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ABSTRACT
In this paper we propose a tabu search-based memetic algorithm
(TSM) for the multi-objective flexible job shop scheduling problem
(FJSSP), with the objectives to minimize the makespan, the total
workload and the critical workload. The problem is addressed in a
Pareto manner, which targets a set of Pareto optimal solutions. The
novelty of our method lies in the use of tabu search (TS) as the local
search method as well as a mutation operator and the use of the
hypervolume indicator to avoid stagnation by increasing the flow
of individuals in the local search. To the best of our knowledge, the
use of TS in the context of multi-objective FJSSP has not been re-
ported so far. We apply our algorithm on well known test instances
and compare our results to state-of-the art algorithms. The results
show that our approach yields competitive solutions in 6 of the 10
instances against two of their algorithms proving that the use of
TS as a local search method can provide competitive results.
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1 INTRODUCTION
One of the most important industrial activities, especially in plan-
ning and managing of manufacturing processes, is the scheduling
of operations. Already in the 1950s, this led to the formulation
of one of the classical operations research problems [6], the job
shop scheduling problem (JSSP). The JSSP, can be described a set
of jobs which must be processed on a set of machines uninterrupt-
edly, where each job is a sequence of consecutive operations. Each
operation requires exactly one machine, and machines are continu-
ously available and can process one operation in a given duration.
A solution to this problem is a schedule. A typical performance
indicator for the solution is the maximum completion time of all
operations, also called the makespan. The usual objective, to find a
schedule with minimum length (minimum makespan), was proven
to be NP-hard [12] and belongs to the most intractable instances of
NP-hard problems [18]. To deal with the combinatorial complexity,
meta-heuristic techniques, such as evolutionary algorithms (EA)
[27], particle swarm optimization (PSO) [17] and tabu search (TS)
[19] can be used.

Instead of just the makespan though, several other performance
measures can be used as well, such as the maximum machine work-
load or the total machine workload [25]. In this case, the problem
automatically becomes a multi-objective optimization (MOO) prob-
lem, in which a variety of incomparable solutions exist. The set
of such solutions, which cannot be improved with respect to one
objective without making another objective worse, is called the
Pareto set [10].

In this work, we focus on the flexible job shop scheduling prob-
lem (FJSSP), which is an extension of the job shop scheduling
problem, and present a new approach using tabu search (TS) as
the local search method for a multi-objective evolutionary algo-
rithm (MOEA). We apply our algorithm to the famous Brandimarte
datasets [4] and we compare ourselves to the algorithms of Yuan
et al. [33]. We should note here that we do not intend to make a
reference set as done by Yuan et al., as this would take enormous
effort, but instead enrich this field by doing additional research on
ways of determining new or even better solutions to this problem.

The main novelty of our work lies in the following two key
aspects:
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• Tabu search (TS) is used in two ways: As a local search
method, as well as in the mutation operator.
• Stagnation avoidance based on the hypervolume indicator
[9].

It is also our intention to focus on the use of memetic multi-
objective approaches for the solution of this problem, as our work
shows that combining local search with global search can have a
significant positive impact for heuristic solvers for the FJSSP.

This paper is organized as follows: In Section 2, we formulate
the FJSSP and discuss the state-of-the-art in Section 3. In Section 4,
we describe TS and in Section 5 our algorithmic approach. Finally,
in Section 6 we present our experimental setup and results, and in
Section 7 we give concluding remarks and introduce directions for
future research.

2 PROBLEM FORMULATION
An FJSSP instance can be described as a set N of N jobs that need
to be processed on a setM ofM machines. Each job i ∈ {1, ...,N }
consists of a tuple of Ni operations Oi j , with j ∈ {1, ...,Ni }, which
have a predetermined sequence. This means that for job i to be
completed, its Ni operations must be processed in their given order.
This is called a precedence constraint. Furthermore, each operation
Oi j has a predetermined set of machines Mi j ⊆ M which can
process this operation. The processing time pi jk of the process
Oi j on machine k ∈ Mi j is also known a priori. Furthermore, the
following assumptions are made:
• All machines are available at time 0.
• All jobs are released at time 0.
• Each machine can process one operation at a time.
• Jobs are independent between each other, i.e., there are no
precedence constraints among the operations of different
jobs.
• No interruption is allowed once a process has started (no
pre-emption of operations is allowed).
• The setup times of machines and transfer times of operations
are negligible.

The scheduling problem consists of two subproblems:
(1) The routing subproblem, i.e., assigning each operation Oi j

to a machine k ∈ Mi j .
(2) The sequencing subproblem that determines a sequence of

operations on all machines, to obtain a feasible schedule
which satisfies predefined objectives.

The classical JSP requires sequencing of operations on fixed
machines, i.e., the machine assignment is pre-determined. Given
that in FJSSP we not only deal with the sequencing of operations,
but also with the machine assignments to the operations, it is by
nature more complex than the classic JSP. The FJSSP is thus also
NP-hard since it is an extension of the NP-hard JSP.

Regarding the flexibility of the problem, there are two classifica-
tions based on [16]. These are:

(1) Total flexibility, where each operation can be processed by
any of the M machines (Mi j = M,∀i ∈ {1, ..,n} and j ∈
{1, ..,Ni }.

(2) Partial flexibility where some operations can only be pro-
cessed on a subset of the availablem machines in the shop.

Finally, let Ci be the completion time of job i .Wk is the sum-
mation of processing times of operations that are processed on
machine k . In this paper the three objectives makespanCmax , total
workloadWT and maximum or critical workloadWmax are to be
minimized. These are defined as follows:

Cmax = max{Ci | i ∈ {1, ..,N }}, (1)

WT =

M∑
k=1

Wk , (2)

Wmax = max{Wk | k ∈ {1, ..,M}}. (3)

3 RELEVANT LITERATURE
Due to its high relevance, the last three decades have seen exten-
sive development of efficient techniques to solve the flexible job
shop scheduling problem (FJSSP) [6]. Between 2010 and 2013, a
considerable increase in the number of publications addressing the
problem can be observed, with almost 50% of those contributions
using multi-objective performance measures [6]. Regarding the
latter, the performance measures mostly used are makespan, to-
tal workload and critical workload. Moreover, emphasis has been
given to the use of hybrid techniques, i.e., techniques that combine
one or more heuristics or metaheuristics [6]. The most common
form of hybridization is local search [1]. The term memetic algo-
rithm (MA) is often used synonymously for hybrid evolutionary
algorithms [21], [20]. Memetic algorithms combine evolutionary
algorithms with local search operators and are widely used in com-
binatorial optimization. In this view, in [7] the authors introduce a
multi-objectivememetic algorithm (MA)with an embedded variable
neighborhood descent procedure, and in [33] the authors propose
new memetic algorithms for the multi-objective flexible job shop
scheduling problem (MO-FJSSP) with the objectives to minimize
the makespan, total workload, and critical workload, by adapting
the NSGA-II optimizer [8] through a well-designed chromosome en-
coding/decoding scheme and genetic operators. They also develop
a novel local search method based on critical operations, using a
hierarchical strategy to handle multiple objectives, emphasizing on
makespan. To the best of our knowledge these two papers are the
most recent in the field that deal with multiple objectives using a
memetic approach. Most researches with a hybrid/memetic struc-
ture usually deal with one objective, most often makespan (i.e., see
[30], [32], [5]), or other forms of hybridization such as in [31] and
[22].

4 TABU SEARCH
Tabu search (TS) is a metaheuristic, developed by Glover [13], that
guides a local heuristic search procedure to explore the solution
space beyond local optimality, in mathematical optimization. TS
is based on the assumption that problem solving, to qualify as
intelligent, must incorporate adaptive memory and responsive ex-
ploration [6].

Local search methods have a tendency to become stuck in subop-
timal regions (local optima) or on plateaus where many solutions
are equally fit. Tabu search overcomes this pitfall of local search
by relaxing its basic rule. First, at each step a worse move can be
accepted if no improving move is available. In addition, prohibitions
(hence the term tabu) are introduced to discourage the search from
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coming back to previously visited solutions. These prohibitions are
facilitated through a memory structure called the tabu list. In its
simplest form, a tabu list is a short-term set of the solutions that
have been visited in the recent past, i.e., within less than a certain
number of iterations which is called the tabu list size |T |. In this
list one can alternatively store characteristics or attributes of the
forbidden moves [14]. Furthermore, these memory structures can
be divided into three categories:

(1) Short-term: The list of solutions recently considered. If a
potential solution appears on the tabu list, it cannot be re-
visited until it reaches an expiration point, which usually
means |T | iterations. This is the approach used in this paper.

(2) Intermediate-term: Intensification rules which intend to bias
the search towards promising areas of the search space.

(3) Long-term: Diversification rules that drive the search into
new regions.

An aspiration criterion is introduced in tabu search to determine
when the tabu restriction can be overridden, thus removing a tabu
classification. A solution is above the current aspiration level if it
is better than any solution met before.

The main decisions to be made are:

• The specification of a neighborhood structure.
• The move attributes (if used).
• The tabu list length (or tenure).
• The aspiration criterion.
• The stopping rule.

A typical pseudocode for TS, and the one used in this paper,
is presented in Algorithm 1, where we consider the minimization
of an objective function f . In detail, lines 2 through 4 initialize a
solution x0 and set it as the best solution found so far and as the
current seed/candidate to continue the search from. In line 4, the
tabu_list is initialized to an empty list. In line 5 the search begins.
Line 6 finds the neighbors of the current candidate and lines 7 to
9 check if the neighborhood is empty. This can be the case, if for
example the number of blocks that generate the moves is not larger
than 1 [24]. If it is, the search stops and returns the best solution
so far. Lines 10 to 12 check if all elements of the neighborhood
belong in the tabu list and if they do, the search stops and returns
the best solution so far. In line 13 the best neighbor in the generated
neighborhood is found. If the best neighbor is in the tabu list (line
14) then we check if it passes the aspiration criterion (lines 15 to
20) and if not we find a new best neighbor, discarding the previous
one (lines 22 and 23). If the best neighbor does not pass the check
in line 14, then it is added to the tabu list, the new candidate is
updated and a check takes place to see whether the new candidate
has a better fitness value than the best solution found so far (lines
29 to 33). We continue like this until a termination criterion is met.

5 A NEWMEMETIC GENETIC ALGORITHM
Memetic algorithms combine evolutionary algorithms with local
search operators and are widely used in combinatorial optimization
[20]. Our algorithmic approach to the multi-objective nature of
this problem combines a genetic algorithm (GA) with local search
(here, with tabu search). As such, it can be considered as a memetic
multi-objective algorithm. The proposed approach, memetic genetic

Algorithm 1 Tabu search.
1: Input: x0,T
2: bestSolution ← x0
3: bestCandidate ← bestSolution
4: tabu_list ← []
5: while termination criterion not met do
6: sNeiдhborhood ← дetNeiдhbors(bestCandidate)
7: if not sNeiдhborhood then
8: Return bestSolution
9: end if
10: if all x in sNeiдhborhood is in tabu_list then
11: Return bestSolution
12: end if
13: bestNeiдhbor ← дetBestNeiдhbor (sNeiдhborhood)
14: while bestNeiдhbor in tabu_list do
15: if f (bestNeiдhbor ) < f (bestSolution) then
16: if lenдth(tabu_list) == |T | then
17: tabu_list .pop(0)
18: end if
19: tabu_list ← tabu_list ∪ {bestNeiдhbor }
20: bestSolution ← bestNeiдhbor
21: else
22: sNeiдhborhood .remove(bestNeiдhbor )
23: bestNeiдhbor← дetBestNeiдhbor (sNeiдhborhood)
24: end if
25: end while
26: if lenдth(tabu_list) == |T | then
27: tabu_list .pop(0)
28: end if
29: tabu_list ← tabu_list ∪ {bestNeiдhbor }
30: bestCandidate ← bestNeiдhbor
31: if f (bestCandidate) < f (bestSolution) then
32: bestSolution ← bestCandidate
33: end if
34: end while
35: Return bestSolution

algorithm (TSM), is outlined in Algorithm 2. Details of each step
are given in the following subsections.

5.1 Representation
For the chromosome representation we follow the approach pre-
sented in [29]. In this representation each individual is a tuple (u,v),
where u represents the operation sequences and v the machine as-
signment for operations. In detail, u is a vector of integers in which
the operations of each job is denoted by the corresponding job
number. Thus the k−th occurrence of a job number refers to the
k−th operation in the sequence of this job. For example, the op-
eration sequence [1, 2, 1, 2, 1] represents the operation sequence
[011021012022013]. For the machine assignment vector v , each num-
ber represents the machine assigned for each operation successively.
For example, for a two job problem with 3 and 2 operations, re-
spectively, and 3 machines, the vector [[132][12]], means that 011 is
sequenced on machine 1, 012 on machine 3 and operation 013 on ma-
chine 2 and so on for the other job. In Figure 1 we see an illustration
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Algorithm 2 TSM.
1: Initialize population
2: Apply local search on population
3: Evaluate population
4: Hypervolume calculation of the Pareto front
5: while Termination criterion not met do
6: Mutate individuals mapping to the same value and evaluate

them
7: Create offspring (parent selection, reproduction, mutation)
8: Apply local search to offspring individuals
9: Evaluate offspring population
10: Merge parent population with offspring population
11: Select new parent population for next generation
12: Compute hypervolume indicator, check for stagnation and

adjust parameters accordingly
13: end while

Figure 1: Individual representation.

of the example above, which represents the following operation se-
quence and their assigned machines: (011,M1), (021,M1), (012,M3),
(022,M2), (013,M2).

5.2 Initialization
For the initialization of the initial population (line 1 in Algorithm
2) we follow the procedure introduced in [26] for both the machine
assignment sequence and the operation sequence. For the machine
assignment we switch between two assignment approaches. As-
signment rule 1 starts from the operation that corresponds to the
minimum in the processing time table. Assignment rule 2 permutes
randomly the jobs in the table, before applying the approach by
localization, described in [16]. This approach takes into account
both the processing times and the workload of the machines, i.e.,
the sum of the processing times of all the operations assigned to
each of the machines. The procedure then, consists in finding, for
each operation, the machine with the minimum processing time,
fixing that particular assignment, and then adding this minimum
processing time to every subsequent entry in the same column (ma-
chine workload update) [26]. The initialization with the minimum
method has a rate of 10% and the initialization with permutation
90%, based on [26]. After the machine assignment is settled, we
move on to the operation sequencing. The sequencing of the initial
assignments is obtained by a mix of three known dispatching rules:
• Randomly select a job. In this method, a job is randomly se-
lected to be put into the chromosome.
• Most work remaining. In this method before selecting an
operation, the remaining processing times of all jobs are

calculated respectively, and the first unselected operation
sequence of the job with the highest remaining processing
time is placed into the chromosome.
• Most number of operations remaining. In this method be-
fore selecting an operation, the number of succeeding op-
erations of all jobs are calculated respectively, and the first
unselected operation sequence of the job with the highest
number is placed into the chromosome.

The three dispatching rules above, are used interchangeably with
rates 20%, 40%, 40%, respectively, based on [26].

5.3 Parent Selection and Offspring Generation
For the parent selection we use tournament selection, i.e., the indi-
vidual for reproduction is chosen to be the one with the smallest
makespan among a particular number q of randomly selected indi-
viduals. Once the individuals for reproduction have been selected,
the crossover and mutation operators are applied to produce the
offspring (line 7 in Algorithm 2). The crossover operator is applied
to pairs of chromosomes, while the mutation operator is applied to
single individuals. We distinguish between two kinds of operators:

• Assignment operators, referring to the machine assignment
of individuals.
• Sequencing operators, referring to the sequencing of opera-
tions of individuals.

Assignment operators only change the machine assignment of
the individuals, i.e., the sequencing of operations is preserved in
the offspring. Assignment crossover generates the offspring by ex-
changing the assignment of a subset of operations between the two
parents. Assignment mutation, on the other hand, only exchanges
the assignment of a single operation in a single parent. In this paper
for the machine assignment operators we used the recombination
operator as in [29]. For the mutation operator for the assignment
we used a mixture of the approach of [29] and TS. In this TS we used
as neighborhood structure of the assignment of the individual the
use of random selection of two operations. With these operations
in hand we then randomly exchange the machine already assigned
for these operations, with another one from the set of available
machines of those operations. We did this 10 times to define the
neighborhood around the current seed. To save time we only se-
lected operations that have more than one machine available. We
used a neighborhood of steady size equal to 10, and used as the tabu
list tenure the closest integer to the squared root of the size of the
neighborhood. We also used as a stopping rule 20 repetitions of the
TS and a limit of 5 repetitions without improvement. Moreover, we
used a 50% probability for the switch between these two mutation
methods. The parameters selected here were based on preliminary
results.

Sequencing operators only change the sequence of the opera-
tions in the parent chromosomes, i.e., the assignment of operations
to machines is preserved in the offspring. In applying the sequenc-
ing operators, we must respect the precedence constraints among
operations of the same job. We followed the suggestion of [29] for
both the crossover and mutation for the sequencing operator.

Finally, non-dominated sorting and the crowding distance oper-
ator from NSGA-II [8] are applied for parent selection for the next
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generation, after merging the offspring with the current parent
population.

5.4 Local Search
We decided to hybridize genetic algorithms with tabu search (TS)
due to the fact that in many combinatorial optimization problems
TS can be locally more exhaustive than genetic search [15], as it
prevents premature convergence in sub-optimal regions, such as
local optima. The local search we decided to use is a TS. For the local
search we focused on the minimization of the makespan and, under
certain conditions, the minimization of an aggregated function of
all three objectives.

In detail, in every iteration we applied TS to 10% of the individu-
als after the genetic operators are applied and before the merging
between the parent population and offspring population takes place.
Since we focused on the minimization of the makespan, based on
[24] we made adjustments only on particular parts of the critical
path of the individual-schedule, called blocks. The critical path is
the longest path on the disjunctive graph representation of a sched-
ule [28], [3]. Blocks can be considered as the maximal subset of
the critical path, which contains operations processed on the same
machine. The TS parameters used were: 7 for the tabu list size, 5
for the maximum number of iterations without improvement and
20 for the maximum overall number of iterations. The parameters
selected here were based on preliminary results. The neighborhood
structure was based on the notion of critical paths and blocks, and
as a result the neighborhood size varied per iteration.

5.5 Problem Specific Hypervolume Calculation
In each iteration we calculate the hypervolume indicator [9] of the
Pareto front of the solutions. To counter the possible stagnation
we entered a switch. If the hypervolume is stagnant for more than
3 generations, we increase the number of the possible solutions
entering the local search to 0.5. A problem-specific conservative
choice of a reference point is used, as follows: The basic idea is
to find a point which will bound from above the Pareto front and
as such we decided to go with the summation of the predefined
processing times on all capable machines of all processes overall
the jobs. In detail we used as a reference point the triple (x ,x ,x),
where:

x =
N∑
i=1

Ni∑
j=1

∑
k ∈Mi j

pi jk , (4)

where pi jk is the process time of 0i j on machine k from its set of
machines able to process it. Obviously, this point varies per problem
instance, as it is directly related to its input data.

5.6 Solution Redundancy
One issue that is common for the FJSSP is solution redundancy.With
this wemean thatmore than one solution in the decision spacemaps
to the same value in the objective space. That is, the mapping is
not injective. There is also the chance that after several generations
some individuals in the decision space are duplicates.We tackled the
first of the two issues by inserting (line 6 in Algorithm 2) an operator
which determines the individuals that map to the same objective

values. After that, it selects the largest subset of individuals which
map to the same value and mutates them.

6 EXPERIMENTAL SETUP AND RESULTS
We tested the performance of our algorithm on the 10 instances
Mk01-10 taken from Brandimarte [4]. Table 1 summarizes the pa-
rameter settings of our new algorithm as used for these runs. We
ran our algorithm on each benchmark 30 times and aggregated
the results keeping in the end the non-dominated solutions from
the aggregated ones. We used as a termination criterion 500, 000
examined solutions, as proposed in [33]. Furthermore, we executed
our experiments on the DAS-4 (Distributed ASCII Computer) [2],
with 16 dual quad-core at 2.4GHz with 48GB RAM, in Python 3. We
furthermore used the DEAP [11] framework to build TSM. To the
best of our knowledge, this is the first research written in Python
on multi-objective scheduling 1.

We compared our algorithm to the state-of-the-art algorithms
MA-1, MA-2, MA-1-NH, MA-2-NH, MRLS-1, MRLS-2, NSGA-II vari-
ant, from Yuan et. al, [33]. Their parameter settings, as well as their
solutions and reference set can be found in the same paper. We
compared our results with the aggregated results over 30 runs of
each of their algorithm, and we did this for each benchmark. We
report the results found between our algorithm and theirs as well
as the hypervolume indicator difference between their reference
set (after having added our solutions) and our solutions, for each
benchmark. The results are summarized in Table 2 and Table 3.

For saving space we only report our results for each benchmark
and the dominated solutions of the algorithms we compare to, if
they exist, otherwise there is a ‘−’. Furthermore, we also report on
the new solutions found, indicating this with the phrase Extended
by. For some benchmarks, specifically for Mk06, Mk07 we report
only part of the results of TSM due their big number, and also part
of the new solutions found against MRLS-1 on Mk06 and Mk10 2.

From the results we can see that TSM performs well in terms of
diversity of solutions in most benchmarks, although we can also
detect a slight bias on detecting points with big values of makespan.
We furthermore, see that TSM performs well against both MRLS-1
and MRLS-2 in all instances by either dominating some of their
solutions or by determining new points that extened the Pareto
front found by MRLS-1 and MRLS-2. Specifically, TSM partially
dominates the solutions of MRLS-1 in 8 out of 10 benchmarks
(Mk01, Mk02, Mk03, Mk04, Mk05, Mk07, Mk08, Mk09) and finds
new Pareto solutions in 2 out of 10 benchmarks (Mk06 and Mk10).
Regarding MRLS-2, TSM partially dominates the solutions returned
by MRLS-2 in 7 out of 10 cases (Mk01, Mk03, Mk04, Mk05, Mk06,
Mk08, Mk10) and identifies new solutions in 3 out of 10 cases (Mk02,
Mk07, Mk09). Furthermore, we see that for instance Mk06, TSM
identifies a new solution to the results returned by MA-1, MA-2 and
NSGA-II, however in most cases MA-1, MA-2, NSGA-II dominate
our solutions. Similarly we did not find any new or dominating
solutions compared to the solutions returned by MA-1-NH and
MA-2-NH in any case.

We furthermore computed the difference between the hypervol-
ume indicator of the reference set (after having added our solutions)

1The source code will be provided in http://liacs.leidenuniv.nl/~csmoda/
2The full list of solutions will be made available in http://liacs.leidenuniv.nl/~csmoda/
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Table 1: Parameter settings of the TSM.

Parameter Value
Population size 300
Crossover probability 0.5
Mutation probability 1
Tournament size 3
Local search probability 0.1
Mutation tabu tenure 3
Mutation tabu search
maximum number of
no progress

5

Mutation tabu search
maximum number of
iterations

20

Local search tabu tenure 7
Local search maximum
number of no progress 5

Local search maximum
number of iterations 20

and the hypervolume indicator of the augmented solutions (union
over 30 runs) of all algorithms, for each benchmark. We normalized
the reference sets and the obtained sets by using the nadir point of
the reference set multiplying by 1.1 [23]. The results can be seen in
Table 4. It is clear from the results that algorithms MA-1 and MA-2
have the best results. Nevertheless our approach gives (see TSM re-
sults in bold), when compared to MRLS-1 and MRLS-2, competitive
results on Mk01, better results in Mk03 and Mk04, Mk05 (compared
to MRLS-2), Mk07, Mk08 and Mk09. In Mk08 our algorithm is able
to determine the reference set.

In Table 5 we present the median of the difference between the
hypervolume indicator of the reference set (after having added our
solutions) and the hypervolume indicator of each algorithm on each
benchmark on 30 trials. We used the Wilcoxon rank sum test, with
a significance level of α = 0.01, to see whether the hypervolume
difference values obtained with the TSM strategy are significantly
better than those obtained with one of the other strategies. We
used also the Bonferroni correction, which means, that for each
individual test the significance level α is divided by the number
of tests per test instance. For us this is 7. The superscripts in the
bold TSM indicate from which of the other 7 algorithms the TSM
performed, on average, significantly better. From the table we see
that, on average, TSM performed significantly better than both
MRLS-1 and MRLS-2 on Mk03, Mk04 and Mk08 and significantly
better than MRLS-2 on Mk09.

Finally, the average time (in seconds) is 994 for Mk01, 1057 for
Mk02, 2880 for Mk03, 1798 for Mk03, 2094 for Mk05, 2743 for Mk06,
1888 for Mk07, 5546 for Mk08, 5277 for Mk09 and 5176 for Mk10.

7 CONCLUSIONS AND FUTUREWORK
To conclude we designed a memetic multi-objective algorithm
for the flexible job shop scheduling problem (FJSSP). We used
tabu search (TS) as the local search method, emphasizing on the
makespan. Although there have been many publications on the
FJSSP, to our knowledge there haven’t been any publications that

use TS in the context of multi-objective FJSSP. The main novelties of
our work are the use of TS as the local search method and mutation
operator and the use of the hypervolume indicator for stagnation
check. We tested our approach on the famous Brandimarte dataset
[4] and compared our solutions to the solutions of the algorithms by
Yuan et al. [33]. Although, our approach did not yield overall better
solutions, it was able to find better solutions and dominate several
points found by two of their algorithms (MRLS-1 and MRLS-2) and
find solutions that were not contained in and not dominated by the
Pareto front approximations found by other algorithms. In one of
the cases (Mk06) we also found a new solution on the Pareto front
returned by three of their algorithms (MA-1, MA-2, NSGA-II). We
furthermore compared the hypervolume indicator of the reference
set in [33] and our solutions for each benchmark and we see that,
when compared to two of [33] algorithms (MRLS-1 and MRLS-2) we
get competitive (Mk01) or better results (Mk03, Mk04, Mk05, Mk07,
Mk09, Mk08). Finally, we performed the Wilcoxon rank sum test
to see whether the hypervolume difference values obtained with
the TSM strategy are significantly better than those obtained with
one of the other strategies. The results showed us that, on average,
TSM performed significantly better than both MRLS-1 and MRLS-2
on Mk03, Mk04 and Mk08 and significantly better than MRLS-2 on
Mk09. In summary the TSM algorithm is an interesting alternative
to the algorithm of Yuan et al., in terms of quality. Besides, it is made
available as an open source Python implementation, which makes
multi-objective FJSSP available to the big community of Python
programmers.

This paper is intended to be a stepping stone towards our future
research directions on robust and online scheduling. There we will
deal with unexpected events, such as sudden jobs appearances,
where optimal scheduling should take place on-the-fly.
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Table 2: Results.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10

TSM

(40, 168, 37),
(41, 167, 36),
(41, 162, 39),
(41, 165, 37),
(42, 159, 39),
(42, 160, 38),
(40, 174, 36),
(41, 164, 38),
(43, 155, 40),
(42, 163, 37),
(42, 165, 36),
(43, 158, 39),
(44, 154, 40),
(46, 153, 42)

(29, 150, 26),
(29, 144, 28),
(29, 145, 27),
(30, 143, 29),
(31, 141, 31),
(31, 142, 30),
(33, 140, 33)

(204, 864, 204),
(206, 857, 204),
(210, 855, 204),
(213, 852, 204),
(215, 849, 213),
(216, 848, 213),
(222, 847, 222),
(223, 847, 213),
(224, 851, 204),
(226, 843, 222),
(230, 842, 222),
(234, 846, 213),
(237, 844, 213),
(240, 850, 204),
(246, 841, 231),
(247, 849, 210),
(248, 848, 210),
(249, 840, 249),
(256, 838, 249),
(256, 840, 222),
(262, 838, 231),
(274, 839, 222),
(275, 838, 222),
(282, 837, 231),
(297, 843, 221)

(68, 355, 68),
(68, 376, 60),
(69, 360, 60),
(69, 351, 63),
(71, 353, 62),
(72, 347, 66),
(72, 357, 61),
(73, 342, 72),
(73, 348, 63),
(75, 344, 66),
(75, 347, 65),
(77, 340, 72),
(78, 337, 78),
(79, 343, 67),
(84, 334, 84),
(90, 331, 90),
(98, 330, 98),
(106, 329, 106),
(114, 328, 114),
(122, 327, 122),
(130, 326, 130),
(138, 325, 138),
(146, 324, 146)

(174, 687, 173),
(176, 686, 173),
(177, 685, 173),
(178, 683, 175),
(178, 682, 176),
(179, 684, 174),
(179, 680, 179),
(180, 682, 175),
(180, 681, 178),
(181, 684, 173),
(181, 679, 179),
(181, 680, 178),
(182, 683, 173),
(182, 687, 172),
(183, 677, 183),
(185, 676, 185),
(191, 675, 191),
(197, 674, 197),
(203, 673, 203),
(209, 672, 209)

(91, 474, 57),
(91, 453, 66),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
(96, 434, 60),
(96, 428, 61),
(99, 432, 60),
(99, 427, 71),
(100, 476, 54),
(100, 450, 57),
(102, 455, 54),
(103, 452, 54),
(103, 446, 59),
(104, 451, 54),
(105, 449, 55),
(106, 420, 74),
(107, 423, 63),
(108, 421, 69),
(108, 447, 56),
(109, 421, 66),
(109, 441, 59),
(110, 442, 55),
(110, 421, 60),
(112, 417, 67),
(113, 411, 74),
(115, 414, 68),
(115, 415, 63),
(122, 439, 56),
...
(129, 437, 57),
(130, 434, 58),
(131, 440, 55),
(131, 413, 63),
(136, 449, 54),
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(143, 402, 82),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(144, 690, 144),
(148, 685, 144),
(150, 690, 143),
(150, 684, 149),
(153, 680, 150),
(153, 683, 147),
(154, 673, 150),
(156, 682, 147),
(157, 683, 145),
(157, 691, 142),
(158, 670, 156),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(162, 668, 156),
(163, 666, 162),
(163, 667, 157),
(166, 664, 157),
...
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(523, 2524, 523),
(524, 2519, 524),
(533, 2514, 533),
(542, 2509, 542),
(551, 2504, 551),
(560, 2499, 560),
(569, 2494, 569),
(578, 2489, 578),
(587, 2484, 587)

(369, 2711, 328),
(372, 2493, 310),
(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(300, 2157, 224),
(311, 2128, 256),
(313, 2190, 220),
(313, 2127, 242),
(313, 2132, 241),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(321, 2101, 259),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
(325, 2094, 220),
(326, 2090, 221),
(331, 2109, 214),
(332, 2171, 210),
(333, 2137, 210),
(335, 2106, 218),
(336, 2087, 233),
(336, 2112, 208),
(339, 2082, 229),
(343, 2109, 213),
(345, 2107, 216),
(353, 2105, 215),
(357, 2082, 220),
(358, 2111, 212),
(359, 2069, 253),
(359, 2091, 208),
(362, 2080, 250),
(362, 2081, 236),
(363, 2057, 242),
(364, 2054, 210),
(364, 2128, 205),
(368, 2115, 206),
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)

MA-1 - - - - -
Extended by:

(158, 473, 53)
- - - -

MA-2 - - - - -
Extended by:

(158, 473, 53)
- - - -

MA-1-NH - - - - - - - - - -
MA-2-NH - - - - - - - - - -

MRLS-1

(43, 163, 37),
(43, 156, 40),
(42, 166, 36),
(46, 153, 46)

(33, 142, 30)

(212, 932, 204),

(204, 956, 204),

(207, 947, 204)

(79, 338, 78),

(84, 335, 84),

(78, 339, 78)

(186, 676, 186),

(192, 675, 192),

(181, 679, 181)]

Extended by:

(91, 474, 57),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
...
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(157, 673, 150),

(150, 688, 144),

(149, 689, 144)

(555, 2531, 542),

(523, 2542, 523),

(524, 2541, 524),

(533, 2532, 533),

(530, 2540, 524)

(387, 2382, 320)

Extended by:

(300, 2157, 224),
(313, 2190, 220),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
...
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)
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Table 3: Results

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10

MRLS-2

(47, 153, 42),
(48, 165, 36),
(43, 163, 37),
(46, 166, 36),
(46, 153, 46)

Extended by:
(33, 140, 33) (204, 931, 204)

(78, 339, 78),

(84, 336, 84),

(72, 360, 61)

(198, 674, 198),

(186, 676, 186)

(92, 439, 62),

(92, 477, 61),

(94, 475, 61),

(99, 486, 60)

Extended by:

(150, 690, 143),
(157, 691, 142),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(166, 670, 150),
(168, 689, 142),
(169, 688, 141),
(169, 663, 162),
(170, 662, 157),
(171, 661, 169),
(172, 667, 156),
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(560, 2528, 560),

(523, 2537, 523),
(524, 2532, 524),

(543, 2530, 542),

(569, 2525, 569)

Extended by:

(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(330, 2100, 239)

NSGA-II - - - - -
Extended by:

(158, 473, 53)
- - - -

Table 4: Hypervolume indicator difference from reference set (smaller is better).

Algorithms Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
TSM 0.000263 0.002660 0.002046 0.004647 0.000247 0.056141 0.002001 0.000000 3.509746e-03 0.021632
MA-1 0.000000 0.000000 0.000000 0.000000 0.000000 0.003675 0.000000 0.000000 5.414126e-07 0.000915
MA-2 0.000000 0.000000 0.000000 0.000000 0.000000 0.002644 0.000000 0.000000 1.598030e-09 0.000412
MA-1-NH 0.000040 0.000043 0.000000 0.000189 0.000000 0.002143 0.000000 0.000000 2.404332e-05 0.002283
MA-2-NH 0.000000 0.000047 0.000000 0.000076 0.000000 0.002596 0.000000 0.000000 2.520381e-05 0.002037
MRLS-1 0.000131 0.000226 0.016691 0.004766 0.000266 0.042805 0.003620 0.000409 9.736424e-03 0.019498
MRLS-2 0.000113 0.000217 0.020501 0.004812 0.000219 0.043104 0.003403 0.000355 9.138569e-03 0.019221
NSGA-II 0.000040 0.000138 0.000000 0.000564 0.000000 0.007663 0.000000 0.000000 3.174112e-04 0.003024

Table 5: Median of hypervolume indicator difference from reference set.

Algorithms Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10
TSM 0.000998 0.003774 0.0036415,6 0.0070815,6 0.000772 0.061426 0.005147 0.0000205,6 0.0106556 0.022215
MA-1 0.000000 0.000050 0.000000 0.000295 0.000000 0.005438 0.000000 0.000000 0.000005 0.001809
MA-2 0.000000 0.000045 0.000000 0.000342 0.000000 0.005230 0.000000 0.000000 0.000003 0.001432
MA-1-NH 0.000042 0.000185 0.000000 0.000400 0.000000 0.007017 0.000000 0.000000 0.000112 0.003695
MA-2-NH 0.000040 0.000142 0.000000 0.000381 0.000000 0.006897 0.000000 0.000000 0.000110 0.003174
MRLS-1 0.000504 0.001232 0.020065 0.010253 0.000375 0.049451 0.005101 0.000571 0.010895 0.020479
MRLS-2 0.000420 0.001167 0.021041 0.009804 0.000326 0.048765 0.004778 0.000521 0.010474 0.020179
NSGA-II 0.000108 0.000905 0.000000 0.001873 0.000105 0.010133 0.000715 0.000000 0.000359 0.004454
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