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Abstract. We take the point of view that, if transition systems are coalgebras for
a functor T, then an adequate logic for these transition systems should arise from
the ‘Stone dual’ L of T. We show that such a functor always gives rise to an ‘ab-
stract’ adequate logic for T-coalgebras and investigate under which circumstances
it gives rise to a ‘concrete’ such logic, that is, a logic with an inductively defined
syntax and proof system. We obtain a result that allows us to prove adequateness
of logics uniformly for a large number of different types of transition systems and
give some examples of its usefulness.

1 Introduction

The question we are concerned with in this paper is how to associate to a given type
of transition systems an adequate (modal) logic. Hereadequatemeans that the logic is
sound and complete and that two states are bisimilar iff they are logically equivalent
(ie, iff they have the same theory). For the latter property, we also say that the logic is
expressive or that the semantics is fully abstract.

Our starting point is the theory of coalgebras as in Rutten [29]. That is, thetypeof
a category of transition systems is given by a functorT on a categoryX and transition
systems of typeT areT -coalgebras, ie arrowsX ! TX in X . The basic idea of our
approach is that an adequate logic forT -coalgebras is given by the dual functorL of T
on the Stone dualA of X as explained below.
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A is a category of algebras such as Boolean algebras or distributive lattices representing
a propositional logic such as classical or positive propositional logic.P andS are the
contravariant3 functors that provide the dual equivalence betweenX andA. Intuitively,
P maps a state spaceX to the logic of propositions onX andS maps an algebra
to its ‘canonical model’. ThatL andT are dual means that there is an isomorphism
LP ! PT .

? Supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences.?? Partially supported by the Nuffield Foundation Grant NUF-NAL04.
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as well as for contravariant functors such asP andS.



The main contribution (Section 2) of the paper is the notion of a functor having
a presentation by operations and equations. Theorem 15 shows that the category of
algebras for such a functor is an equationally definable class of algebras (overSet). We
then go on to show (Section 4) that, although the dualL of T gives rise to an adequate
logic for T -coalgebras, the resulting logic is too abstract to be useful. In particular,
inductively defined formulae, a logical calculus and a notion of (inter)derivability are
still missing. But these are provided (Section 5) by a presentation ofL by operations
and equations. Theorem 27 shows how the operations give rise to modal operators, the
equations to axioms and how the modal calculus is inherited from equational logic.

The notion of a functor being presentable by operations and equations is modelled
on the notion of an algebra being presentable by generators and relations (reviewed in
Section 2.1). This will be discussed in more detail now.

Comparison with Work in Domain Theory. The prototypical transition systems,
called Kripke frames in modal logic, consist of just a setX and a relationR on X.
WritingP for the operation that maps a set to its powerset,(X;R) can also be described
by its ‘successor map’, orP-coalgebra,X ! PX. P is a functor on the categorySet
of sets and functions and has analogues on many categories of topological spaces, in-
cluding important categories of domains.P is then called powerspace, hyperspace or
powerdomain.

It is well-known in domain theory that the dual of the powerspace on the corre-
sponding category of algebras can be described using modalities2 and3. This goes
back to Johnstone [12,13] where a dual of the powerspace, called Vietoris locale, is
described. In case of distributive lattices [13, Section 1.8] anticipates the axiomatisa-
tion of positive modal logic by Dunn [10]. Winskel [32] used modalities to describe
the powerdomain and Robinson [25] established the connection between the work in
domain theory and that of Johnstone. Abramsky [1] extended these ideas to give logical
descriptions of domains for a large number of other type constructors.

To position our contribution it will be useful to briefly summarise the work men-
tioned in the previous paragraph using our notation from Diagram (1). To describe a
powerspaceT on a domain—or more generally on a topological space—X 2 X , one
has to describe the effect ofT on the topology ofX. This can be done without refer-
ence toX, using only the algebraic properties of the topology ofX: the topology of
TX is given (up to canonical iso) by the algebraL(PX) which is freely generated by
symbols2a,3a, a 2 PX satisfying some ‘relations’ as eg2(a ^ a0) = 2a ^2a0. To
summarise, a logic forT -coalgebras is obtained by describing the dualLPX of TX
using thetechnique of generators and relations: The modal operators arise from the
generators and the axioms from the relations.

Our paper formalises the move from generators and relations to the modal logic. Let
us explain what needs to be done. Going back to the example of the powerspace, we
observe that2a is a formal symbol as a generator ofLPX, but2 is a unary operator in
the modal logic. Similarly, as a ‘relation’2(a^a0) = 2a^2a0 is a pair of terms, but as
a logical axiom it is an equation wherea; a0 are variables. Moreover, but related, a logic
is obtained from a presentation ofLPX only if the presentation does not depend onX,
that isLPX is given by the ‘same’ generators and relations for allX. The necessary
step is to generalise the notion of an algebra being presented to the notion of a functor



being presented. As a consequence we obtain Theorems 15 and 27, which uniformly
account for a large number of categoriesX and functorsT .

Comparison with Work on Coalgebras. Work on modal logic and coalgebras started
with Moss [21] whose proposal works essentially for any functorT (on the category
of sets), but does not provide the linguistic means to decompose the structure ofT
which is needed to allow for a flexible specification language. To address this issue,
subsequent work as eg [19,28,11] restricted attention to particular classes of functors.
Pattinson [23] showed that these languages arise from modal operators given by certain
natural transformations, called predicate liftings. [16] showed that, furthermore, these
languages correspond to functorsL on the categoryBA of Boolean algebras. Here we
address the opposite question of how to associate a logic to a functorL.

This paper can also be seen as a sequel to [7], where we proposed a general frame-
work for logics of coalgebras based on Stone duality. A general adequateness result
was proved for what we call here abstract logics and then, studying the case of the com-
pact powerspacePc, it was shown how to systematically obtain logics for coalgebras
over different base categories by presenting the dual ofPc by generators and relations.
But a formal description of the step from generators and relations to modal operators
and axioms was left open.

Acknowledgements. We would like to thank the referees for valuable suggestions.
The second author profited from discussions with Neil Ghani, Clemens Kupke and Jiřı́
Rosicḱy.

2 Presenting Functors by Operation and Equations

This section defines what it means for a functorL on an algebraic categoryA to have a
presentation by operations and equations. It is shown that, ifL has such a presentation,
the categoryAlg(L) ofL-algebras is isomorphic to a categoryAlg(�;E) of algebras for
a signature and equations and, moreover,� andE are obtained from the presentations
ofA andL in a modular way. Let us emphasise that this is known for the caseA = Set,
the novelty here coming from the need to consider other base categories thanSet.

2.1 A Brief Review of Algebras and Presentations

Algebras. Given a functorL on a categoryA, anL-algebra (notation:(A;�) or just
�) is an arrow� : LA! A. A morphismf : �! �0 is an arrowf : A! A0 such that
f � � = �0 � Lf .

The category of algebras for a signature� and equationsE is defined as usual4 and
denoted byAlg(�;E). We say that a categoryA, equipped with a forgetful functor
U : A ! Set, has apresentation(overSet) if there exists a signature� and equations

4 Carriers are sets and arities may be arbitrary cardinals; we allow a set of operations for each
arity and a set of equations for each set of variables.



E such thatA is concretely5 isomorphic toAlg(�;E).A (or more preciselyU : A !
Set) is monadiciff A has such a presentation andU : A ! Set has a left adjoint
(ie free algebras exist). The left adjoint ofU is denoted byF throughout (FX is the
free algebra overX andUFX is the set of terms overX quotiented by the equations).
Examples: The category of complete Boolean algebras has a presentation but is not
monadic, whereas the category of complete atomic Boolean algebras is monadic (and
dually equivalent toSet); see [12].

Presenting Algebras by Generators and Relations.The following is tailored towards
Section 2.2, for more see Vickers [31]. Suppose we have a monadic functorU : A !
Set with left-adjointF . Then the counit

"A : FUA! A
gives us a canonical (albeit not economical) presentation ofA, namely generated by the
elements ofUA and quotiented by the kernelf(t; s) j "A(t) = "A(s)g of "A. These
presentations are useful to describe operations on algebras. Unfortunately we have only
space for one example.

Example 1 (modal algebras).A modal algebra, or Boolean algebra with operator
(BAO), is the algebraic structure required to interpret (classical) modal logic which
consists of propositional logic plus a unary modal operator2 preserving finite conjunc-
tions. Modal algebras are therefore algebras for the functorV : BA ! BA, whereVA
is defined by generators2a, a 2 A, and relations2> = >,2(a ^ a0) = 2a ^2a0.
Note that in the example above, the symbol2 appears in two roles. First we said that2
is a unary operator. But when we considered2a as a generator, ‘2a’ was just a formal
symbol. This observation will lead to Definition 6.

Remark 2. The fact that, in the example above,V is onBA (and not onSet) takes
care of the propositional part of modal logic. The definition ofVA can be phrased
more abstractly by saying that the insertion of generatorsUA ! UVA; a 7! 2a is a
universal finite-meet preserving function, that is,

UA
f %%KKK
KKKK
// UVA

Uf]��
UB

for allB 2 BA and all finite-meet preserving functionsf : UA! UB there is a unique
Boolean algebra morphismf ] : VA ! B with Uf ](2a) = f(a). From this observa-
tion it is straightforward to show thatAlg(V) is indeed isomorphic to the category of
modal algebras as usually defined (see eg [15, Definition 2.2.2], [4, Definition 5.19]).

Definition 3 (presentation by generators and relations).Let U : A ! Set be
monadic (see p.3) with left adjointF . A presentationhG;Ri consists of a set of ‘gen-
erators’G and a set of ‘relations’R � UFG� UFG.

5 Concretelymeans that the isomorphism preserves the underlying sets.



Definition 4 (presented algebra).Continuing from the previous definition, a mor-
phismf : FG ! B in A satisfies the relationsR if (t; s) 2 R ) Uf(t) = Uf(s).
An algebraA is presentedby hG;Ri if

FG q //

f ##GGG
GGGG

A
f+��

B
– A comes with an insertion of generatorsq : G! UA (or, equivalently,q : FG!
A) satisfying the relationsR,

– for all B 2 A and allf : FG ! B satisfying the relationsR there is a unique
f+ : A! B with f+ � q = f .

Proposition 5. Every presentation presents an algebra.

Proof. The proof relies on the fact that, as a category monadic overSet, A has co-
equalisers. The object presented byhG;Ri is given by the coequaliser

FR
�]2
//

�]1 // FG q // A:

where�]1; �]2 come from the projections�1; �2 : R! UFG. More concretely,q is the
quotient wrt the smallest congruence containingR.

2.2 Presenting Functors by Operations and Equations

Example 1 above shows how the functorV : BA ! BA is described using generators
and relations. In order to obtain a modal logic from that description, one has to upgrade
the set of formal symbols2a to a unary operator2 and, similarly, the relations2(a ^
a0) = 2a^2a0 to equations in variablesa; a0 (Definition 6). Moreover, the presentation
of VA is the ‘same’ for allA. This will be crucial for the move from a presentation to a
logic: The modal operators (ie the generators) and the axioms (ie the relations) should
depend only on the functor and not on specific algebras (Definition 7).

Definition 6 (presentation by operations and equations).Let U : A ! Set be
monadic with left adjointF . A presentation of a functorL : A ! A by operations
and equations consists of

1. a set� of operations� 2 � with aritiesn� which gives rise to a functorG� :
Set! Set,X 7!`�2� Xn� ,

2. a classC of sets (of variables) and a collectionE = (EV )V 2C of equationsEV �
(UFG�UFV )2.

A presentation is calledfinite if � only contains operations of finite arity andC contains
only finite sets.



Definition 7 (presented functor). Continuing from the previous definition, a mor-
phismf : FG�UA! B satisfies the equationsE if for all V 2 C and allv : FV ! A
it holds(t; s) 2 EV ) (f �FG�Uv)(t) = (f �FG�Uv)(s). A natural transformation
f : FG�U ! L satisfies the equations iffA satisfies the equations for allA 2 A.

A functorL is presentedby h�;Ei if

FG�UFV FG�Uv// FG�UA qA //

f &&MMM
MMMM

MM LA
f+��

B
– L comes with a natural transformation, called insertion of generators,q : G�U !
UL (or, equivalently,q : FG�U ! L) satisfying the equationsE,

– for anyB 2 A and morphismf : FG�UA ! B satisfying the equationsE there
is a unique morphismf+ : LA! B such thatf+ � qA = f .

Remark 8. 1. Roughly speaking, ifA represents a finitary logic, we will needC to
only contain finite sets of variables. But for infinitary logics, a typical requirement
for an operator2 in � would be to preserve all meets, which is expressed by
equations

V
v2V 2v = 2Vv2V v whereV runs through all cardinals.

2. Here we explain the format of the equationsEV � (UFG�UFV )2.
– EV � (UFG�UFV )2 means that the terms appearing in equations may freely

use the operations forA but do not contain nested occurrences of operations
from�.

– Intuitively, this format arises from our interests in logics that describe coalge-
bras for afunctorT . In contrast to coalgebras for a comonad, the coalgebra map
� : X ! TX encodes what the transition system(X; �) can perform inone
step. From this point of view, the formatEV � (UFG�UFV )2 of the axioms
E is not a restriction, but formalises that we donot neednested modalities to
describe a single transition (nested modalities describe sequences of transition
steps).

– Technically, equations of the formEV � (UFG�UFV )2 suffice since the
terms to be quotiented are all inUFG�UA. The reason to exclude more gen-
eral equations is Theorem 15.

3. Using the approach of Linton [20] and Rosický [26], one can show thatAlg(L)
can always be described by operations and equations overA. But in that approach
the arities describingAlg(L) are objects inA and not cardinalities inSet. In other
words, what our approach adds here is that under Definition 7 one does obtain a
presentation not only ofAlg(L) overA but also ofAlg(L) overSet (Theorem 15).
The latter is essential to get logics as in Section 5.

4. A presentation ofAlg(L) overSet cannot be expected to exist in general, because
monadic functors are not closed under composition: Even ifAlg(L) ! A and
A ! Set are monadic, the compositionAlg(L) ! Set need not be so. This is
discussed in detail in Kelly and Power [14]. For our purposes, our approach has the
advantage that we obtain a presentation ofAlg(L) modularly from presentations of
A andL (Theorem 15). Moreover, we do not insist onAlg(L) having free algebras.



5. Example 1 seems to suggest that one could express the interplay of the modal and
Boolean operators by a distributive law between the functorL describing the modal
operators and the monadUF describing the Boolean operators. This approach does
not work asL is not even defined on underlying sets but only on algebras.

6. An approach based on monads would not be appropriate because we do not want
to insist thatAlg(L) has free algebras. (For an example whereAlg(L) doesn’t have
free algebras althoughA has, takeA to be the category of complete atomic Boolean
algebras andL the dual of the powerset.)

Definition 7 will allows us to presentAlg(L) by composing a presentation ofA with
a presentation ofL, see Theorem 15. Logically, this corresponds to extending a basic
propositional logic (which presentsA) with modal operators and modal axioms (which
presentL). This is also the idea underlying the following examples.

Example 9. 1. As mentioned already in the introduction, to define a functorL by
describingLA by generators and relations is a common technique. In all of the cited
[12,13,25,31] the given presentations are in fact presentations ofL by operations
and equations. The reason to make this notion explicit here is to have a uniform
translation from presentations to logics that works for functorsL in general (see
Theorems 15 and 27).

2. The functorV of Example 1 is presented by a signature containing one unary oper-
ation2, that is,G�X = X. Further,V = fv0; v1g, C = fV g, and, writing ‘� = �’
instead of ‘(�; �)’, EV = f2> = >;2(v0 ^ v1) = 2v0 ^2v1g.

3. The functorV above is the dual of the powerspace onStone. Other type construc-
tors onStone are studied in [18] (called Vietoris polynomial functors) and their
duals onBA are all presentable by operations and equations.

4. The Kripke polynomial functors onSet (including powerset) of [11] have duals
on complete atomic Boolean algebras, which have a presentation. The description
of the dual of the finite (or compact) powerspace on posets and sets in [7] also
provides examples of presentations of functors.

Proposition 10. Each presentation presents a functor.

Proof. Given a presentationh�;Ei we define the functorL on objectsA as

FEV
�]1 //
�]2
// FG�UFV FG�Uv// FG�UA qA // LA (2)

whereqA is the joint coequaliser of all pairs(FG�Uv � �]1; FG�Uv � �]2) wherev
ranges over arrowsFV ! A. The universal property ofLA gives the action ofL on
morphisms and the naturality ofqA.

Proposition 11. The functors that have a presentation are closed under composition.

Proof (Sketch).ConsiderL1 andL2 with presentations(�1; E1), (�2; E2). ThenL1L2
is presented by(Pi2n ni)-ary operations�((ti)i2n) where� 2 �1 is n-ary and theti
areni-ary�2-terms inUFG�2V . The equationss((ti)i2n) = s0((t0i)i2n) are all those
that can be obtained from the equationss = s0 derivable fromE1 and then substituting
termsti = t0i (with identities derivable fromE2).



Remark 12. The proposition shows that we can build up presentations modularly. The
construction in the proof has the disadvantage though, that (many) new operations and
equations have to be introduced. In practice, therefore, one would rather introduce an
additional sort with the benefit of using exactly the operations and equations of the two
original presentations. This is as in, eg, [1,27,11,9,30] and will be detailed elsewhere.

Although we are not interested in the caseA = Set as such, the following shows that
Definition 6 is natural: Up to a size restriction, any functor onSet has a presentation. In
particular

Proposition 13. A functor onSet has a finite presentation if and only if it is finitary.

Proof. If an endofunctorL on Set is given as in Diagram (2), then it is not difficult
to show that it preserves filtered colimits, given thatF , U , andG do so and the sets
V are finite. Conversely, given a finitaryL, we obtain� andE as follows [24, 1.5].
For� we let each element inLn be ann-ary operation,6 that is,G�X = `n<! Ln�
Xn. Further,V = fvi j i < !g, C = fV g andEV = f(Lf(�))(v0; : : : vm�1) =
�(vf(0); : : : vf(n�1)) j n < !; � 2 Ln; f : n ! mg. The natural transformation
qA : G�UA! LA then mapsn < !, � 2 Ln, f : n! A toLf(�) 2 LA.

If we do not insist onA = Set, the two notions become different as the second part of
the proof does not generalise. A general characterisation of the functors having a finite
presentation will be given elsewhere.

We still have to show how functors that are presentable by operations and equations
give rise to logics. SinceA is monadic overSet, we can assume that we a have a
presentation ofA as a category of algebrasAlg(�A; EA) given by a signature�A and
equationsEA.

Definition 14 (�A + �L; EA + EL). Let A �= Alg(�A; EA) andL : A ! A be
presented byh�L; ELi. Denote by�A+�L the disjoint union of the signatures and by
EA+EL the disjoint union where equations inEA andEL are understood as equations
over�A +�L.7

EA + EL is a sound and complete (equational) logic forL-algebras:

Theorem 15. LetA �= Alg(�A; EA) be monadic andh�L; ELi a presentation ofL :
A ! A. ThenAlg(�A +�L; EA + EL) is isomorphic toAlg(L).

Proof (Sketch).Write � = �A + �L, E = EA + EL. Consider� : LA ! A. The
corresponding�-algebraA has carrierUA and the interpretation�A of operations� 2
�L is given by(UA)n� ! UFG�LUA UqA! ULA U�! UA. A satisfies the equations

6 Writing Ln we assume thatn is the setf0; : : : n� 1g.
7 Strictly speaking,EL was defined on equivalence classes of�A-terms. Formally, one obtains

the newEL, denotedE0L, as follows. LetT�AV be the set of�A-terms overV . Consider a
half-inversem of the quotientT�AG�LT�AV ! UFG�LUFV (m chooses a representative
for each equivalence class). ThenE0L = f(m(t);m(s)) j (t; s) 2 ELg.



EA becauseA does.A satisfies the equationsEL becauseqA does (Definition 7) and
because of the format(EL)V � (UFG�LUFV )2.

Conversely, every(�;E)-algebraA is also an algebra inA. We then obtain, from
the operations in�L, a functionG�LUA ! UA, ie a morphismf : FG�LUA ! A.
SinceA satisfies the equationsEL we obtain by the universal property of Definition 7
a morphism� = f+ : LA! A.

Remark 16. 1. Without requiring(EL)V � (UFG�LUFV )2 in Definition 7,L-
algebras would not need to satisfy the equationsEL.

2. We do not insist thatAlg(L)! Set be monadic (Remark 8.6).
3. Assume thatA = Set and thatL has a finitary presentation. Then Theorem 15 and

Proposition 13 specialise to the well-known result thatAlg(L) is a variety that can
be described by equations without nesting of operation symbols, see [3, Section
III.3.2, III.4.3]. Let us remark that [3] does not have the notion of a presentation of
a functor. We need it here to generalise fromSet to other monadic categoriesA.

3 A Brief Review of Coalgebras and Stone Duality

Coalgebras Given a functorT on a categoryX , aT -coalgebra(notation:(X; �) or
just�) is an arrow� : X ! TX in X . A morphismf : � ! �0 is an arrowf : X ! X 0
such thatTf � � = �0 � f .

Throughout the paper it will be the case thatX is the categorySet of sets and functions
or some category of topological spaces or domains. It makes therefore sense to speak of
the elements, orstates, of someX 2 X . We say that two statesx; x0 of � : X ! TX
and�0 : X 0 ! TX 0 arebehaviourally equivalentor bisimilar if there are coalgebra
morphismsf; f 0 with f(x) = f(x0). This notion of bisimilarity agrees with the standard
one in all cases we are aware of.

Stone Duality We sketch some background on Stone duality. It may be skipped and
consulted later. Atopological space(X;O) is a setX together with a collectionO of
subsets ofX closed under finite intersections and arbitrary unions. Elementsa 2 O are
calledopensets. A function(X;O) ! (X 0;O0) is continuousif f�1 preserves opens,
that is, restricts to a mapO0 ! O. Topological spaces and continuous maps form the
categoryTop. Note thatf�1 preserves finite intersections and arbitrary unions.

Abstracting from the set of pointsX and axiomatising the algebraic properties of a
topologyO, one arrives at the following notion. Aframe8 A is a distributive lattice
(with bottom? and top>) with infinite joins satisfying the infinite distributive law
a ^ WC = Wfa ^ c j c 2 Cg for all a 2 A and all subsetsC � A. Frames
with functions preserving arbitrary joins and finite meets form the categoryFrm. Frm
has free algebras, in other words, the forgetful functor fromFrm to Set mapping each
frame to its underlying set is monadic.

8 The notions ‘frame’ and ‘Kripke frame’ come from different areas are not related.



There are contravariant functors

Top
P ++ Frm
S
kk

P (X;O) = O, P (f) = f�1 (‘P ’ since P associates to a spaceX the algebra of
predicates overX). If (X;O) is a discrete topological space, thenP is the contravariant
powerset functor.S(A) = Frm(A;2), where2 is the two element frame (consisting of
?;>). S(A) carries the topology generated by the sets, for eacha 2 A, fs 2 S(A) j
s(a) = >g.S(f) = �s 2 S(A) : s�f . For example, ifA is a Boolean algebra, thenSA
is the space of ultrafilters overA (ultrafilters represent maximal consistent theories).

Fact 17. P; S are adjoint on the right, that is, there is a bijection, natural inX andA,

Top(X;SA) �= Frm(A;PX):

The adjunction restricts to a dual equivalence on the subcategories of spacesX and
framesA for which the unitsX ! SPX andA ! PSA are isomorphisms. These
spaces and frames are calledsoberandspatial, respectively. We will need later that a
frameA is spatial iff

8a; a0 2 A:(a 6� a0 ) 9s 2 SA:(s(a) = > & s(a0) = ?)): (3)

The dual equivalence of sober spaces and spatial frames can be restricted to ob-
tain a large number of interesting examples. We mention here only the duality of the
categoriesStone of Stone spaces andBA of Boolean algebras and the duality of the
categoriesSpec of spectral spaces andDL of distributive lattices. For details and more
examples see [12,31,2].

The adjunction can also be ‘upgraded’ to an adjunction betweenTop andOFrm,
the category of observation frames [5]. It restricts to a dual equivalence for all T0-
spaces. We can then include the category of posets into the list of possible topological
spaces and treat propositional logics without negation but with infinitary meets [6]. This
approach was also used in [7].

4 Abstract Logics for Coalgebras

It is shown that adequate logics forT -coalgebras are given by the functorL that is dual
to T . This section is independent of Section 2.

Definition 18 (dual functor). Let P : X ! A andS : A ! X be a dual equivalence
andT a functor onX . (L; �), or simplyL, is called a (or the) dual ofT onA if there is
a natural isomorphism� : LP ! PT .

All duals ofT are naturally isomorphic and the canonical one isPTS (but more inter-
esting are those dualsL that have a purely algebraic description (Definition 7) which
does not go viaX ). � allows us to consider the collection of predicates on a coalgebra



as anL-algebra. That is, we can lift the functorsP andS to an equivalence of algebras
and coalgebras. Explicitly, on objects, the lifted~P and ~S are given as

~P (X; �) = LPX �X�! PTX P��! PX
~S(A;�) = SA S��! SLA �= SLPSA (S�S)A�! SPTSA �= TSA

In order to interpret the dual equivalence connectingA andX as a duality between
a logical calculus and its semantics, we need to more specific.For the remainder of the
paperwe will be working in the situation described by the following diagram

Coalg(T )
~P ,,

��

Alg(L)
~S
mm

��
XT
(( P ++

��

A
S

kk Lvv

U
��

Set Set
F
HH

(4)

where we assume that

– the dual equivalence betweenX andA arises from the adjunction ofTop andFrm
(orTop andOFrm) by restricting to subcategories (see Section 3),

– L is dual toT (see Definition 18),
– A is monadic (see p.3),
– Alg(L)! A has a left adjoint (ieAlg(L) has free algebras).

Let us emphasise that the last requirement is not essential [7]. But it simplifies the pre-
sentation considerably, as we can now take the initial algebra inAlg(L) as a canonical
set of propositions. We consider this algebra of propositions as anabstract logic for
T -coalgebras, see Definition 21.

Definition 19 (Prop(Var)). Denote byProp(Var) the (carrier of the) freeL-algebra
overVar and call the elements ofProp(Var) propositions over variables inVar .

The algebraic semantics is defined in the usual way. Recall that there is a bijection
between functionsVar ! UA and morphismsProp(Var)! A.

Definition 20 (algebraic semantics).The algebraic semantics'A;h of' 2 Prop(Var)
wrt an algebraA 2 Alg(L) and a valuation of variablesh : Var ! UA is 'A;h =
h#(') whereh# : Prop(Var) ! A is the unique extension ofh. Alg(L) j= (' �  )
if 'A;h �  A;h for all algebrasA and allh : V ar ! UA.

To each coalgebra(X; �) we can associate via~P the algebra of propositions overX.
This gives the coalgebraic semantics.

Definition 21 (coalgebraic semantics).The semantics[[']](X;�;h) of a formula' 2
Prop(Var) wrt a coalgebra(X; �) 2 Coalg(T ) and a valuationh : Var ! PX is given
by [[']](X;�;h) = ' ~P (X;�);h: We writeCoalg(T ) j= (' `  ) if [[']](X;�;h) � [[ ]](X;�;h)
for all coalgebras and all valuations.



The following proposition can be extended to account for propositions with variables if
the notion of bisimulation is appropriately adapted. But we will restrict ourselves to

Proposition 22. Propositions inProp; are invariant under bisimilarity.

Proof. We have to show that, given a coalgebra morphismf : (X; �) ! (X 0; �0) and
x 2 X, thatx 2 [[']](X;�) , f(x) 2 [[']](X0;�0). This follows directly from the
universal property of the initial algebraProp;.

The essence of completeness wrt to the coalgebraic semantics is:

Proposition 23. Alg(L) j= (' �  ) , Coalg(T ) j= (' `  ).

Proof. ‘ ) ’ (soundness) is immediate. For ‘( ’ (completeness) assume=j=Alg(L)
' �  , ie ' 6�  in Prop(Var). SinceProp(Var) is spatial (see (3)), there isx in
~S(Prop(Var)) such thatx 2 [[']]Prop(Var) andx =2 [[ ]]Prop(Var).

Proposition 24. Prop; is expressive. That is, if two elementsx; x0 of two coalgebras
(X; �), (X 0; �0) are not bisimilar, then there is' 2 Prop; such thatx j= ' , x0 =j= '.

Proof. Without loss of generality, let us assume thatx; x0 are two different elements of
the final coalgebra(Z; �). The two points can be distinguished by a proposition since
Prop; ! ~P (Z; �) is surjective andPZ is a T0-space.

To summarise the section, we have seen how to obtain an adequate logic forT -
coalgebras (whereT is an arbitrary functor on a categoryX satisfying the conditions
summarised under Diagram (4)): Just consider as formulae the elements of the initialL-
algebra whereL is the dual ofT . We called this logic abstract as these formulae do not
have much structure. For example, modal operators, an explicit inductive construction
of the set of formulae and a logical calculus are still missing.

5 Concrete Logics for Coalgebras

We can now combine the abstract logics from Section 4 with the presentations of func-
tors of Section 2. Assuming thatL has a presentation, Theorem 15 gives us an equa-
tional calculus forAlg(L). Via the coalgebraic semantics of Definition 21 this yields
an equational logic forT -coalgebras, which is adequate by Propositions 22 to 24 and
concrete in the sense that we have the equational calculus for reasoning about the coal-
gebras.

In this section, we translate the equational logic of Theorem 15 to a modal logic.
In the case ofA = BA (which corresponds to adding a modal logic to classical propo-
sitional logic) this is particularly simple: An equationt = s corresponds to the modal
formulat$ s. As we are interested also inA = DL (and various subcategories), we do
not assume here that the logics have implication. We therefore use in the modal logics
the notation' `  to represent the algebraic' �  . As it is clear from Definition 21,
` corresponds to local consequence in the terminology of modal logic.



Definition 25 (modal logic forT -coalgebras).LetX andA be categories as described
in Diagram (4) andT a functor onX . Assume that the dualL of T has a presenta-
tion h�L; ELi (Definition 7) and letA �= Alg(�A; EA). Operations in�A are called
propositional connectives and operations in�L are called modal operators. Following
established notation, we write modal operators� 2 �L as[�]. We define

Formulae The set of formulae over a setVar of propositional variables is the smallest
set containingVar and closed under operations in�A and�L.

SequentsA sequent' `  consists of two formulae'; .
Axiom SchemesEach equation' =  in EA or EL gives rise to axiom schemes

' `  and ` '. An axiom is obtained from an axiom scheme by replacing the
variables9 with formulae.

Calculus We use'a` as an abbreviation for' `  and ` '. The rules have
to guarantee thata` is an equivalence relation. Moreover, for eachn-ary operator
� 2 �A +�L, we have the congruence rule

'ia` i 0 � i < n
�('i)a`�( i)

Semantics Given a coalgebra(X; �) and a valuationh : Var ! PX, the semantics
[[']](X;�;h) of a formula is defined inductively on the structure of formulae. For an
n-ary modal operator� 2 �L its semantics is given by (for� see Definition 18)

(UPX)n // G�LUPX
qPX // ULPX U�X // UPTX UP� // UPX

mapping([['i]](X;�;h))0�i<n to [[[�]('i)]].
Remark 26 (other approaches to modal logics for coalgebras).Apart from Moss
[21], all subsequent work we are aware of (as eg [28,11,18,22]) can be casted in terms
of so-called predicate liftings as in Pattinson [23]. Predicate liftings give semantics to
modal operators forT -coalgebras. They appear here as(UPX)n ! G�LUPX qPX!
ULPX U�X! UPTX. It was shown in [16] that any logic given by predicate liftings
can be described by a functorL onBA that has a presentation. Our approach therefore
subsumes existing ones. But we have also vastly generalised the previous work by mov-
ing from set to other topological categories and fromBA to other algebraic categories.
Moreover, we established a criterion for functorsL to give rise to an adequate logic.

Theorem 27. Let L be a logic forT -coalgebras as described in Definition 25. The
formulae ofL are invariant under bisimilarity andL is sound, complete and expressive.

Proof (Sketch).First show that equational deduction is equivalent to deduction inL. It
then follows from Theorem 15 thatProp(Var) is a quotient of the set ofL-formulae wrt
to the interderivabilitya` (the so-called Lindenbaum-Tarski algebra ofL). Moreover,
the coalgebraic semantics (Definition 21) ofL is equivalent to the one from Defini-
tion 25. Now, having established the relationship between equational and modal logic,
soundness and completeness is Proposition 23. Invariance under behavioural equiva-
lence and expressiveness are Propositions 22 and 24, respectively.

9 These are the variables fromV , see Definition 7, which are different from the propositional
variables fromVar .



Remark 28. To keep the presentation in Section 4 simple, we assumed there thatAlg(L)
has free algebras. But, as shown in [7], this assumption is not necessary (neither always
desirable: ifT is the powerset functor, thenCoalg(T ) does not have a final coalgebra
andAlg(L) does not have an initial algebra). Theorem 27 then still holds (assuming, as
in [7], thatT weakly preserves limits of chains).

Example 29. 1. In the case ofA = BA one can use! instead of̀ . For example, the
equational logic for the functorV (Example 9.2) translates to a modal logic that adds
to classical propositional logic the two axiom schemes2> $ > and2(v0 ^ v1) =
2v0 ^2v1. This is easily seen to be equivalent to the standard calculus of modal logic.

2. The logics of [18] can be understood as presentations of the respective functors.

3. The presentations of the duals of the Kripke polynomial functors of [11] give rise to
the infinitary versions of the logics studied there.

Example 30. In [7], we derived in a uniform way the logic for finitely branching tran-
sition systems on different topological spaces. The idea was to describe the dualL of
the finite (= compact) powerspace, similarly to Example 1, by generators and relations.
The completeness proof of the corresponding logics proceeded by, what we call here,
the abstract logic (Section 4) ofL. But the step from the presentation by generators and
relations to the logic was not worked out, being routine and tedious. This gap can now
be filled by simply appealing to Theorem 27.

6 Conclusion and Further Work

This paper introduced the notion of a functor having a presentation by operations and
equations. It explains how generators and relations give rise to modal operators and
axioms and leads to Theorems 15 and 27 which give automatic adequateness proofs
once a presentation is given. From a mathematical point of view, the work contributes
to the question when a categoryAlg(L) has a presentation by operations and equations.

Further Work 1. The completeness result relates dual categories as egBA andStone
orDL andSpec. How completeness wrt Set-coalgebras can be derived from these results
is investigated in [17].

2. Remark 12 indicated how to compose presentations of functors. A detailed exposi-
tion of this important topic is future work.

3. Proposition 13 showed that the functors onSetwith a finite presentation are precisely
the finitary functors. A generalisation of this result to other monadic categories thanSet
will be given elsewhere.

4. An important extension will introduce presentations by operations and implications.
These would be necessary to account for some of the functors in, for example, [1].

5. In [8] we apply the notion of a functor having a presentation to the extension of dis-
tributive lattices with operators. We show that presentations over posets (which amounts
to moving from algebras to ordered algebras) are useful to handle monotone operators.

6. Another important extension will be to replaceSet with a presheaf categorySetC
(which amounts essentially to moving from one-sorted to many-sorted algebras). This
will allow us to treat logics with quantifiers or logics for name-passing calculi.
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