
Modular Specification of
Encapsulated Object-Oriented

Components

Arnd Poetzsch-Heffter
Software Technology Group
University of Kaiserslautern

1. Introduction
2. Boxes: Encapsulated OO-Components

3. Modular Specification Technique

4. Conclusions

1. Introduction

Program specifations

• formulate properties of software units:
- language-dependent (e.g. type-safety, no NullPointerException)
- program-dependent (e.g. behavior of a particular method)

• general goals:

- improve development, documentation, and understanding
- support testing and dynamic checks
- allow for verification (mathematical, static analysis, formal)

• software engineering goals:

- seperation of interface and implementation
- reuse and modularity

1. Introduction: Specifications

1. Introduction: Specifications and Components

Role and requirements of component specification
[Szyperski: Component Software, 2nd ed., p. 41 & p.78]

Definition of component:
"A software component is a unit of composition with contractually
specificied interfaces and explicit context dependencies only. ..."

Discussion of component specification:
"The specification problems encountered in recursive re-entrant
systems need to be solved in a modular way to cater for components.
In other words, each component must be independently verifiable
based on the contractual specification of the interfaces it requires and
those it provides."

1. Introduction: Observable Game Example

box interface ObservableGame
{
 ObservableGame()
 void move(MoveDescr md)
 void swapPlayers()
 Position readPos()
 void register(Observer go)
}

interface Observer
{
 void stateChanged()
}

box interface GameObserver
 implements Observer
{
 GameObserver(ObservableGame g)
 void stateChanged()
}

1. Introduction: Specification and Implementation

A specified and implemented box class B consists of:
• the specification S(B)

• subbox specifications S(B_1), ..., S(B_n)

• specifications for used interfaces and data S(E)

• an implementation I(B)

- providing box-local functionality and
- connecting the subboxes B_i

Modular specification/verification:
S(B_1), ... , S(B_n), S(E), I(B) |= S(B)

Remarks:
• Not solved for object-oriented programming

• Close relation between implementation and specification

B

B_1 B_n...

1. Introduction: Challenges of Modularity (1)

Locality principle:
Modular specifications have to be locally verifiable. In particular, they

A method can affect its local state and its environment.

:Observer:ObservableGame

move
stateChanged

swapPlayers

• may only depend on the local state

• must control callbacks

player == old(player)

1. Introduction: Challenges of Modularity (2)

Frame principle:
Specification of method has to describe

• the effects on the environment

• the absence of effects on the environment

Otherwise specifications cannot be used in composition.

Locality principle is not sufficient.

Problem:
Modularity implies that knowledge about environment is weak:

 Effects have to be specified in an abstract way.

Example: Specification of method move has to state that
 stateChanged is invoked on the observer.

1. Introduction: Challenges of Modularity (3)

Composition principle:
Specifications have to be constructed from subbox specifications by
• providing access to subboxes
• abstraction and hiding of subboxes
This influences the component model.

Software engineering requires more.

Example: Gaming system encapsulating the registration mechanism:

interface SimpleGameObserver { }

interface Game
{
 void move(MoveDescr md)
 void swapPlayers()
}

box interface GamingSystem
{
 GamingSystem()
 Game createGame()
 SimpleGameObserver
 createSGameObserver(Game g)
}

1. Introduction: Overview of the Following

Structure of the following:
• Boxes: Encapsulated OO-components

• Modular specifications for boxes

 Focus of talk is on the overall picture

 2. Boxes: Encapsulated
OO-Components

2. Boxes: Dynamic Encapsulation

box = encapsulated set of objects + interface

Role of encapsulation and its boundaries:
• structuring of the object space: local vs. non-local
• hiding and alias control
• provided interface and references to the outside
• unit of specification dependency
• (unit of locking and synchronization)

Relation to ownership techniques:
• ownership contexts with multiple ingoing references

• similar to ownership domains

• control of outgoing references

2. Boxes: Hierarchical Structured Object Systems

box boundary

box

environment

owner

boundary
 object

2. Boxes: Filesystem (Example 1)

boundary of file system

file system

environment

2. Boxes: Application with GUI (Example 2)

system boundary

application with GUI

environment

2. Boxes: Lists with Iterators (Example 4)

list header

surrounding box

iterator

list

ObservableGame

2. Boxes: Observable Games Example

GamingSystem

GameObserver

GameObserver

ObservableGame

Boar
d

Machine

2. Boxes: Observations

Boxes are runtime instances that
- can have several objects of different classes at their boundary

- encapsulate objects of different classes

- can be implemented by modules, but not every module

 implements a box
- can change their „interface“ over time

- can be hierarchically structured

- provide the encapsulation boundaries

2. Boxes: Dynamic Behavior

Illustrating dynamics:

external box

y

 - object creation

x

inner box

 - box creation

 - local state change

x.m(y)

 - boundary call

z
 - import of references

y.me(x,z)

 - outgoing call

 - export of references

x.mcb
()

 - callbacks

2. Boxes: More Details

Further aspects of programming model:
- only local object creation

- restrictions on down casts

- restrictions to enforce encapsulation

Extensions:
- membership transfer

- non terminating actions/methods

- asynchronous messages

- concurrency

- object deletion / live time restrictions on objects

 3. Modular Specification
Technique

3. Specification Technique: Overview

Structure of specifications:
• Specification and checking techniques for encapsulation

• Specification techniques for boxes:

- state
- invariants
- method behavior:

-- local
-- frame
-- interaction / reentrance

3. Specification Technique: Encapsulation (1)

• provided interfaces

• referenced interfaces

• methods

Box interface: box interface GamingSystem
{
 provides Game* games;
 provides SimpleGameObserver*
obs;

 GamingSystem()
 Game createGame()
 SimpleGameObserver
 createSGameObserver(Game g)
}

pure interface MoveDescr { ... }

interface SimpleGameObserver { }

interface Game {
 void move(MoveDescr md)
 void swapPlayers()
}

• without extension:
- owner
- boundary objects
- pure

• with extension:

- external objects

Parameter constraints:

3. Specification Technique: Encapsulation (2)

box interface ObservableGame
{
 references Observer* gameObs;
 ObservableGame()

 void move(MoveDescr md)
 void swapPlayers()
 void register(external Observer go)
 Position readPos()
}

interface Observer {
 void stateChanged()
}

pure interface MoveDescr { ... }

pure interface Position { ... }

Difficulties:
• good notion of purity

• use of boundary objects as

 actual parameter (out-in)
• retrieving external objects (in-out)

• handling objects from different

 external boxes

3. Specification Technique: Encapsulation (3)

box interface LinkedList<A>
{
 provides Iterator<A>*;
 references Object<A>*;
 LinkedList()

 external Object<A> get()
 void add(external Object<A> e)
 Iterator<A> listIterator() {
}

interface Iterator<C> {
 boolean hasNext();
 external Object<C> next();
}

Checking approach:
• encapsulation type system similar to ownership types/domains

• type inference and checking

3. Specification Technique: Box state

Box state is specified by the
• concrete

• abstract (model/ghost)

of the owner and the boundary objects.

fields (private, spec public)

Abstract fields may only depend on the fields of the box.

interface SimpleGameObserver {
 Position observedPos;
 Game obsGame;
}

interface Game
{
 Position currentPos;
 Color player;
 void move(MoveDescr md)

 void swapPlayers()
}

Example:

3. Specification Technique: Invariants (1)

Problems with invariant:
• Where should they hold?

• What are the fields they may depend on?

• Invariants cause a modularity problem:

 Invariants of all classes have to hold in the prestate of a call!

Specification invariant for GamingSystem:
 invariant
 forall o in obs: o.observedPos == o.obsGame.currentPos

Example: class C {
 void me(D x) {
 ...
 x.foo();
} }

3. Specification Technique: Invariants (2)

• Invariants may only depend on the fields of the box.
• Invariants have to hold whenever the thread is outside the box.

• This helps to solve the modularity problem.

Approach to
invariants:

• Implicit unpack/pack mechanism whenever box boundary is crossed.
• Invariant may depend on execution state (type states).

Discussion:

3. Specification Technique: Method Behavior (1)

Method specification:
• Changes to local state and result

• Changes to the environment

• What is left unchanged

• Reentrance behavior

Frame problem

Example: box interface ObservableGame
{
 references Observer* gameObs;
 ObservableGame()

 void move(MoveDescr md)
 void register(external Observer go)
 ...
}

interface Observer {
 void stateChanged()
}

3. Specification Technique: Method Behavior (2)

Existing approach to frame problem:
• Describe what is allowed to be modified (modifies clause)

• What is not mentioned in the modifies clause may not change

• Loose coupling, information hiding, and abstraction is difficult to handle

Box-based approach to frame problem:
• Specify what is left unchanged in the box

• Specify calls on external objects
allows for modular
 verification

3. Specification Technique: Method Behavior (3)

Technique for specifying outgoing calls:
• Refinement calculi / grey box specifications (R. Back / M. Büchi)

• (Process calculi)

box interface ObservableGame
{ ...
 void move(MoveDescr md)
 requires legal(md,currentPos)
 behavior
 currentPos = doMove(md,currentPos);
 forall o in gameObs { o.stateChanged() }
 any(cmd :: legal(cmd,currentPos)) {
 currentPos = doMove(md,currentPos);
 forall o in gameObs { o.stateChanged() }
 }
 ensures unchanged([player,state,gameObs])
... }

Example:

Problem:
Reentrance DR

AF
T

3. Specification Technique: Method Behavior (4)

Approach to reentrance:
• Grey box specifications
• Type states to restrict

 callable methods void move(MoveDescr md)
 requires legal(md,currentPos)
 && state == VALID
 behavior
 state = OBSERVABLE;
 currentPos = doMove(md,currentPos);
 forall o in gameObs { o.stateChanged() }
 any(cmd :: legal(cmd,currentPos)) {
 currentPos = doMove(md,currentPos);
 forall o in gameObs {o.stateChanged() }
 }
 state = VALID;
 }
 ensures unchanged([player,state,gameObs])

Example:
Only readPos is executable
 if
 state == OBSERVABLE

 4. Conclusions

Summary:
• Structuring techniques for object stores  boxes

• Enforcing encapsulation

• Specification techniques for boxes

4. Conclusions

Conclusions:
• Encapsulation with semantical guarantees is central for modularity.

• Programming models provide a good basis for component models.

• Interface specifications and programming languages cannot live in

 different worlds.
• Some architectural elements might be helpful for programming.

Current and future work:
• Finishing the encapsulation system

• Concurrency models based on boxes

• Realizing a lightweight specification support for a Java subset

• Verification techniques for the approach

• Substitutability: “Box subtyping”

• Examples, examples, ...

4. Conclusions: ...

Questions?

