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Abstract. Given a finite set Y ⊂ Rd of n mutually non-dominated vec-
tors in d ≥ 2 dimensions, the hypervolume contribution of a point y ∈ Y
is the difference between the hypervolume indicator of Y and the hyper-
volume indicator of Y \{y}. In multi-objective metaheuristics, hypervol-
ume contributions are computed in several selection and bounded-size
archiving procedures.
This paper presents new results on the (time) complexity of computing
all hypervolume contributions. It is proved that for d = 2, 3 the problem
has time complexity Θ(n logn), and, for d > 3, the time complexity is
bounded below by Ω(n logn). Moreover, complexity bounds are derived
for computing a single hypervolume contribution.
A dimension sweep algorithm with time complexity O(n logn) and space
complexity O(n) is proposed for computing all hypervolume contribu-
tions in three dimensions. It improves the complexity of the best known
algorithm for d = 3 by a factor of

√
n. Theoretical results are comple-

mented by performance tests on randomly generated test-problems.
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1 Introduction

The hypervolume indicator (or S-metric, Lebesgue measure) was introduced by
Zitzler and Thiele [26] to measure the quality of Pareto front approximations.
Given a finite set Y of mutually non-dominated vectors in Rd, the hypervolume
indicator measures the volume (Lebesgue measure) of the subspace simulta-
neously dominated by Y and bounded below (in case of maximization) by a
reference point.

Besides being frequently used as a performance metric, the hypervolume
indicator is also used in guiding selection in indicator-based metaheuristics [10,



11, 13, 14, 19, 25] and archivers [16]. In this context, the problem of computing
hypervolume contributions and/or the minimal hypervolume contributor of a set
of points often arises [10, 13, 14, 16, 20, 25]. The hypervolume contribution of a
point y ∈ Y is defined as the difference between the hypervolume indicator of Y
and the hypervolume indicator of Y \ {y}. The problem of finding the minimal
hypervolume contributor is #P-hard in the number of dimensions d [8].

Many applications of multiobjective optimization involve a small number of
objectives, say 2–4. In these cases, polynomial time algorithms for computing
hypervolume contributions are known (e.g. [9, 20]), but the extent to which they
are efficient is so far unknown. When objective functions can be computed fast,
hypervolume computations can limit the performance of multiobjective opti-
mization algorithms also in low dimensions.

Hence, this paper focuses on computing hypervolume contributions in low di-
mensions and analyzes complexity in the cardinality, n, of the input set, Y. One
aim is to derive sharper complexity bounds for the computation of all (or sin-
gle) hypervolume contributions. Moreover, it is shown that the dimension sweep
paradigm, that has yielded asymptotically optimal algorithms for computing the
hypervolume indicator [4] and maximal set [18] in low dimensions, can also allow
hypervolume contributions to be computed efficiently.

The paper is organized as follows: In Section 2, several problems related to
hypervolume contributions are introduced. A summary of known results and
related work on these problems is given. In Section 3, lower bounds on the com-
plexity of computing hypervolume contributions are established. In Section 4, an
algorithm that efficiently computes the hypervolume contributions given a set in
three dimensions is introduced and analyzed. In Section 5, performance tests on
randomly generated test data are conducted. Finally, in Section 6, contributions
of the paper are summarized and suggestions for future research are given.

2 Preliminaries and related work

The following conventions will be used throughout the paper. Complexity, un-
less stated otherwise, refers to time complexity in the worst case. The algebraic
decision tree model of computation is considered [17]. Asymptotic lower, upper,
and sharp bounds are denoted by Ω(), O(), and Θ(), respectively. Vectors are
represented in bold font. Sets are denoted by roman capitals, e.g. X or Y, and
problems and algorithm names are typeset in small capitals, e.g. allContribu-
tions. When applied to vectors, operators ≤, ≥ and = indicate componentwise
comparison. Throughout this paper, maximization is the goal.

The following concepts will be relevant in the problem definition:

Definition 1. (dominance) A vector y ∈ Rd dominates y′ ∈ Rd, iff y ≥ y′ and
y 6= y′. In symbols: y � y′.

Dominance is often defined with minimization of vectors as the goal. In this case
≥ must be replaced by ≤ in the above definition.



Definition 2. (approximation set) A d-dimensional approximation set [27] is
a finite set Y ⊂ Rd such that ∀y,y′ ∈ Y : y ≥ y′ ⇒ y = y′. The set of all
d-dimensional approximation sets is denoted by Ad.

Definition 3. (hypervolume indicator (S)) Given a set Y ⊂ Rd and a reference
point yr that satisfies ∀y ∈ Y : y ≥ yr, the hypervolume indicator of Y with
respect to reference point yr is defined as [26, 24]:

S(Y) = Vol

⋃
y∈Y

[yr,y]

 . (1)

Here Vol() denotes the Lebesgue measure in d dimensions and [l,u] ⊂ Rd rep-
resents a closed axis-parallel box that is bounded below by l ∈ Rd and bounded
above by u ∈ Rd.

Whenever the reference point is not explicitly mentioned, by convention, yr = 0
will be assumed.

Definition 4. (hypervolume contribution of a point) Given an approximation
set Y ∈ Ad, the hypervolume contribution of a point y ∈ Y is defined as

∆S(y,Y) = S(Y)− S(Y \ {y})

This paper is mainly concerned with the following problem:

Problem 1 (AllContributions). Given Y ∈ Ad as an input, compute the hy-
pervolume contributions of all points y ∈ Y.

In addition new results on closely related problems, that can all be reduced in
at most linear time to AllContributions, will be derived:

Problem 2 (OneContribution). Given Y ∈ Ad and y ∈ Y as an input, com-
pute the hypervolume contribution ∆S(y,Y).

Problem 3 (MinimalContribution). Given Y ∈ Ad as an input, compute the
minimal hypervolume contribution, i.e., miny∈Y ∆S(y,Y).

Problem 4 (MinimalContributor). Given Y ∈ Ad as an input, find a point
with minimal hypervolume contribution, i.e., y∗ ∈ arg miny∈Y ∆S(y,Y).

A straightforward algorithm to solve AllContributions consists of enu-
merating all subsets of size n− 1, computing their hypervolumes, and subtract-
ing each of these in turn from the hypervolume of the total set. Bringmann and
Friedrichs [7] show that computing the hypervolume is #P-hard in the number
of dimensions d. To compute the hypervolume, for d = 3, the dimension sweep
algorithm by Fonseca et al.[12] is asymptotically optimal (Beume et al.[4]). For
general d, computing the hypervolume indicator can be considered a special case
of computing the measure of a union of rectangles [3]. The best known algorithm
has a complexity O(nd/2 log n) (cf. [21]) and has been simplified for the special



case of computing hypervolume by Beume [3], though the complexity stays the
same. A dimension sweep algorithm with complexity O(nd−2 log n) is described
by Fonseca et al. [12]. It has lower complexity for d = 3 and the same complexity
for d = 4. Algorithms with a higher worst case complexity proposed in While
et al. [23] have proved to be competitive or faster on problems of moderate size
and dimensions.

A specialized algorithm for computing hypervolume contributions that guar-
antees a better worst-case performance has been proposed by Bringmann and
Friedrichs [9] based on Overmars and Yap’s algorithm, [21]. Its time complexity
is O(nd/2 log n) for d > 2. Note, that their algorithm also solves the more general
problem of finding the hypervolume contributions of a finite set Y ∈ Rd, i.e. it
is not required that points in the set are mutually non-dominated. For d = 2,
the problem reduces simply to sorting a set of n points (O(n log n)) (e.g. [16]).
Another algorithm for computing incremental hypervolumes has been proposed
by Bradstreet et al. [6], who also describe an algorithm for updating all contri-
butions in [5], the worst case complexity of which is O(nd−1). Empirical studies
show a high performance of these schemes in case of many objectives.

For high dimensions, fast heuristics and approximation algorithms have been
proposed. For instance, Bader and Zitzler [2] propose Monte Carlo algorithms
that work also for many objectives. Fast approximation algorithms with accu-
racy guarantees are proposed by Bringmann and Friedrichs [8]. Approximate
integration based on scalarization is suggested in [15].

Despite this progress, sharp complexity bounds for AllContributions,
OneContribution, MinimalContribution, and MinimalContributor ha-
ve remained unavailable to date.

3 Complexity bounds

This section will start with a theorem on a lower bound on AllContribu-
tions and proceed with the discussion of lower bounds on computing single
contributions. To obtain a lower bound on the complexity of AllContribu-
tions a reduction to UniformGap, a well-known problem from computational
geometry, is used.

Problem 5 (UniformGap). The problem of deciding whether a set of n points
on the real line is equidistant is called UniformGap.

Lemma 1. (Preparata and Shamos [22], p. 260) The complexity of Uniform-
Gap is Ω(n log n) in the algebraic decision tree model of computation.

Now, the theorem on the complexity of AllContributions reads:

Theorem 1. Any algorithm that solves AllContributions in d > 1 dimen-
sions requires Ω(n log n) time in the algebraic decision tree model of computation.



Fig. 1. Problem transformation. Odd cardinality (left) and even cardinality (right)

Proof of theorem 1: It will be shown that UniformGap reduces in linear
time to AllContributions. (For the general idea of a reduction proof see, e.g.,
[4].) Given a set X of n values xi on the real line as input to UniformGap, each
coordinate is augmented with a second coordinate, which yields Y = {(xi, xmax−
xi) : i ∈ {1, . . . , n}, where xmax = max{xi : i = 1, . . . , n} (see Fig. 1).

Case 1 (n is odd): Compute all hypervolume contributions of points using
yr = (xmin, xmin), xmin = min(X) as reference point, see Fig. 1. Next, all
hypervolume contributions are computed and compared to ((xmax−xmin)/(n−
1))2. If they are all equal to this value the answer to UniformGap is positive,
otherwise it is negative. This algorithm is correct for odd n, since all hypervolume
contributions of inner points are equal to ((xmax − xmin)/(n− 1))2 if and only
if gaps are uniform. This will be shown next: Consider a line segment from
y1 = (xmin, xmax) to yn = (xmax, xmin). As all intermediate points in Y lie
on the line segment, the hypervolume contribution equality condition enforces
a certain alternating pattern of rectangles bounding the contributions (see Fig.
1). The rectangles are congruent, but rotate by 90◦ in each step. The side-length
of the rectangles is δ for the shorter side and κ for the longer side. Because the
number of points on the line segment is odd

xmax − xmin =
n− 1

2
(δ + κ) and thus κ =

2(xmax − xmin)
(n− 1)

− δ. (2)

The contribution of each inner point x is given by c(x) = δκ. To maximize c
over all δ and κ eliminate κ in c(x) = δκ, which leads to the problem:

maximize c(δ) = δ

(
2(xmax − xmin)

n− 1
− δ
)

(3)

The equation describes a concave parabola, the unique maximizer δ∗ of which is
the point with zero derivative. Solving 2 (xmax−xmin)

n−1 − 2δ∗ = 0 yields

δ∗ =
xmax − xmin

n− 1
(4)



Inserting δ∗ in Equation 3 yields κ∗ = δ∗. This solution is the only solution with
(maximal) hypervolume contribution c = (δ∗)2 = ((xmax − xmin)/(n − 1))2 for
all points Y \ {y1,yn}.

Case 2 (n is even): Let X′ = X\{max(X)}. Let x′max = max(X′) and x′min =
xmin. Given that the uniform gap condition is fulfilled for X′ (odd size) and
xmax − x′max = (x′max − x′min)/(n− 2) the answer is positive, otherwise not.
The complexity of the extra steps in this algorithm is O(N), excepting perhaps
the time for solving AllContributions. Thus, if AllContributions could
be solved faster than O(n log n), then also UniformGap could be solved faster
than O(n log n), which would contradict lemma 1.

The result generalizes to d > 2 as otherwise the problem AllContribu-
tions in two dimensions could be solved by a linear time reduction to All-
Contributions in higher dimensions. It would suffice to set all d−2 additional
coordinates of y to 1 and the reference point to 0 and solve the problem. �

A similar result can be obtained for computing single contributions:

Theorem 2. The time complexity of OneContribution is Θ(n) for d = 2,
Θ(n log n) for d = 3, and for d > 3 it is bounded below by Ω(n log n).

Proof: Case d = 2: All points need to be considered, yielding Ω(n) as lower
bound; computing a contribution requires O(n) time (nearest neighbor search).
Case d = 3: The problem of computing the hypervolume of a set in two dimen-
sions (Hypervolume2d) can be reduced in linear time to OneContribution
in three dimensions. The complexity of Hypervolume2D is bounded below by
Ω(n log n) (cf. [4]). To compute the solution of Hypervolume2D for an Y ∈ A2

using OneContribution in 3-D, represent Y in three dimensions by augment-
ing all points Y with a z-coordinate of 2, resulting in Z ∈ A3. Create a point
(xmax, ymax, 1) in O(n) time with xmax being the maximum x-coordinate and
ymax the maximum y-coordinate in Y. The solution of Hypervolume2D is
xmaxymax−∆S((xmax, ymax, 1), (xmax, ymax, 1)∪Z). The same principle can be
used for proving a lower bound of Ω(n log n) for n > 3. The upper bound of
O(n log n) for n = 3 is due to the fact that the computation of a single contri-
bution of a point y in Y reduces to computing the difference S(Y)−S(Y \ {y}),
and the computation of each hypervolume takes O(n log n) (see [12]). �

4 Dimension sweep algorithm

A dimension sweep algorithm that computes the hypervolume contributions for
a set Y ∈ A3 in O(n log n) time and O(n) space is introduced and discussed. The
dimension sweep paradigm seems to be promising for constructing the algorithm,
as it has already yielded asymptotically optimal algorithms for the maximal set
problem [18] and the computation of the total hypervolume in 3-D [12].

The algorithm processes points in the order of descending z-coordinates. For
the i-th such level, the z-coordinate of the i-th point defines the height of a
sweeping plane that stretches out in x- and y-direction (see figure 2).



The construction of the algorithm is based on the observation that the region
above the sweeping plane that is exclusively dominated by a point when consid-
ering only the subset of points above the sweeping plane, will be also exclusively
dominated – by the same point – when the entire set of points is considered.
Hence hypervolume contributions can be accumulated level by level. This can
be done by partitioning the exclusively dominated hypervolume into axis-parallel
boxes. At each level, it is made sure that each exclusively dominated region above
the sweeping plane is covered by exactly one such box. As the sweeping plane
reaches lower levels new boxes may be created, existing boxes may grow (in their
z-coordinate), and boxes may be completed, i.e., they will no longer grow. Each
box is associated with the point that exclusively dominates the hypervolume it
encloses. After the sweeping plane has reached the level of the reference point,
the exclusive hypervolume contribution of a point is the sum of the volumes of
the completed boxes that have been associated with this point.

To achieve efficiency, the algorithm maintains lists of boxes in such a way
that each box that needs to be updated can be efficiently accessed. This can be
achieved by maintaining boxes in doubly linked lists associated with the points.
Only active boxes are maintained, i.e. boxes that may still grow. Boxes that are
completed are removed from these lists, and their hypervolume is added to the
point to which they belong. Moreover, efficient access to points, the box lists of
which need to be updated, is achieved by maintaining a tree that comprises a
subset of points that have already been visited [18]. Accordingly, the following
non-elementary data-structures are used in the algorithm:

– A height balanced search tree (e.g. AVL tree [1]), named T, the nodes of
which refer to the non-dominated subset of input points that have been
processed so far by the algorithm. It is sorted in ascending order of the x-
coordinate and features insertion of a point (T.insert), deletion of a point
(T.delete) (both in time O(log n)), and range selection in O(log(n) + k),
where n is the number of points and k the number of qualified items.

– An axis-parallel box b is defined by its lower corner (b.lx, b.ly, b.lz), and
its upper corner (b.ux, b.uy, b.uz). Active boxes have an undefined lower
bound b.lz=NaN whereas all other coordinates are set to their final value
after a box has been created.

– An array of doubly linked lists of active boxes: Each point is associated
with one box list. List are sorted in ascending x-coordinate. A box list, say
L, has these methods: L.push front(b) adds a box item to the list’s head,
and L.push back(b) to its tail. Moreover, b=L.pop front() retrieves a box
from the head of a list and b=L.pop back() from the tail, removing the
corresponding box from the list.

A detailed outline of the algorithm in pseudocode is given in algorithm 1. The ar-
ray of points is sorted by the z-coordinate. Sorting can be achieved in O(n log n)
and therefore, due to theorem 1, it does not impose significant additional costs
onto the algorithm.

Algorithm 1 can be subdivided in an initialization phase and the main loop.
Initialization: The algorithm intializes an empty AVL tree (T) and inserts the



Algorithm 1 Algorithm Hycon3d

Input: (p[1], ...,p[n]): mutually non-dominated R3-points sorted by z-coordinate
in descending order
(1) p[n+1]=(∞,∞, 0);
(2) Initialize AVL tree T for 3-D points

Insert p[1], (∞, 0,∞), (0,∞,∞) into T;
(3) Initialize doubly linked lists L[1]=empty(); ... L[n+1]=empty();

b= ((0,0,NaN), (p[1].x, p[1].y, p[1].z)); L[1].push front(b);
(4) Initialize hypervolume contributions c[1] = 0; ...; c[n] = 0
for i= 2 to n+1 do {Main Loop}
(a) Retrieve the following information from tree T:

r: index of the successor of p[i] in x-coordinate (right neighbor)
t: index of the successor of p[i] in y-coordinate (left neighbor)
d[1], ..., d[s]: indices of points dominated by p[i] in xy-plane,
sorted ascending in x-coordinate (region B, Figure 3).

(b) while not L[r].empty() {Process right neighbor, region R}
b= L[r].pop front()
if (b.ux ≤ p[i].x)

b.lz=p[i].z; c[r]=c[r]+Vol(b);
else if (b.lx < p[i].x)

b.lz=p[i].z; c[r]=c[r]+Vol(b);
b.lx=p[i].x; b.uz=p[i].z; b.lz=NaN; {Add box br in region R}
L[r].push front(b); break;

else L[r].push front(b); break
(c) xleft = p[t].x {Process dominated points, region M}

for j=1 to s
jdom=d[s]; d=p[jdom];
while (not L[jdom].empty())

b=L[jdom].pop front();
b.lz=p[i].z; c[jdom]=c[jdom]+Vol(b);

b=[(xleft, d.y, NaN),(d.x, p[i].y, p[i].z)];
L[i].push back(b);
xleft = b.ux;
remove p[jdom] from AVL tree

b=[(xleft, p[r].y, NaN), (p[i].x, p[i].y, p[i].z)]; {Add box b+ in region R}
L[i].push back(b);

(d) xleft=p[t].x; {Process left neighbor, region L}
while not L[t].empty()

b=L[t].pop back();
if (b.ly < p[i].y)

b.lz = p[i].z; c[t]=c[t]+Vol(b);
xleft = b.lx

else L[t].push back(b); break;
if (xleft < p[t].x)

b=[(xleft, p[i].y, NaN),(p[t].x, p[t].y, p[i].z)]; {Add box bl in region R}
L[t].push back(b);

(e) Insert p[i] in AVL tree T;
(5) output c[1], ..., c[n] {Exclusive contributions}



Fig. 2. Sweeping plane

highest point p[1] into T. Also, two auxiliary points (∞, 0,∞) and (0,∞,∞)
that bound the region from the left and from the right are inserted. They have
either an x or a y coordinate of 0, respectively, such that they never dominate
points with positive hypervolume contribution. Here, the value of 0 stems from
the reference point c = 0. Their z-coordinate is infinite, such that they are never
dominated themselves by input points and remain in the tree. Throughout the
algorithm they serve to make sure that every point in the xy-plane has a well
defined neighbor in the x- and in the y-coordinate.

Additionally, an auxiliary point p[n + 1]=(∞, ∞, 0) is created. It receives
the index n+1. It will be processed in the last iteration of the main loop. Again,
the value of 0 stems from the reference point. Its projection onto the xy-plane
is (∞,∞) and dominates all projections of input points to the xy-plane. This
point will force the completion of boxes that are still open in the last iteration.
The array L of box lists is then initialized with empty lists. A point is inserted
into the box list of point p[1] with (p[1].x, p[1].y, p[1].z) and the x-and y-
coordinate of the reference point as a lower corner. The lower limit of the box
in the z-coordinate is determined later in the algorithm. This box delimits the
region that is dominated exclusively by the first point above the second level of
the sweeping plane. Finally, the array c[1], ..., c[n] that is used to accumulate
hypervolume contributions of completed boxes is initialized to zero.

The main loop of the algorithm processes in ascending order of the z-coordinate
all points p[2], ... p[n+ 1]. It maintains the following invariant properties:

– At the end of each iteration, the volume of all active boxes in the box lists, if
they were completed at the current z-level, plus the accumulated volumes of
previously completed boxes, is the total exclusively dominated hypervolume
above the sweeping plane at level i. This property is essential to guarantee
the correctness of the algorithm.

– The box lists of each point contains active boxes sorted by ascending x
coordinates. This property allows efficient updates of box lists.



– To find relevant information for the update of box lists, in the i-th itera-
tion, T stores points that are non-dominated among p[1], ..., p[i− 1] in the
xy-plane. These are the only relevant points for determining increments of
hypervolume contributions from level i onwards. T is organized as a balanced
search tree sorted by x-coordinate.

After the introduction of a new point p[i] some boxes simply grow in z-direction
and no access by the algorithm is required for them, whereas others need to be
created or completed and require access. From Figure 3, it becomes clear that
for the creation and completion of boxes only box lists of particular points are
of interest. These are p[r], the upper neighbor in T of p[i] in the x-direction,
p[t], the upper neighbor in T of p[i] in the y-direction, and the sequence of all
dominated points p[d[1]], ..., p[d[s]], being in ascending order of the x-coordinate.
The algorithm determines the indices of these points using the AVL tree and
making use of the fact that a sorting in the x-coordinate implies a reverse order
in the y-coordinate (points in the AVL tree are mutually non-dominated in the
xy-plane.)

Firstly, the right hand side of p[i] is considered (region R in Figure 3). The
point p[r] may dominate regions exclusively until level i that from this level on-
wards are no longer dominated exclusively by p[r]. They can be obtained step-
by-step by traversing the box list L[r] in the direction of ascending x-coordinates
(from the head of the list). Each dominated box is completed and the yet un-
defined z-coordinate is set to p[i].z. The volume of the box is added to the
hypervolume contribution c[r] of p[r]. The algorithm stops removing boxes from
the list after the lower bound of a box retrieved from L[r] exceeds p[i].x. The
right part of the last box removed may still be exclusively dominated by p[r].
Hence, a new box, (br, in Figure 3), may be inserted and attached to the front
of the list L[r].

Region M (see Figure 2) comprises the points dominated by p[i] in the xy-
plane, namely p[d[1]], ..., p[d[s]]. They are processed in ascending order of x.
For each such point, a new box is created and pushed to the back of the list of
p[i]. Additionally, a box in region R is created and pushed to the back of the
same list with p[i] as an upper corner (b+ in Figure 3), if p[d].x < p[i].x. Its
lower y-coordinate is p[r].y. After adding these boxes, the area that is, from now
on, exclusively dominated by p[i] is partitioned into boxes. Moreover, all boxes
associated with dominated points (projections) are completed and discarded
from the box lists, as they are from now on also dominated by p[i] in the xy-
plane. The dominated points themselves are discarded from the tree T for the
same reason.

Boxes to the left of p[t] (in region L in Figure 3) are only dominated by p[t]
up to the i-th level, and from level i onwards, additionally dominated partly by
p[i]. The boxes in this region need to be updated in their lower y bound. Above
p[i].y they will still be exclusively dominated by p[t]. The update is achieved by
completing all boxes with lower y-bound smaller than p[i].y. The corresponding
regions exclusively dominated by p[t] can be merged into one single box (bl in



Figure 3). Therefore only one new box is added to p[t]. This box has p[i].y as
its lower bound in the y-direction, and p[t].y as its upper bound.

In the final iteration of the algorithm, i = n+ 1 and all previously processed
points are dominated by the auxiliary point p[n+1]. Volumes are updated for all
points that still have boxes in their lists. These boxes are lower bounded in the
z-coordinate by the reference point. After this operation has finished, the array
c[1], ..., c[n] contains the exclusive contributions of the points p[1], ..., p[n].

Fig. 3. Single level of the sweeping plain

The runtime of algorithm HyCon3D is estimated by the following theorem:

Theorem 3. Algorithm HyCon3D has a time complexity of O(n log n).

Proof: The time for the initialization phase, including sorting the input, is
bounded by O(n log n). Time critical operations within the main loop are (1)
updating and retrieving points from the AVL tree, and (2) creation and comple-
tion of boxes.

The algorithm needs to retrieve all dominated points, and the neighbor point
indices r and t from the AVL tree. To identify the neighbor to the right takes
time O(log n). As the xy-projection is mutually non-dominated the points are
sorted also by their y coordinate, and the tree can then be traversed in constant
time per additional dominated point. Each point is inserted and discarded only
once. The total cost of these operations amortizes to O(n log n). Excepting the
two boundary points p[r] and p[t], each point that is retrieved from the tree is
discarded. Hence, the total cost of tree operations also amortizes to O(n log n).

Furthermore, the total number of boxes that are created and completed can
be bounded. Each box is created and completed only once. Four different events
can cause the creation of a box. Each point p that is processed in the algorithm



causes the creation of (at most) two boxes: One box might be created when the
p is inserted, of which p is the upper corner. Moreover a box is created when p
gets discarded. It is associated with the point that at that time dominates p in
the xy-plane. In total, at most 2n boxes are created this way.

At most two additional boxes may be created per level i, one box for p[t]
and one box for p[r]. Accumulating over all n levels, at most 2n such boundary
boxes are created. Hence, at most 4n boxes are created in total.

For all box creations and completions, any relevant point and any box in
that point’s list of boxes can be located in constant time, because boxes that
need to be inserted and deleted are always at the head or at the tail of a doubly
linked box list. This results in an overall cost for box list updates of O(n), and
as volumes are only updated when a box is deleted, this is also the complexity of
all hypervolume contribution updates. As no other time critical operations are
executed, the complexity is O(n log n). �

Theorem 3 implies sharper bounds on the complexity of related problems:

Theorem 4. The following statements hold for d = 3 and an input set Y ∈ Ad

of size n:

1. AllContributions has time complexity Θ(n log n).
2. The time complexity of MinimalContribution is bounded by O(n log n).
3. The time complexity MinimalContributor is bounded by O(n log n).

Proof: (1) Theorem 3 establishes an upper bound for AllContributions of
O(n log n). This matches the lower bound of Ω(n log n) (see theorem 1). (2)+(3):
Finding a minimal contribution and contributor can be accomplished in a single
scan (linear time) of the results of AllContributions. �

5 Numerical experiments

Experiments are conducted in order to find out the CPU-time needed to com-
pute all hypervolume contributions for input sets of different size n ∈ [100, 1000].
For each value of n, the time needed to process m = 100 randomly generated
Pareto fronts is measured. Performance is studied on three test problems:

Problem 6 (convexSpherical). Find all contributions of Y ∈ Ad, where y are
generated independently, and yi = 10|vi|/‖v‖, vi ∼ Normal(0, 1), i = 1, . . . , d.
(cf. Figure 4, upper left)

Problem 7 (concaveSpherical). Find all contributions of Y ∈ Ad, where y ∈
Y are generated independently, and yi = 10− 10|vi|/‖v‖, vi ∼ Normal(0, 1), i =
1, . . . , d. (cf. Figure 4, upper middle)

Problem 8 (cliff3D). Find all contributions for Y ⊂ Ad, where y ∈ Y are
generated independently, and yi = 10|vi|/‖v‖, vi ∼ Normal(0, 1), i = 1, 2, y3 ∼
Uniform(0, 10). (cf. Figure 4, upper right)



Fig. 4. Randomly generated fronts for the problems convexSpherical, concave-
Spherical, and cliff3D with n = 100 (above, left to right) and speed tests on these
fronts (below). For each type of front, 50 sets were generated. Error bars indicate mean,
maximum, and minimum time consumption per algorithm and Pareto-front type and
size.

convexSpherical and concaveSpherical consider uniformly distributed
points on a convex and, respectively, concave spherical surface. cliff3D consid-
ers the third coordinate according to a uniform distribution. It is constructed in
a way that, during the dimension sweep, all points remain in the tree until the
final layer is reached. Therefore the time for processing this set is supposed to be
high. The function Clock() is used to measure time in CPU seconds (measured
using clock t and time.h in MinGW/MS Windows). Compiler options are g++
-O3 on a Toshiba Satellite PRO, Genuine Intel(R) CPU 1.66 GHz, T2300, with
1 GByte RAM. The tested algorithm implementations are:

EF: The dimension sweep algorithm discussed in this paper.4

FPLI: iterated application of total hypervolume computation with dimension
sweep algorithm by Fonseca, Paquete and López-Ibáñez5, cf. [12].

WFG: IHSO Algorithm6 by Walking Fish Group (WFG) e.g. [6].

Figure 4 shows the results on the test-sets. It confirms the considerable speed
gain of the new algorithm (EF) as compared to the other algorithms. Results are
similar for different shapes of non-dominated fronts (Figure 4, concaveSpher-
ical, convexSpherical, cliff3d). Swapping the y− and z− coordinates of
the cliff3D problem (Figure 4, right, below) yields a further speed gain.
4 C++ source code is available from the authors on request.
5 http://iridia.ulb.ac.be/∼manuel/hypervolume
6 (http://www.wfg.csse.uwa.edu.au/toolkit/



6 Conclusion and outlook

The complexity of computing all contributions to the hypervolume given an
approximation set Y ∈ Ad has shown to be Θ(n log n) when d = 2 and d = 3,
and a lower bound of Ω(n log n) has been established for d > 3. Also, the problem
of computing the hypervolume contribution of a single point has been considered,
and has been shown to have complexity Θ(n) for d = 2, Θ(n log n) for d = 3, and
to be bounded by Ω(n log n) for d > 3. An interesting aspect is that computing
a single contribution has the same complexity in the 3-D case as computing
all contributions, while in 2-D computing one contribution is less complex than
computing all contributions.

A novel dimension sweep algorithm with asymptotically optimal time com-
plexity O(n log n) and space complexity O(n) for computing all hypervolume
contributions in 3-D has been introduced. It improves existing algorithms [9] for
this problem by a factor of

√
n. Empirical performance tests on randomly gener-

ated 3-D non-dominated fronts indicate that the new algorithm is considerably
faster than existing algorithm implementations.

It is promising to apply the new algorithm in hypervolume-based archivers
(e.g. [16]) and evolutionary algorithms (e.g. [20]), as it will make larger pop-
ulation/archive sizes and a higher number of iterations affordable. Interesting
directions for future research could be the extension of the approach to prob-
lems in higher dimensions or to more general hypervolume-based subset selection
problems, and the analysis of incremental update schemes.
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