection algorithm works differently for either set-
ting, but the essence of constructing sets of candidate features
using aggregation is identical. The main difference between
the two versions is the kind of modeling they mimic: in the
regression case, the feature construction algorithm effectively
builds a linear model in a greedy fashion. In the case of clas-
sification, we construct a decision tree of aggregate features
along the lines of C4.5 [20].

The main contributions of this paper are as follows:

• Present and formalize a common task in the modeling of
multivariate time series, related to the target being mea-
sured at a lower rate than the remaining series.

• Propose an embedded algorithm for the proposed task, that
dynamically constructs, selects and models (all in one so-
lution), using a manageable set of aggregate features in the
contexts of both classification and regression.

• Describe how both algorithms are memory-conscious, ma-
terializing only a limited set of aggregate features, and po-
tentially increasing the possible search space for good fea-
tures.

• Algorithm implementation and datasets are made available
to the research community.

PRELIMINARIES

Multivariate Time Series with Mixed Sampling Rates
The data we consider is assumed to come from sensor sys-
tems. We assume that our sensor system S = {s1, . . . , sp, r}
consists of p + 1 sensors. The first p sensors will act as pre-
dictors, while the last sensor r, the response, will be treated
as the target sensor that we wish to predict or explain. |s| and
|r| indicate the length (number of data points) of s and r, re-
spectively. While the domain for the predictors is always the
set of real numbers R, the domain of r is either R (regression
setting), or a finite set of classes (classification setting).

We assume that all sensors register measurements syn-
chronously and at the same fixed sampling rate, except for the
response, which is registering at a lower sampling rate. We al-
so assume that the predictor sampling rate is an integer q > 1
multiple of the sampling rate of the response: fS = q · fr.
This leads to the following definition.

DEFINITION 1. A time series dataset with mixed sampling
rates is assumed to consist of:

• A set of time series S, representing the predictor variables,
where S is materialized as a matrix of size |s| × p. Each
time series s in S is a vector of real numbers, where si, i =
1, . . . , |s| is the ith element of s.

• A time series r, representing the response variable. This
time series has a length of |r| = |s|/q, where q ∈ N+∧q >
1; the ith element in r is assumed to have been measured
at the same time as the i · qth element in s.

Note that this implies that the measurements of S and r do
not start at the same time (see Figure 1).

2

Figure 1. Relation between high (fS) and low (fr) sampling rates.

Feature Construction with Mixed Sampling Rates
As discussed, our aim is to model the response variable in
terms of the predictors, over time. As the two are sampled at
different rates, we will ‘slow down’ the high frequency mea-
surements of S using aggregate functions, and turn them into
features that are available at the sampling rate of r. In oth-
er words, we will be taking a feature construction approach.
In order to transform the high frequency measurements into
lower frequency ones, we employ the notion of a window:

DEFINITION 2 (WINDOW). Given a window length w
and an index 1 ≤ w ≤ i ≤ |s| in a predictor time series
s, a window of length w at index i consists of the time series
of measurements s[i− w + 1 : i] = [s[i− w + 1], s[i− w +
2], . . . , s[i]].

For a response series measured q times as slow as the pre-
dictors, it could make sense to choose w such that w = q.
Figure 1 depicts such a situation. However, experimental e-
valuation reveiled that this choice may not always be optimal.
Both window lengths w > q and w < q could also be argued
for. Therefore, we simply assume that w ∈ N+. Note that
when w > q, each consecutive window will have the follow-
ing fraction of overlap: 1− q/w.

We will employ aggregate functions to summarize the mea-
surements in a window into a single value. An aggregate
function a ∈ A takes as input a time series of measurements
m, and produces a single numeric value a(m) ∈ R. The fixed
set of aggregate functions A = {min,max, avg, . . .} we use
will be described in more detail in the next section.

We can now define aggregate features as follows.

DEFINITION 3 (AGGREGATE FEATURE). Given a
choice of window size w, an aggregate function a and a
predictor time series s ∈ S, the aggregate feature afs,a,w is a
vector of length |s|/q, defined as follows:

afs,a,w[i
′] = a(s[max(1, i′ · q − w + 1) : i′ · q])

where 1 ≤ i′ ≤ |s|/q.

An aggregate feature for a given dataset can hence be spec-
ified by a tuple of parameters (s, a, w). Sometimes we will
refer to these features without reference to their parameters,
just as a generic aggregate feature f .

A set of aggregate features F together with the vector of
response values r can be used to create a new data matrix.
Each aggregate feature corresponds to a column of this ma-
trix. The number of rows in this matrix corresponds exactly
to the length of r, |r| = |s|/q.

More formally, a data matrix S′ of dimension |r| × (|F|+ 1)
is obtained, where S′t,f is the feature calculated for the tth
target instance using the f th feature descriptor in F .

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

seconds

H
e
a
rt

 R
a
te

HR
HR_min_60
HR_max_60
HR_mea_60
HR_med_60
HR_iqr_60
HR_std_60
HR_rms_60

Figure 2. Aggregate features built from heart rate logged at 1 Hz.

Problem Statement
Our main task is to find good aggregate features for time se-
ries datasets with mixed sampling rates. More formally, we
assume we are given a time series dataset as introduced in
Definition 1, as well as a function score(F , r) that can eval-
uate the quality of a set of features with respect to response
variable r. The task is to find a set of aggregate features F ,
such that each feature is described by:

• A predictor time series s ∈ S.

• An aggregate function a ∈ A.

• A window size w.

Furthermore, the feature set F should optimize the scoring
function score(F , r). Scoring functions in this paper can be
based on regression or classification models. The details of
this will be discussed in the next section.

THE ACCORDION METHOD

Aggregation of Time Series
Aggregate functions provide a means for summarizing a se-
ries of measurements in a window, in various ways, as il-
lustrated in Figure 2. Different aggregate functions capture
different aspects of the measurements within a window. Al-
though the space of aggregate functions is conceivably very
large, we have opted for a relatively small collection of func-
tions that represent common statistics of sets of values. The
set of aggregate functions A considered in this paper is com-
posed of:

• avg: the mean value,

• med: the median,

• max: the maximum value,

• min: the minimum value,

• stdv: the standard deviation,

3

Algorithm 1 CalculateAF
Require: time series s, aggregate function a ∈ A, window

size w, ratio q = fS/fr.
for i′ ∈ {1, 2, . . . , |r|} do
i = i′ · q
if i < w then

afs,a,w[i′]← a(s[1, i])
else

afs,a,w[i′]← a(s[i− w + 1, i])
end if

end for
return an aggregated feature: afs,a,w

• the inter-quartile range: IQR = inf{x ∈ R : 0.75 ≤
P (X ≤ x)} − inf{x ∈ R : 0.25 ≤ P (X ≤ x)},

• the root mean squared: RMS =

√
1
n

n∑
i=1

x2i .

One could argue that features of windows from the frequen-
cy domain, such as properties of the spectrum of the data,
could also be interpreted as aggregate functions: they take
a set of measurements (in fact, a sequence), and summarize
them into a single value. Such features would capture more
periodic properties of the data in the window. In the majority
of our selected applications, periodic behaviour does not play
a crucial role, such that we have excluded them from the dis-
cussion here. However, were one so inclined, one could easi-
ly add frequency-domain aggregates to the list considered by
our method, in order to capture those aspects of the data. The
remainder of this paper assumes the smaller list of statistical
aggregate functions, but there are no technical reasons why
other functions could not be involved also.

An aggregate feature results from the use of an aggregate
function a, applied to a predictor s using a sliding window
with length w, as formally described in Algorithm 1. To con-
struct an aggregate feature, Algorithm 1 slides a window over
the predictor using the reference indices i ∈ {q, 2q, . . . , |r| ·
q}. For each reference index i, the algorithm checks for
boundary limitations. If i is smaller than the window size
w, the aggregate feature’s i′th instance takes into account on-
ly the available data from the predictor, s[1 : i]. Otherwise,
the window is s[i−w+1 : i]. The aggregate function is then
applied to the data in the window.

Feature Construction
This section describes the construction process of multiple
aggregate features, as a search problem for the optimal com-
binations of aggregate function a, high frequency predictor s,
and window size w. The objective of the feature construc-
tion process is both to slow down the sampling frequency of
one or more predictors, and to transform these into good ag-
gregate features. A good aggregate feature should properly
describe a target variable (r) at its low sampling rate, fr.

In order to avoid brute force feature construction, and direct
the search towards an optimal choice of (s, a, w), a ranking

Algorithm 2 ConstructCandidates
Require: set of predictor time series S, target variable t, s-

coring function SC, decision threshold, maximum win-
dow growth ω, number of steps m.
C ← ∅
q ← |S|/|r|
for all s ∈ S do

for all a ∈ A do
λ← 1
wbest ← 0, scorebest ← 0
wl ← q, wh ← q · ω
stop← false
repeat
δ ← wh−wl

m
w ← 0, score← 0
for all i ∈ {1, . . . ,m} do

f← CalculateAF(s, a, wl + i · δ, q)
if SC(f, t) ≥ score then
w ← wl + i · δ
score← SC(f, t)

end if
end for
if scorebest > score then
stop← true

else
scorebest ← score, wbest ← w

end if
wl ← wbest − q/λ,wh ← wbest + q/λ
λ← λ+ 1

until stop
if scorebest > threshold then
C ← C∪{afs,a,wbest

←CalculateAF(s, a, wbest, q)}
end if

end for
end for
return C

measure ranking the feature candidates is required. The rank-
ing measures are obtained by the use of scoring functions,
SC(r, afs,a,w). To deal with classification problems, we con-
sidered the well-known entropy-based scoring function infor-
mation gain (see for example [20]). For regression problems,
the cross-correlation [?] scoring function is selected:

γr,f(τ) = E[(ri − µr) · (fi−τ − µf)],

where τ is the time lag between an aggregate feature f and
a target variable r. In the presence of a delayed relation be-
tween action (f) and reaction (r), cross-correlation allows the
identification and construction lag regression models [TODO:
ref].

The process of feature construction is detailed in Algorithm
2. This algorithm performs a grid search over the available
predictor time series in S and the aggregate functions in A
(the two outer loops). The number of different values for both
these parameters of an aggregate feature is generally limited,
so all combinations will be considered exhaustively.

4

0 1 2 3 4 5 6

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Sensor bioharness.posture and AF RMS

Window Size (in days)

P
e

a
rs

o
n
 C

o
rr

e
la

ti
o

n
(a

f_
i,
ta

rg
e

t)

Figure 3. Landscape of scoring measure for one of the regression
datasets. The horizontal scale indicates multiples of q (in this case 24
hours), the vertical scale the correlation with the target. Note how the
optimal window size is almost twice (44 hours) that of the naive choice
of w = q.

For each choice of s and a, the algorithm returns the best
window size wbest. In essence this is a task of linear opti-
mization of an unknown function for a given parameter w.
In order to avoid a simple exhaustive search for the optimal
window size, we sample this function iteratively, and zoom
in on a promising interval [wl, wh] at each iteration. This
heuristic optimization algorithm works as follows. The in-
terval is initialized based on a parameter ω which indicates
the largest acceptable window growth relative to q (the natu-
ral window size). At each iteration of the repeat-until loop,
a uniform sample is made of the current interval, in m step-
s (specified by the user, but typically low). Each candidate
window size is used to compute a candidate aggregate func-
tion f = CalculateAF(s, a, wl + i · δ, q) and its associated
score. By the end of each iteration, the current best window
size wbest is known, and the interval of inspected sizes is re-
duced to [wbest − q/λ,wbest + q/λ], narrowing constantly
the original interval through the iterations, around the current
wbest. This repeated zooming in on the best window size is
continued until a more detailed inspection does not yield a
better result.

Although exhaustive search over window sizes guarantees
finding the absolute maximum, the computational costs of
this approach would be unacceptable. For this reason, our
algorithm employs heuristic optimization to find the optimal
window size efficiently. As the score of aggregate functions
is generally well-behaved, this heuristic algorithm will typi-
cally find the global optimum, rather than a local one. As an
example, Figure 3 shows an exhaustive scoring landscape for
different window sizes, given a low frequency (days) numer-
ic target, a high frequency predictor (1 Hz) and an aggregate
function (RMS). The vertical line represents the best win-
dow size wbest, as determined by Algorithm 2 in a fraction of
the time taken by the exhaustive search. Note how this graph
also provides a good example of how the optimal window
size may differ substantially from the naive choice represent-
ed here by 1 on the horizontal scale.

Algorithm 3 Aggregate Features Selection: Regression
Require: set of predictor time series S, response variable r,

scoring function SC, maximum window growth ω, number
of steps m.
F ← ∅
t← r
while ¬whiteNoise(t) do
C ←ConstructCandidates(S, t, SC, ω,m)
if C = ∅ then

return F
end if
fbest ← argmaxf∈C SC(f, t)
F ← F ∪ {fbest}
m← fitLM(F , r)
t← r−m(F)

end while
return F

Each combination of s and a results in a single wbest. The
associated aggregate feature is then added to the result set of
candidate features C, under the condition that its score is high-
er than a certain threshold. Throughout our experiments, the
threshold value was set to 0.5 for information gain, and 0.2
for cross-correlation. For ease of implementation, our algo-
rithms will always assume the number of steps m to be equal
to the maximum window growth divided into q steps, ω/q,
thus effectively removing one parameter.

An important characteristic of our algorithm is that it is
memory-conscious. This sets it apart from other feature con-
struction methods [3, 5], because it does not simultaneously
materialize most of the inspected features. Keeping only the
scores SC(t, afs,a,w) gives us concise information about how
good an aggregate feature could perform, relatively to a target
variable t. Every time Algorithm 2 is called, the end result is
a collection of at most p · |A| candidate features, which is an
acceptable number in most cases.

Feature Selection: Embedded approach
In order to increase the chances of finding dependencies be-
tween the aggregate features and the response, we developed
an embedded feature selection method, such that at each iter-
ation of the final modeling algorithm, we do not work with a
static set of features. At each iteration, Accordion perform-
s a new feature construction step, and searches for the best
aggregate feature.

Regression problems
As the search space of candidate aggregate features can grow
too large to explore exhaustively, we resort to a heuristic
search that only constructs a subset of promising candidate
features, C. When the set C is large (> 40), a wrapper-
based search for the optimal subset becomes impractical [10].
As for backward-stepwise selection in linear models, if the
number of candidate features is larger than the number of in-
stances, the use of the least squares method for coefficient
estimation becomes impossible [21]. To overcome these po-
tential problems, we employed a forward-stepwise selection
process [13]. As described in Algorithm 3, at each iteration,

5

we add a new aggregate feature creating a nested sequence of
models, until one of the following stopping criteria is satis-
fied:

• The set of candidate aggregate features C returned by Al-
gorithm 2 is empty.

• The decomposed target variable is considered white noise.

At each iteration of feature selection, new candidate aggre-
gate features are generated according to the current approxi-
mation of the target. In the first iteration, Algorithm 3 uses
the response r as a target to build a set of candidate aggregate
features. From this set, it chooses the one with the highest
score to add to the set of proposed features F . A linear model
is then fitted (fitLM) to the response variable r, using the
set of proposed features F . In the following iterations, the
residual (the part of the signal that cannot be predicted by the
current model) becomes the new target variable, t. At the end
of the process, only a small subset of the constructed aggre-
gate features is returned.

Classification problems
Decision trees are among the most popular classification
models in machine learning, and one of its best-known char-
acteristics is the ability to deal with multiple types of da-
ta [20], including trend-less time series. Growing a decision
tree involves a divide-and-conquer strategy where each node
splits the data into subsets according to conditions on the pre-
dictors, until splitting no longer increases the separation be-
tween classes. To explore time series with mixed sampling
rates, we designed an embedded feature construction and s-
election method for decision trees, where at each split new
features are constructed such that the scoring function infor-
mation gain (IG) is maximized.

In our method, trees are built recursively. Algorithm 4 shows
that at each iteration, a new set C of candidate aggregate fea-
tures is constructed, through a search process looking for the
best combinations of aggregate features and response vari-
able r. From C, only the aggregate feature that maximizes
IG will be used to produce a split: findSplit(fbest, r). The
split is then used to create two branches, corresponding to the
decomposition of the response variable r, into two subsets rl

Algorithm 4 BuildAFTree
Require: set of predictor time series S, nominal response

variable r, maximum window growth ω, number of steps
m, minimum leaf size minsup.
C ← ConstructCandidates(S, r, IG, ω,m)
if C = ∅ or |r| < minsup then

return ∅
end if
fbest ← argmaxf∈C IG(f, r)
c← findSplit(fbest, r)
rl, rr ← {r ∈ r|c(r)}, {r ∈ r|¬c(r)}
Fl ← BuildAFTree(S, rl, ω,m,minsup)
Fr ← BuildAFTree(S, rr, ω,m,minsup)
return Fl ∪ Fr ∪ {fbest}

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Posture_Min_90

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

HR_RMS_255

Figure 4. The plot shows the autocorrelation behaviour for two random-
ly sampled aggregate features, from the Routines dataset.

and rr. The subsets are then used recursively to create more
splits until one of the following stopping criteria is satisfied:

• The set of candidate aggregate features C, is returned emp-
ty from Algorithm 2.

• The target subset (rl or rr) is smaller than a minimum sup-
port, minsup ∈ N+.

Note that we specifically do not use pruning techniques dur-
ing feature construction, to avoid getting too small a feature
set. Decisions about pruning strategies can be applied during
the final stage of model building by the tree induction method
of choice.

EXPERIMENTS
In this section, we test our method experimentally, present-
ing results on three datasets collected using multiple sensor
systems. The first dataset features a classification problem,
involving snowboarding in the Alps. The second and third
dataset involve several regression problems, one related to
the running speed estimation of an athlete as captured by a
GPS sensor, and one describing the amount of sleep of dif-
ferent kinds, as a function of a person’s daily routines. The
algorithms described in the previous section and further data
mining techniques described in this section were implement-
ed in R 2.

In each experiment, we not only compute the results for our
embedded method, but also consider traditional two-step al-
ternatives: construction and then selection. Feature construc-
tion alternatives include a baseline aggregation method, and
grid search feature construction. The baseline aggregates
over a non-overlapping window of size fS/fr by simple av-
eraging. For the grid search approach, we materialize a rather
large amount of aggregate features. The grid search is bound-
ed, such that it generates an aggregate feature matrix of ap-
proximately 5 million cells, allowing an absolute comparison
across datasets.

The alternative feature construction methods are followed by
well-known feature selection methods, specifically Lasso for
2http://www.r-project.org/

6

Table 1. Experimental setup and results.
Dataset Target # Input # Output Method # Features # Features time (s) Accuracy/

samples samples constructed selected R2

Snowboard Activity 21 180 353 Accordion 30 180 15 305 84.7%
Baseline 25 10 0.5 67.1%

Grid search 17 150 15 526 83.1%
Speed Speed (m/s) 951 200 2088 Accordion 11 580 2 2 654 0.986
Estimation Baseline 6 3 1.99 0.388

Grid search 2 394 25 1 141 0.508
Daily Light (h) 1 296 575 15 Accordion 19 260 4 2 334 0.8407
Routines Baseline 34 6 28.7 0.2089

Grid search 323 400 36 62 409 0.8391
REM (h) 1 296 575 15 Accordion 23 610 5 3 105 0.9184

Baseline 34 4 28.7 0.1837
Grid search 323 400 11 62 409 0.8838

Deep (h) 1 296 575 15 Accordion 11 710 2 1 451 0.6719
Baseline 34 4 28.7 0.0842

Grid search 323 400 15 62 409 0.8457

regression [22] and C4.5 for classification. For Lasso, we
used the default options proposed in the glmnet [8] package
in R. To choose the penalty parameter, we employed cross-
validation on the training set, and chose the penalty parameter
that minimizes the mean squared error.

In most cases, time series have a natural temporal structure.
This prohibits us from assuming that subsequent aggregate
feature instances are iid (independent and identically dis-
tributed). This follows from the fact that closer observations
have a stronger relation than those further apart. Figure 4
shows the autocorrelations of two aggregate features sampled
randomly from Accordion’s candidate features, F . As ex-
pected, all of them have a clear temporal structure. Breaking
the iid assumption restricts the model evaluation methods that
can be applied. For example, cross-validation should only be
applied when features can be assumed to be iid. Consequent-
ly, we split the data into 66% of data before a selected point
in time (the training set), and 34% for testing.

Snowboard Data
This experiment involves sensors collecting physiological
signals from a subject while doing winter sports in the Alps.
To collect this physiological data, we used a Zephyr BioHar-
ness 33 sensor system, that is worn on the subject’s chest.
The BioHarness incorporates multiple sensors (ECG, chest
expansion, temperature and tri-axial acceleration), that are
embedded in a monitoring module and a lightweight strap.
The system samples at multiple sampling rates for the differ-
ent sensors, and derives from them a total of 25 physiological
parameters (heart rate, breath rate, posture, peak acceleration,
...), logged at 1 Hz. The dataset used in this experiment was
collected during 353 minutes of snowboarding. During the
collection period, the subject used the BioHarness and a Go-
Pro Hero3 HD camera. Afterwards, the video data was used
to label the activities for each minute, from the following
available labels: lift, lying, sitting, snowboarding, standing
and towlift.

The baseline consists of 25 averaged predictors, with a sliding
window of size 60, at 1/60 Hz (once per minute), matching

3http://www.zephyranywhere.com/products/bioharness-3/

the frequency of the target labels. Table 1 presents informa-
tion for each decision tree built, where the baseline achieved a
predictive accuracy of 67.1%. We used an implementation of
C4.5 from the package rWeka4, which allows R users to use
Weka’s5 machine learning algorithms. Reduced error pruning
was used as post-pruning strategy.

We employed the classification version of Accordion (Algo-
rithm 4). The algorithm used information gain as scoring
function, and was allowed to grow windows up to 5 min-
utes in length. After considering 30 180 candidate aggre-
gate features, only 15 were selected to compose the set of
aggregate features (F). Figure 5 presents the resulting de-
cision tree, with a prediction accuracy of 84.7% on the test
set. At the root of the tree, active activities are seperated from
passive ones based on the minimum heart rate over the last
minute. The right side of the tree distinguishes between ac-
tive or recently active activities using heart rate, acceleration
and breathing as input predictors. The left side of the tree
predominantly uses acceleration variables to classify between
the different passive activities. The variety of window sizes
and aggregate functions is clear in Figure 5, with phenomena
at multiple degrees of integration over time.

The grid search approach materialized 17 150 aggregate fea-
tures and fed it to C4.5 to build a model from a subset of these.
The number of features constructed corresponds to a matrix
of 5 million cells, as described before. This involved trying
80 different window sizes for each pair of aggregate function
and predictor. Table 1 shows that Accordion outperforms grid
search both in computation time and model accuracy.

Speed Estimation
This dataset was collected in the context of an athlete training
for the Amsterdam marathon. In this context, two accelero-
meters6 were worn by the athlete during four training ses-
sions, one strapped to the right wrist and the other to the right

4http://cran.r-project.org/web/packages/RWeka/index.html
5http://www.cs.waikato.ac.nz/ml/weka/
6http://www.geneactiv.co.uk/

7

HR_Min_60

≤ 105 > 105

AuxADC1_RMS_210

≤ 437.491 > 437.491

HR_Max_300

≤ 126 > 126

VerticalMin_Max_285

≤ -0.96 > -0.96

lift

(8.0/1.0)
Posture_Min_90

≤ -57 > -57

lying

(5.0)
HR_Mean_180

≤ 95.967 > 95.967

Posture_Mean_150

≤ -19.08> -19.08

sitting

(8.0)

lying

(9.0/4.0)

sitting

(40.0/3.0)

lift

(31.0/8.0)

HR_Max_300

≤ 108 > 108

Posture_Mean_60

≤ -11.167> -11.167

HR_SD_240

≤ 3.956> 3.956

standing

(7.0)

lift

(6.0/1.0)

lying

(5.0/1.0)

standing

(42.0/4.0)

Activity_Mean_150

≤ 0.067 > 0.067

towlift

(6.0)
HR_SD_240

≤ 6.146 > 6.146

standing

(8.0/3.0)
AuxADC1_RMS_210

≤ 436.632 > 436.632

HR_Min_120

≤ 115 > 115

HR_Max_300

≤ 141 > 141

snowboarding

(10.0)
HR_SD_90

≤ 10.037> 10.037

standing

(10.0/2.0)

snowboarding

(6.0)

snowboarding

(25.0)

HR_SD_240

≤ 11.36> 11.36

snowboarding

(5.0/2.0)

standing

(5.0)

Figure 5. Decision Tree C4.5 implemented in Weka, built with the features proposed by Accordion.

ankle. A Garmin Forerunner7 device was used to measure
distance and speed.

The dataset considered here has as input about 2 hours and
40 minutes of running measurements from 2 triaxial accele-
rometers (2×3×951 200 data points), at a constant sampling
rate of 100 Hz. For the same measurement period, the target
speed values were extracted from the Garmin Forerunner GP-
S, of which the median sampling rate is 0.2 Hz. The speed (in
m/s) turned out to be captured at an unstable rate, with time
lapses between measurements ranging from 1 to 10 seconds.
Having an unstable target sampling rate is a specific challenge
of this dataset, but one that can fairly easily be handled by our
algorithms.

The design of our algorithms assumes that all the measure-
ments are done at constant sampling rates. Note that, as long
as the predictors are collected at a constant sampling rate,
having an unstable target sampling rate (as is the case here)
is not a problem. We used this specific challenge to show
how our algorithms can be made to work on a broader set of
tasks. In fact only two changes are needed. First, in Algo-
rithm 2, recalculate the relation between predictors and target
sampling rates to q = 100/0.2 = 500, to reflect the average
sampling rate of the target. Second, as a minor modification
of Algorithm 1, we calculate beforehand the reference indices
i, such that predictors and target variable can be synchronized
properly.

As baseline experiment, we aggregated 6 variables (2 accele-
rometers× 3 axes) over non-overlapping windows of variable
sizes. With the predictors and target variable synchronized,
the Lasso regression selected only 3 features, with a fairly
low coefficient of determination (R2 = 0.388). As for grid
search, using the limit of creating a feature dataset bounded
to 5 million cells, we materialized 2 394 aggregate features in

7https://buy.garmin.com/en-US/US/into-
sports/running/cIntoSports-cRunning-p1.html

about 1 141 seconds, and subsequently submitted them also
to Lasso. The achieved R2 = 0.508, although higher than
baseline, could not outperform Accordion (R2 = 0.986).

The scoring function chosen in this experiment was cross-
correlation, enabling so-called lag regression, and the maxi-
mum window size was set to 60 seconds. During the iterative
process of construction and selection, 11 580 aggregate fea-
tures were constructed, from which only two were selected
(thus, two iterations). The resulting predictions on hold-out
data are shown in Figure 6. An interesting observation is that
the accelerometer strapped to the wrist was never selected.
The final lag regression model is as follow:

speed[i′] = 1.198 · afankleY,RMS,200[i
′]

+0.495 · afankleZ,stdv,5886[i
′ − 4] + e[i′]

Daily Routines Data
Subsequently, we tested our method on another dataset in-
volving three regression targets, related to the amount of time
spent in light sleep, REM and deep sleep. During the course
of 15 days, a subject produced data in the context of a self-
tracking experiment, collected using various sensoring sys-
tems: a) the Zephyr BioHarness (see above), used during the
day (except during bathing), b) OpenBeacon, an RFID wire-
less sensor system to monitor the time spent at different lo-
cations of the home, and c) a Beddit sleep monitoring sys-
tem8 to monitor the nights. This last system is used both for
recording the breath and heart rate during the night, as well as
determining the different sleep stages at night (a computation
that is part of the black-box service of Beddit).

The dataset used for this experiment consisted of 34 input at-
tributes, sampled at 1 Hz, of which 24 are physiological vari-
ables from both the BioHarness, and Beddit. The remaining
10 variables are binary. They refer to the subject’s location
and were extracted both from the OpenBeacon and Beddit
8Available from http://beddit.com

8

0
1

2
3

4
5

6

Speed measurements

S
p

e
e

d
 (

m
/s

)

100 200 300 400 500 600

Figure 6. Predicted value (red) vs. real speed (gray).

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation)

Days

R
E

M
 (

m
in

u
te

s
)

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation,ECG)

Days

R
E

M
 (

m
in

u
te

s
)

2 4 6 8 10 12 14

8
0

1
0
0

1
3
0

REM sleep = F(Alimentation, ECG, Posture, Breath Rate)

Days

R
E

M
 (

m
in

u
te

s
)

Figure 7. Predicted value (red) vs. real amount of REM sleep (gray), for
models based on the first single, two and five (all) features, respectively.

sensor systems. Table 1 summarizes the experimental setup
for all targets, as well as the information about results.

As baseline experiment, we used the same idea of feature con-
struction for the previous baselines. Although the baseline
is quite fast in terms of computation, the R2 results (on the
test dataset) show that it is a naive solution. As for the grid
search solution, we materialized 323 400 aggregate features
after about 17 hours of computation, which is considerably
slower than what Accordion took to construct and select its
aggregate features. After performing Lasso to all the targets,

the R2 results show that this alternative was outperformed by
Accordion in two of the three targets.

For Accordion, we used cross-correlation as a scoring func-
tion, and the maximum window size allowed was 3 days.
With our method, the target that took the longest to compute
(about 50 minutes) was the REM stage of sleep. REM sleep
is considered the lightest stage of sleep [11]. Figure 7 shows
the stack of nested models created by forward selection. For
this target, the algorithm constructed 23 610 aggregated fea-
tures, from which only 5 (5 iterations) are proposed to explain
REM linearly.

From the three targets addressed in this experiment, time
spent in deep sleep gives a good example of how just a few
aggregate features can still be very informative. Although
Accordion scored lower than grid search in terms of R2,
the model produced by our method is clearly interpretable,
whereas grid search is not (check Table 1: R2 and #Features
selected). Our method produced 11 710 candidate features,
from which only two were selected to explain the amount of
deep sleep, resulting in the following linear model:

deepSleep[i′] = −120.8 + 0.99 · afPosture,RMS,158400[i
′]

+0.11 · afHR,avg,155200[i
′ − 1] + e[i′]

Figure 8 helps us to interpret the deepSleep model. Both
aggregate features have window sizes of about two days,
with almost 50% of overlapping. For each moment i′, deep
sleep can be explained with posture over the last two days
afPosture, RMS,158400(i

′), and the heart rate of almost two days
with a delay of one day afHR, avg,155200(i

′ − 1).

RELATED WORK
The problem of activity recognition is commonly tackled with
a two-stage process [3, 16, 18]: first, manually construct ag-
gregate features and then apply a machine learning technique

9

Figure 8. High frequency time series can be transformed into aggregated
features, resulting in a linear lag regression between these and the target
variable.

to discriminate between different activities. The task of fea-
ture construction is so central that surveys of feature con-
struction techniques became necessary [5]. As the choices in
feature construction influence all the experiments, this often
leads to solutions that are overly specific to the experimental
setup (sensors used, data collection, application). As a result,
most methods are not generic [4]. Our algorithm embeds fea-
ture construction into the learning process, which increases
the feature search space, reduces the time spent preprocess-
ing data and avoids overly specific solutions, which makes it
widely applicable.

From a data mining perspective, the use of time series as a
data source has received considerable attention, and has de-
veloped into different areas of research [14, 17, 23], e.g. clas-
sification, summarization, subsequence clustering, motif dis-
covery and anomaly detection. As for the challenge of mining
time series with mixed sampling rates, this still remains un-
derappreciated. To the best of our knowledge, this paper is
the first attempt to develop a data-driven generic solution to
this problem, and to focus on the importance of optimizing
the automatic and dymanic construction and selection of ag-
gregate features with respect to a target variable, as opposed
to static feature construction.

In econometrics, regression models are commonly used to re-
late variables at the same sampling frequency, even when the
data sources are being collected at different rates. When deal-
ing with mixed sampling rates, the most common technique is
still to downsample the predictors [2], or upsample the target
variable [1]. Recent work proposes solutions to forecast di-
rectly from variables with mixed sampling rates, both for uni-
variate [9] and multivariate time series [15]. These proposed
methods still rely mostly on the expertise and creativity of
the economists (domain knowledge-driven), leaving no room
for data-driven knowledge discovery, which our algorithm is
capable of doing.

CONCLUSIONS AND FUTURE WORK
When modeling time series for activity recognition, a draw-
back is the considerable amount of time required to prepro-
cess them into good features, a process that often calls on
domain knowledge about the underlying problem. Accor-
dion shortens the preprocessing time, generating candidate
aggregate features automatically by optimization of its com-
ponents, (s, a, w). We still believe that domain knowledge
can play a big role when modeling, but this effort could be
redirected to higher level questions, such as which set of ag-
gregate functions (A) to use. One of the directions for future

work is naturally to extend the set of aggregate functions, es-
pecially to the frequency domain.

We also motivate the idea of embedding automatic feature
construction into the machine learning process. The idea here
is to stop relying on static sets of features, and at each itera-
tion of feature selection direct the search for good candidate
features. Making use of scoring functions, Accordion is able
to test many candidate features, and return only a small set of
selected features. Especially when quick but reliable result-
s are required, or large datasets dictate a memory-conscious
method, our algorithm is clearly a good choice. As future
work, we would like to mimic the learning process of oth-
er supervised methods, both in regression and classification,
keeping the idea that at each iteration of feature selection, we
do not need to rely on a static set of candidate features.

One of the achievements of our approach is that it output-
s interpretable aggregate features. The ability to interpret
our aggregate features follows from the combinations of in-
put variables, well-known aggregate functions and different
window sizes. Interpretation of different window sizes come
from the fact that our method searches for different phenom-
ena by expanding or contracting the window size for each
feature. In contrast, the standard approach in activity recogni-
tion is to take a more or less arbitrary choice about a window
sizes [3, 12, 16, 18]. In the future, we would like to deal with
unstable sampling rates, both of predictors and target, multi-
ple sampling rates for the predictors, and targets at a higher
sampling rate than the predictors.

10

REFERENCES
1. Angelini, E., Henry, J., and Marcellino, M. Interpolation

and backdating with a large information set. Journal of
Economic Dynamics and Control 30, 12 (Dec. 2006),
2693–2724.

2. Armesto, M. Forecasting with mixed frequencies.
Federal Reserve Bank of St. Louis (2010), 521–536.

3. Bao, L., and Intille, S. Activity recognition from
user-annotated acceleration data. Pervasive Computing
(2004), 1–17.

4. Brush, A., Krumm, J., Scott, J., and Saponas, T.
Recognizing Activities from Mobile Sensor Data:
Challenges and Opportunities. In Proceedings Ubicomp’
11 (2011).

5. Figo, D., Diniz, P. C., Ferreira, D. R., and Cardoso, J. a.
M. P. Preprocessing techniques for context recognition
from accelerometer data. Personal and Ubiquitous
Computing 14, 7 (Mar. 2010), 645–662.

6. Flach, P. Machine Learning: The Art and Science of
Algorithms That Make Sense of Data. Cambridge
University Press, New York, NY, USA, 2012.

7. Foroni, C., and Marcellino, M. A survey of econometric
methods for mixed-frequency data. 2013.

8. Friedman, J., Hastie, T., and Tibshirani, R.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software
(2010).

9. Ghysels, E., Santa-Clara, P., and Valkanov, R. Predicting
volatility: getting the most out of return data sampled at
different frequencies. Journal of Econometrics (2006).

10. Hastie, T., Tibshirany, R., and Friedman, J. The
Elements of Statistical Learning Data Mining, Inference,
and Prediction, second ed. Springer, 2009.

11. Hobson, J. A. Rem sleep and dreaming: towards a
theory of protoconsciousness. Nature Reviews
Neuroscience 10, 11 (2009), 803–813.

12. Huynh, T., and Schiele, B. Analyzing features for
activity recognition. In Smart objects and ambient
intelligence: innovative context-aware services: usages
and technologies, no. 10 (2005).

13. John, G., Kohavi, R., and Pfleger, K. Irrelevant features
and the subset selection problem. In Machine Learning
(1994), 121–129.

14. Keogh, E., and Kasetty, S. On the need for time series
data mining benchmarks: a survey and empirical
demonstration. Data Mining and Knowledge Discovery
(2002), 349–371.

15. Kuzin, V., Marcellino, M., and Schumacher, C. MIDAS
vs. mixed-frequency VAR: Nowcasting GDP in the euro
area. International Journal of Forecasting 27, 2 (Apr.
2011), 529–542.

16. Kwapisz, J., Weiss, G., and Moore, S. Activity
recognition using cell phone accelerometers. ACM
SIGKDD Explorations Newsletter (2011).

17. Lin, J., Keogh, E., Lonardi, S., and Chiu, B. A symbolic
representation of time series, with implications for
streaming algorithms. Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining
and knowledge discovery - DMKD ’03 (2003), 2.

18. Miluzzo, E., Lane, N., and Fodor, K. Sensing meets
mobile social networks: the design, implementation and
evaluation of the CenceMe application. In Proceedings
of Embedded network sensor systems (2008), 337–350.

19. Park, J.-g., Patel, A., Curtis, D., Teller, S., and Ledlie, J.
Online pose classification and walking speed estimation
using handheld devices. Proceedings of the 2012 ACM
Conference on Ubiquitous Computing - UbiComp ’12
(2012), 10.

20. Quinlan, J. Induction of decision trees. Machine
learning (1986), 81–106.

21. Stodden, V. Model selection when the number of
variables exceeds the number of observations. PhD
thesis, 2006.

22. Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B
58 (1994).

23. Vespier, U., Knobbe, A., Nijssen, S., and Vanschoren, J.
MDL-Based Analysis of Time Series at Multiple
Time-Scales. In Proceedings of ECML PKDD ’12
(2012).

11

	Introduction
	Preliminaries
	Multivariate Time Series with Mixed Sampling Rates
	Feature Construction with Mixed Sampling Rates
	Problem Statement

	The Accordion method
	Aggregation of Time Series
	Feature Construction
	Feature Selection: Embedded approach
	Regression problems
	Classification problems

	Experiments
	Snowboard Data
	Speed Estimation
	Daily Routines Data

	Related Work
	Conclusions and Future Work
	REFERENCES

