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Google on “mobile phone games”

Welcome to Imserba

The best mobile phones portal and community in the
world Mobile phones Portal and Community

Imserba brings you the latest mobile phones related
news, informations, stuffs you need for your phones.
No matter which phone you are using: Nokia, Sony
erricson, Siemens, Samsung, Motorola or anything
else, here you can find our best collection of ring-
tones, cell phone games, themes, screensavers,
backgrounds.

Are you sure that you can trust these applications?
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Security for trusted personal devices

• Trusted personal devices: phones, smart cards,
pda’s, set top boxes, . . .

• Used for security-sensitive applications

• Network connected

• Support for complex applications (contain a full
JVM)

• Shift from hardware attacks to logical attacks
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Guaranteeing security

• Formal specification and verification

• Java Modeling Language (JML) able to express
security properties

• Classical program calculi can be used

• Large body of theory on sound modular
verification

• Proof Carrying Code paradigm
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But how to convince developers do
this?

• Seamless integration in standard development
environment

• Small overhead in specification writing: annotation
generation

• Verification conditions automatically generated,
proven by automatic theorem prover

• Reasoning at source code and at bytecode level

• Advanced support for difficult tasks (like
interactive proving)
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JACK: Java Applet Correctness Kit

JM
L2B

M
L

Javac

annotation
generation

security
properties

VCGen

VCGen

provers                    certificates
obligations
proof

Java + JML

Bytecode +
BML
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History of JACK

• Development started at Gemplus (Jan 2002 to
April 2003)
Objective: Give developers tools that help them to
provide and be accountable for quality of their code
• Conform to specification requirements

• Well-documented

• Without bugs

• Transfered to INRIA (September 2003)

• Correctness stays major concern

• More features & plugins
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Features of JACK

• Tight integration with IDE Eclipse

• JML used as annotation language

• Different means of validation possible

• Support for Simplify (automatic) and Coq
(interactive) prover

• Special JACK view for verification condition
browsing
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And more features of JACK

• Generation and propagation of annotations,
based on implementation of verification condition
generator

• JML specifications compiled into BML (Bytecode
Modeling Language)

• Support for verification of bytecode
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Integration with Eclipse
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Developing an application in Eclipse
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Using Simplify
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Proof obligation viewer

JACK – p.13



Reasoning with method calls
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Reasoning about exceptions
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Proof obligations
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Proof obligations in Coq

JACK – p.17



Proof obligations in Simplify
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Annotation generation
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The cost of writing annotations

• Annotation writing labour-intensive and
error-prone

• Much time spend on specifying obvious properties

• Annotations for a simple security property often
scattered through the code

• For static verification, method specifications need
to be relatively complete
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Runtime checking vs. static
verification

• Method m has specification: requires P; ensures
Q

• Method use calls method m

• Runtime checking: at all calls to m the
specification is tested

• Static checking: if use does not establish P, it
needs to be propagated
Specification for use: requires P

• If use does not invalidate Q, it can be propagated
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Annotation generation in JACK

• Precondition generation to avoid nullpointer
exceptions and array index out of bound
exceptions

• Assignable clause generation

• Annotation generation to capture security
properties, with annotation propagation

• Implementation uses weakest precondition
implementation: annotations are extracted from
generated verification conditions
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Generation of preconditions and
assignable clauses
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Annotation generation for security
properties

Two phases:

• synthesising core-annotations

• weaving annotations throughout the application

Synthesising: for each property annotations have to
be defined

Weaving: algorithm for pre- and postcondition
generation
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Example core-annotations

No nested transactions
/*@ static ghost int TRANSACT == 0; @*/

Method beginTransaction
/*@ requires TRANSACT == 0;

@ assignable TRANSACT;
@ ensures TRANSACT == 1; @*/

public static native
void beginTransaction()

throws TransactionException;

Similar annotations for commitTransaction,
abortTransaction
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Preconditions for methods

public void m() {
...
// will require TRANSACT == 0
JCSystem.beginTransaction();
// TRANSACT modified
// ensures TRANSACT == 1
...
// will require TRANSACT == 1
JSSystem.commitTransaction();
// TRANSACT modified
// ensures TRANSACT == 0
...
}
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Results

• Tested on several realistic smart card applications

• One core-annotation can give rise to many
annotations in different classes (26 annotations,
spread over 5 different classes)

• Several violations found: uncaught exceptions
possible within transactions
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Support for bytecode
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Proof carrying code

• Code producer

• develops application and builds evidence for its
correctness

• ships application and evidence

• Code client

• generates verification conditions for the
application

• checks that the evidence is a proof for the
verification conditions
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A framework for verification of
bytecode

• Bytecode Modeling Language (BML)

• Compiler from JML to BML

• Verification condition generator

• Equivalence with source code verification
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BML

• Follows closely the syntax and semantics of JML

• Expression language extended with bytecode
specific constructs (constant pool indexes, local
variables, stack counter, stack expressions)

• Structural and type constraints, à la BCV

• Encoding in class file format

• Java compiler independent

• JVM compatibility: user-specific attributes,
indexing to relevant program point

• Efficiency of JVM not affected
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Generated class file
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Method specification in BML
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Loop specification in BML
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JML to BML compiler

• Input:

• Source file annotated with JML

• Corresponding class file, decorated with
Local_Variable_Table and
Line_Number_Table

• Steps:

• Declarations of ghost and model fields

• Linking

• Locating indexes for annotation statements

• Compilation of JML predicates

• Generation of user-specific class attributes
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Relation between proof obligations
on source and bytecode

• Verification condition generator proven sound
under the hypothesis that the control flow graph is
reducible

• For non-optimising compiler equivalence of proof
obligations modulo:
• names - Java names are compiled into indexes

of the constant pool or elements in the method’s
local variable table

• types - Java types integer, short, byte and
boolean are compiled into integers
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Support for interactive verification
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Specification and verification of
complex properties

• For complex properties, automatic verification
often not sufficient

• Such properties often use advanced specification
techniques (JML model features)

• Interactive prover support necessary: Coq

• Introduction of native construct to bridge gap
between JML models and logic of theorem prover

JACK – p.38



CoqProverEditor

• Syntax highlighting for both Coq file and proof
view window

• Same keyboard shortcuts as CoqIde

• Full integration within Eclipse

• No pop-ups, except if user wants to use
another editor

• Management of proof files is easier

• Also usable with ESC/Java

• Handles large files (> 1 Mb)
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What it looks like
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Specifications of complex
properties: use of pure methods

• A method is pure when it has no visible side effect

• Pure methods can be used in specifications

• Complicates verification: specification of pure
method has to be used

• Our approach: define the pure method in Coq in
directly

Native specifications
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Native methods

• In JML:

//@ public native boolean
withinBounds(Object[] tab, int i);

• In the Coq file user_extensions.v:

Definition withinBounds :
Reference →

(Reference → t_int → Reference)→
t_int → bool :=

fun tab intelements value =>
and (tab != null) (and (0 <= value)
(value < (arraylength tab))).
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Native types

• To express complex properties, advanced data
types useful

• Easily defined in Coq, not in JML

• Native types:
Coq types in JML:

//@ public native class ObjectSet;

In the Coq file user_extensions.v:

Definition ObjectSet := set Reference.
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What are native types?

• Native types are not standard Java/JML class
types:
• Do not inherit from Object

• No constructors

• No casts

• No instance creation

• Native types are functional type:

• Modifiers are ‘static’

• Modifiers create new objects
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Example: set library

We can define a Coq set library to use in annotations
In JML we declare:
/*@ public native class ObjectSet {

@ public native static ObjectSet
create();

@ public native static ObjectSet
@ add(ObjectSet os, Object o);
@ public native boolean

member(Object o);
@ public static native ObjectSet
@ toSet(Object [] tab);
@ }
@*/
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Example: set library

In Coq we define:
Definition ObjectSet := set Reference.
Definition ObjectSet_create :=

empty_set.
Definition ObjectSet_add

(os: ObjectSet)
(o: Reference) :=
set_add o os.

Definition ObjectSet_member
(this: ObjectSet)
(o: Reference) :=
set_mem o this
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To conclude...

• JACK: a tool for validating application security and
behaviour

• Features:

• Integration with Eclipse, developer-friendly
environment

• Reduces the burden of annotation writing, by
implementing various annotation generation
algorithms

• Support for source code and bytecode
verification

• Support for complex properties, by providing
support for interactive verification
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