
JACK – a tool for validation of security and
behaviour of Java applications

Gilles Barthe

Lilian Burdy

Julien Charles

Benjamin Grégoire

Marieke Huisman

Jean-Louis Lanet

Mariela Pavlova

Antoine Requets

gemalto & INRIA Sophia Antipolis, France

JACK – p.1

Google on “mobile phone games”

Welcome to Imserba

The best mobile phones portal and community in the
world Mobile phones Portal and Community

Imserba brings you the latest mobile phones related
news, informations, stuffs you need for your phones.
No matter which phone you are using: Nokia, Sony
erricson, Siemens, Samsung, Motorola or anything
else, here you can find our best collection of ring-
tones, cell phone games, themes, screensavers,
backgrounds.

Are you sure that you can trust these applications?

JACK – p.2

Google on “mobile phone games”

Welcome to Imserba

The best mobile phones portal and community in the
world Mobile phones Portal and Community

Imserba brings you the latest mobile phones related
news, informations, stuffs you need for your phones.
No matter which phone you are using: Nokia, Sony
erricson, Siemens, Samsung, Motorola or anything
else, here you can find our best collection of ring-
tones, cell phone games, themes, screensavers,
backgrounds.

Are you sure that you can trust these applications?

JACK – p.2

Google on “mobile phone games”

Welcome to Imserba

The best mobile phones portal and community in the
world Mobile phones Portal and Community

Imserba brings you the latest mobile phones related
news, informations, stuffs you need for your phones.
No matter which phone you are using: Nokia, Sony
erricson, Siemens, Samsung, Motorola or anything
else, here you can find our best collection of ring-
tones, cell phone games, themes, screensavers,
backgrounds.

Are you sure that you can trust these applications?

JACK – p.2

Security for trusted personal devices

• Trusted personal devices: phones, smart cards,
pda’s, set top boxes, . . .

• Used for security-sensitive applications

• Network connected

• Support for complex applications (contain a full
JVM)

• Shift from hardware attacks to logical attacks

JACK – p.3

Guaranteeing security

• Formal specification and verification

• Java Modeling Language (JML) able to express
security properties

• Classical program calculi can be used

• Large body of theory on sound modular
verification

• Proof Carrying Code paradigm

JACK – p.4

But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)

JACK – p.5

But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)

JACK – p.5

But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)

JACK – p.5

But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)

JACK – p.5

But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)

JACK – p.5

JACK: Java Applet Correctness Kit

JM
L2B

M
L

Javac

annotation
generation

security
properties

VCGen

VCGen

provers certificates
obligations
proof

Java + JML

Bytecode +
BML

JACK – p.6

History of JACK

• Development started at Gemplus (Jan 2002 to
April 2003)
Objective: Give developers tools that help them to
provide and be accountable for quality of their code
• Conform to specification requirements

• Well-documented

• Without bugs

• Transfered to INRIA (September 2003)

• Correctness stays major concern

• More features & plugins

JACK – p.7

Features of JACK

• Tight integration with IDE Eclipse

• JML used as annotation language

• Different means of validation possible

• Support for Simplify (automatic) and Coq
(interactive) prover

• Special JACK view for verification condition
browsing

JACK – p.8

And more features of JACK

• Generation and propagation of annotations,
based on implementation of verification condition
generator

• JML specifications compiled into BML (Bytecode
Modeling Language)

• Support for verification of bytecode

JACK – p.9

Integration with Eclipse

JACK – p.10

Developing an application in Eclipse

JACK – p.11

Using Simplify

JACK – p.12

Proof obligation viewer

JACK – p.13

Reasoning with method calls

JACK – p.14

Reasoning about exceptions

JACK – p.15

Proof obligations

JACK – p.16

Proof obligations in Coq

JACK – p.17

Proof obligations in Simplify

JACK – p.18

Annotation generation

JACK – p.19

The cost of writing annotations

• Annotation writing labour-intensive and
error-prone

• Much time spend on specifying obvious properties

• Annotations for a simple security property often
scattered through the code

• For static verification, method specifications need
to be relatively complete

JACK – p.20

Runtime checking vs. static
verification

• Method m has specification: requires P; ensures
Q

• Method use calls method m

• Runtime checking: at all calls to m the
specification is tested

• Static checking: if use does not establish P, it
needs to be propagated
Specification for use: requires P

• If use does not invalidate Q, it can be propagated

JACK – p.21

Annotation generation in JACK

• Precondition generation to avoid nullpointer
exceptions and array index out of bound
exceptions

• Assignable clause generation

• Annotation generation to capture security
properties, with annotation propagation

• Implementation uses weakest precondition
implementation: annotations are extracted from
generated verification conditions

JACK – p.22

Generation of preconditions and
assignable clauses

JACK – p.23

Annotation generation for security
properties

Two phases:

• synthesising core-annotations

• weaving annotations throughout the application

Synthesising: for each property annotations have to
be defined

Weaving: algorithm for pre- and postcondition
generation

JACK – p.24

Example core-annotations

No nested transactions
/*@ static ghost int TRANSACT == 0; @*/

Method beginTransaction
/*@ requires TRANSACT == 0;

@ assignable TRANSACT;
@ ensures TRANSACT == 1; @*/

public static native
void beginTransaction()

throws TransactionException;

Similar annotations for commitTransaction,
abortTransaction

JACK – p.25

Preconditions for methods

public void m() {
...
// will require TRANSACT == 0
JCSystem.beginTransaction();
// TRANSACT modified
// ensures TRANSACT == 1
...
// will require TRANSACT == 1
JSSystem.commitTransaction();
// TRANSACT modified
// ensures TRANSACT == 0
...
}

JACK – p.26

Results

• Tested on several realistic smart card applications

• One core-annotation can give rise to many
annotations in different classes (26 annotations,
spread over 5 different classes)

• Several violations found: uncaught exceptions
possible within transactions

JACK – p.27

Support for bytecode

JACK – p.28

Proof carrying code

• Code producer

• develops application and builds evidence for its
correctness

• ships application and evidence

• Code client

• generates verification conditions for the
application

• checks that the evidence is a proof for the
verification conditions

JACK – p.29

A framework for verification of
bytecode

• Bytecode Modeling Language (BML)

• Compiler from JML to BML

• Verification condition generator

• Equivalence with source code verification

JACK – p.30

BML

• Follows closely the syntax and semantics of JML

• Expression language extended with bytecode
specific constructs (constant pool indexes, local
variables, stack counter, stack expressions)

• Structural and type constraints, à la BCV

• Encoding in class file format

• Java compiler independent

• JVM compatibility: user-specific attributes,
indexing to relevant program point

• Efficiency of JVM not affected

JACK – p.31

Generated class file

JACK – p.32

Method specification in BML

JACK – p.33

Loop specification in BML

JACK – p.34

JML to BML compiler

• Input:

• Source file annotated with JML

• Corresponding class file, decorated with
Local_Variable_Table and
Line_Number_Table

• Steps:

• Declarations of ghost and model fields

• Linking

• Locating indexes for annotation statements

• Compilation of JML predicates

• Generation of user-specific class attributes
JACK – p.35

Relation between proof obligations
on source and bytecode

• Verification condition generator proven sound
under the hypothesis that the control flow graph is
reducible

• For non-optimising compiler equivalence of proof
obligations modulo:
• names - Java names are compiled into indexes

of the constant pool or elements in the method’s
local variable table

• types - Java types integer, short, byte and
boolean are compiled into integers

JACK – p.36

Support for interactive verification

JACK – p.37

Specification and verification of
complex properties

• For complex properties, automatic verification
often not sufficient

• Such properties often use advanced specification
techniques (JML model features)

• Interactive prover support necessary: Coq

• Introduction of native construct to bridge gap
between JML models and logic of theorem prover

JACK – p.38

CoqProverEditor

• Syntax highlighting for both Coq file and proof
view window

• Same keyboard shortcuts as CoqIde

• Full integration within Eclipse

• No pop-ups, except if user wants to use
another editor

• Management of proof files is easier

• Also usable with ESC/Java

• Handles large files (> 1 Mb)

JACK – p.39

What it looks like

JACK – p.40

Specifications of complex
properties: use of pure methods

• A method is pure when it has no visible side effect

• Pure methods can be used in specifications

• Complicates verification: specification of pure
method has to be used

• Our approach: define the pure method in Coq in
directly

Native specifications

JACK – p.41

Specifications of complex
properties: use of pure methods

• A method is pure when it has no visible side effect

• Pure methods can be used in specifications

• Complicates verification: specification of pure
method has to be used

• Our approach: define the pure method in Coq in
directly

Native specifications

JACK – p.41

Native methods

• In JML:

//@ public native boolean
withinBounds(Object[] tab, int i);

• In the Coq file user_extensions.v:

Definition withinBounds :
Reference →

(Reference → t_int → Reference)→
t_int → bool :=

fun tab intelements value =>
and (tab != null) (and (0 <= value)
(value < (arraylength tab))).

JACK – p.42

Native types

• To express complex properties, advanced data
types useful

• Easily defined in Coq, not in JML

• Native types:
Coq types in JML:

//@ public native class ObjectSet;

In the Coq file user_extensions.v:

Definition ObjectSet := set Reference.

JACK – p.43

What are native types?

• Native types are not standard Java/JML class
types:
• Do not inherit from Object

• No constructors

• No casts

• No instance creation

• Native types are functional type:

• Modifiers are ‘static’

• Modifiers create new objects

JACK – p.44

Example: set library

We can define a Coq set library to use in annotations
In JML we declare:
/*@ public native class ObjectSet {

@ public native static ObjectSet
create();

@ public native static ObjectSet
@ add(ObjectSet os, Object o);
@ public native boolean

member(Object o);
@ public static native ObjectSet
@ toSet(Object [] tab);
@ }
@*/

JACK – p.45

Example: set library

In Coq we define:
Definition ObjectSet := set Reference.
Definition ObjectSet_create :=

empty_set.
Definition ObjectSet_add

(os: ObjectSet)
(o: Reference) :=
set_add o os.

Definition ObjectSet_member
(this: ObjectSet)
(o: Reference) :=
set_mem o this

JACK – p.46

To conclude...

• JACK: a tool for validating application security and
behaviour

• Features:

• Integration with Eclipse, developer-friendly
environment

• Reduces the burden of annotation writing, by
implementing various annotation generation
algorithms

• Support for source code and bytecode
verification

• Support for complex properties, by providing
support for interactive verification

JACK – p.47

	Google on ``mobile phone games''
	Security for trusted personal devices
	Guaranteeing security
	But how to convince developers do this?
	JACK: Java Applet Correctness Kit
	History of JACK
	Features of JACK
	And more features of JACK
	Integration with Eclipse
	Developing an application in Eclipse
	Using Simplify
	Proof obligation viewer
	Reasoning with method calls
	Reasoning about exceptions
	Proof obligations
	Proof obligations in Coq
	Proof obligations in Simplify
	Annotation generation
	The cost of writing annotations
	Runtime checking vs. static verification
	Annotation generation in JACK
	Generation of preconditions and assignable clauses
	Annotation generation for security properties
	Example core-annotations
	Preconditions for methods
	Results
	Support for bytecode
	Proof carrying code
	A framework for verification of bytecode
	BML
	Generated class file
	Method specification in BML
	Loop specification in BML
	JML to BML compiler
	Relation between proof obligations on source and bytecode
	Support for interactive verification
	Specification and verification of complex properties
	CoqProverEditor
	What it looks like
	Specifications of complex properties: use of pure methods
	Native methods
	Native types
	What are native types?
	Example: set library
	Example: set library
	To conclude...

