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Abstract. We take the point of view that, if transition systems are coalgebras for

a functor T, then an adequate logic for these transition systems should arise from
the ‘Stone dual’ L of T. We show that such a functor always gives rise to an ‘ab-
stract’ adequate logic for T-coalgebras and investigate under which circumstances
it gives rise to a ‘concrete’ such logic, that is, a logic with an inductively defined
syntax and proof system. We obtain a result that allows us to prove adequateness
of logics uniformly for a large number of different types of transition systems and
give some examples of its usefulness.

1 Introduction

The question we are concerned with in this paper is how to associate to a given type
of transition systems an adequate (modal) logic. Helequateneans that the logic is
sound and complete and that two states are bisimilar iff they are logically equivalent
(ie, iff they have the same theory). For the latter property, we also say that the logic is
expressive or that the semantics is fully abstract.

Our starting point is the theory of coalgebras as in Rutten [29]. That idypeof
a category of transition systems is given by a fun@ayn a categoryt’ and transition
systems of typd" areT'-coalgebras, ie arrown® — TX in X'. The basic idea of our
approach is that an adequate logicTéroalgebras is given by the dual functoof T
on the Stone duall of X’ as explained below.
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A is a category of algebras such as Boolean algebras or distributive lattices representing
a propositional logic such as classical or positive propositional |dgiand.S are the
contravariantfunctors that provide the dual equivalence betw&eand.A. Intuitively,

P maps a state spack to the logic of propositions otk and .S maps an algebra

to its ‘canonical model’. Thal and7" are dual means that there is an isomorphism
LP — PT.

* Supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
** Partially supported by the Nuffield Foundation Grant NUF-NALOA4.
8 Given categorie€, C’, we use the notatiofi — C' for (covariant) functors such & and L
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The main contribution (Section 2) of the paper is the notion of a functor having
a presentation by operations and equatiofifieorem 15 shows that the category of
algebras for such a functor is an equationally definable class of algebra$éoxaie
then go on to show (Section 4) that, although the duef T' gives rise to an adequate
logic for T-coalgebras, the resulting logic is too abstract to be useful. In particular,
inductively defined formulae, a logical calculus and a notion of (inter)derivability are
still missing. But these are provided (Section 5) by a presentatidnimf operations
and equations. Theorem 27 shows how the operations give rise to modal operators, the
equations to axioms and how the modal calculus is inherited from equational logic.

The notion of a functor being presentable by operations and equations is modelled
on the notion of an algebra being presentable by generators and relations (reviewed in
Section 2.1). This will be discussed in more detail now.

Comparison with Work in Domain Theory. The prototypical transition systems,
called Kripke frames in modal logic, consist of just a 3etand a relation® on X.

Writing P for the operation that maps a set to its powersgt,R) can also be described

by its ‘successor map’, gP-coalgebra X — PX. P is a functor on the categofiet

of sets and functions and has analogues on many categories of topological spaces, in-
cluding important categories of domair.is then called powerspace, hyperspace or
powerdomain.

It is well-known in domain theory that the dual of the powerspace on the corre-
sponding category of algebras can be described using modaliteasl <. This goes
back to Johnstone [12,13] where a dual of the powerspace, called Vietoris locale, is
described. In case of distributive lattices [13, Section 1.8] anticipates the axiomatisa-
tion of positive modal logic by Dunn [10]. Winskel [32] used modalities to describe
the powerdomain and Robinson [25] established the connection between the work in
domain theory and that of Johnstone. Abramsky [1] extended these ideas to give logical
descriptions of domains for a large number of other type constructors.

To position our contribution it will be useful to briefly summarise the work men-
tioned in the previous paragraph using our notation from Diagram (1). To describe a
powerspacd’ on a domain—or more generally on a topological spa¢é-« X', one
has to describe the effect @f on the topology ofX. This can be done without refer-
ence toX, using only the algebraic properties of the topologyXafthe topology of
TX is given (up to canonical iso) by the algeldtaP X') which is freely generated by
symbolsOa, ¢a, a € PX satisfying some ‘relations’ as eg(a A a’) = Oa A Oa’. TO
summarise, a logic fof'-coalgebras is obtained by describing the dU&.X of T'X
using thetechnique of generators and relationBhe modal operators arise from the
generators and the axioms from the relations.

Our paper formalises the move from generators and relations to the modal logic. Let
us explain what needs to be done. Going back to the example of the powerspace, we
observe thala is a formal symbol as a generatorioP X, but is a unary operator in
the modal logic. Similarly, as a ‘relationl(a Aa') = OaAOd' is a pair of terms, but as
alogical axiom it is an equation whetiea’ are variables. Moreover, but related, a logic
is obtained from a presentation b X only if the presentation does not dependn
that isLPX is given by the ‘same’ generators and relations forXallThe necessary
step is to generalise the notion of an algebra being presented to the notion of a functor



being presented. As a consequence we obtain Theorems 15 and 27, which uniformly
account for a large number of categorigsand functorsl.

Comparison with Work on Coalgebras. Work on modal logic and coalgebras started
with Moss [21] whose proposal works essentially for any fun@dijon the category

of sets), but does not provide the linguistic means to decompose the structiire of
which is needed to allow for a flexible specification language. To address this issue,
subsequent work as eg [19,28,11] restricted attention to particular classes of functors.
Pattinson [23] showed that these languages arise from modal operators given by certain
natural transformations, called predicate liftings. [16] showed that, furthermore, these
languages correspond to functdron the category8A of Boolean algebras. Here we
address the opposite question of how to associate a logic to a functor

This paper can also be seen as a sequel to [7], where we proposed a general frame-
work for logics of coalgebras based on Stone duality. A general adequateness result
was proved for what we call here abstract logics and then, studying the case of the com-
pact powerspac®,, it was shown how to systematically obtain logics for coalgebras
over different base categories by presenting the dual.dfy generators and relations.

But a formal description of the step from generators and relations to modal operators
and axioms was left open.

Acknowledgements. We would like to thank the referees for valuable suggestions.
The second author profited from discussions with Neil Ghani, Clemens Kupkefand Ji
Rosicky.

2 Presenting Functors by Operation and Equations

This section defines what it means for a fundtoon an algebraic category to have a
presentation by operations and equations. It is shown thathés such a presentation,
the categorAlg(L) of L-algebras is isomorphic to a categdg (X, E) of algebras for

a signature and equations and, moreo¥egnd E are obtained from the presentations
of A andL in a modular way. Let us emphasise that this is known for the daseSet,
the novelty here coming from the need to consider other base categoriésthan

2.1 A Brief Review of Algebras and Presentations

Algebras. Given a functorL on a category4, an L-algebra (notation(A, «) or just
a)isanarrony : LA — A. Amorphismf : o — «' isan arrowf : A — A’ such that
foa=a'oLf.

The category of algebras for a signatWeand equationg is defined as usuaknd
denoted byAlg(X, E'). We say that a categoryl, equipped with a forgetful functor
U : A — Set, has goresentatior(overSet) if there exists a signatur® and equations

4 Carriers are sets and arities may be arbitrary cardinals; we allow a set of operations for each
arity and a set of equations for each set of variables.



E such thatA is concretely isomorphic toAlg(X, E). A (or more precisely/ : A —

Set) is monadiciff A has such a presentation abid: A — Set has a left adjoint

(ie free algebras exist). The left adjoint &fis denoted byF' throughout £X is the

free algebra oveX andU F'X is the set of terms oveX quotiented by the equations).
Examples: The category of complete Boolean algebras has a presentation but is not
monadic, whereas the category of complete atomic Boolean algebras is monadic (and
dually equivalent t&et); see [12].

Presenting Algebras by Generators and RelationsThe following is tailored towards
Section 2.2, for more see Vickers [31]. Suppose we have a monadic functot —
Set with left-adjoint F'. Then the counit

EA:FUA—>A

gives us a canonical (albeit not economical) presentatioh ohmely generated by the
elements oV A and quotiented by the kernélt, s) | e4(t) = €a(s)} of e4. These
presentations are useful to describe operations on algebras. Unfortunately we have only
space for one example.

Example 1 (modal algebras).A modal algebra, or Boolean algebra with operator
(BAO), is the algebraic structure required to interpret (classical) modal logic which
consists of propositional logic plus a unary modal operatpreserving finite conjunc-
tions. Modal algebras are therefore algebras for the fun¢toBA — BA, whereV A

is defined by generatofSa, a € A, and relations1T = T,0(a A a') = Oa A Oa'.

Note that in the example above, the symBichppears in two roles. First we said that
is a unary operator. But when we considef&das a generatorda’ was just a formal
symbol. This observation will lead to Definition 6.

Remark 2. The fact that, in the example abovg,is on BA (and not onSet) takes
care of the propositional part of modal logic. The definitionyod can be phrased
more abstractly by saying that the insertion of generatods— UV A,a +— Oa is a
universal finite-meet preserving function, that is,

UA——>UVA
"
P
UB

forall B € BA and all finite-meet preserving functioiis U A — U B there is a unique
Boolean algebra morphisiff : VA — B with U f#(0a) = f(a). From this observa-
tion it is straightforward to show thaklg()) is indeed isomorphic to the category of
modal algebras as usually defined (see eg [15, Definition 2.2.2], [4, Definition 5.19]).

Definition 3 (presentation by generators and relations)Let U : A — Set be
monadic (see p.3) with left adjoi. A presentationG, R) consists of a set of ‘gen-
erators’'G and a set of ‘relationsR C UFG x UFG.

5 Concretelymeans that the isomorphism preserves the underlying sets.



Definition 4 (presented algebra).Continuing from the previous definition, a mor-
phismf : FG — B in A satisfies the relation® if (t,s) € R = Uf(t) = Uf(s).
An algebraA is presentedy (G, R) if

Dt
X\Vf

B

— A comes with an insertion of generatgrs G — U A (or, equivalentlyg : FG —
A) satisfying the relation£,

—forall B € Aandallf : FG — B satisfying the relationg? there is a unique
ft:A— Bwith ffoqg=f.

Proposition 5. Every presentation presents an algebra.

Proof. The proof relies on the fact that, as a category monadic &etr.A has co-
equalisers. The object presented(i¥, R) is given by the coequaliser
i
FR—FG—— A.

5

wherewf, 7r§ come from the projections, , m, : R — UFG. More concretelyy is the
quotient wrt the smallest congruence containitg

2.2 Presenting Functors by Operations and Equations

Example 1 above shows how the funcidér BA — BA is described using generators
and relations. In order to obtain a modal logic from that description, one has to upgrade
the set of formal symbolSla to a unary operatdn and, similarly, the relationsl(a A

a') = DaAOa’ to equations in variables o' (Definition 6). Moreover, the presentation

of VA is the ‘same’ for allA. This will be crucial for the move from a presentation to a
logic: The modal operators (ie the generators) and the axioms (ie the relations) should
depend only on the functor and not on specific algebras (Definition 7).

Definition 6 (presentation by operations and equations)Let U : A4 — Set be
monadic with left adjointF'. A presentation of a functof. : A — 4 by operations
and equations consists of

1. a setY of operationss € X' with aritiesn, which gives rise to a functofs; :
Set — Set, X — HJEE X7,

2. aclasg of sets (of variables) and a collectidh= (Ey )y ¢c of equationsEy C
(UFGsUFV)2,

A presentation is callefiniteif X’ only contains operations of finite arity addcontains
only finite sets.



Definition 7 (presented functor). Continuing from the previous definition, a mor-
phismf : FGxUA — B satisfies the equatiorisifforall V € Cand allv : FV — A
itholds(t,s) € By = (foFGxUv)(t) = (foFGxUv)(s). A natural transformation
f: FGsU — L satisfies the equations ff; satisfies the equations for &l € A.

A functor L is presentedy (X, E) if

FGsUFV “E% paoUA 1A

et
\\?f

B

— L comes with a natural transformation, called insertion of generator&sU —
UL (or, equivalentlyg : FGxU — L) satisfying the equationg,

— forany B € A and morphisny : FGxUA — B satisfying the equation® there
is a unique morphisnft : LA — B such thatft o g4 = f.

Remark 8. 1. Roughly speaking, ifd represents a finitary logic, we will ne€blto
only contain finite sets of variables. But for infinitary logics, a typical requirement
for an operatoid in X' would be to preserve all meets, which is expressed by
equations/\ ., Ov = O A ., v whereV runs through all cardinals.

2. Here we explain the format of the equatidiig C (UFGsUFV)>.

— Ey C (UFGxUFV)? means that the terms appearing in equations may freely
use the operations fod but do not contain nested occurrences of operations
from X.

— Intuitively, this format arises from our interests in logics that describe coalge-
bras for &unctorT'. In contrast to coalgebras for a comonad, the coalgebra map
¢ : X — TX encodes what the transition systéi, £) can perform inone
step. From this point of view, the format, C (UFGxUFV)? of the axioms
E is not a restriction, but formalises that we dot neednested modalities to
describe a single transition (nested modalities describe sequences of transition
steps).

— Technically, equations of the forty, C (UFGxUFV)? suffice since the
terms to be quotiented are all thF'Gx;U A. The reason to exclude more gen-
eral equations is Theorem 15.

3. Using the approach of Linton [20] and RosjcR6], one can show thatlg(L)
can always be described by operations and equations4vBut in that approach
the arities describind\lg(L) are objects in4 and not cardinalities iSet. In other
words, what our approach adds here is that under Definition 7 one does obtain a
presentation not only oflg(L) over.A but also ofAlg(L) overSet (Theorem 15).
The latter is essential to get logics as in Section 5.

4. A presentation oAlg(L) overSet cannot be expected to exist in general, because
monadic functors are not closed under composition: EvekigfL) — .4 and
A — Set are monadic, the compositiokig(L) — Set need not be so. This is
discussed in detail in Kelly and Power [14]. For our purposes, our approach has the
advantage that we obtain a presentatioAlg{ L) modularly from presentations of
AandL (Theorem 15). Moreover, we do not insist Alg(L) having free algebras.



5. Example 1 seems to suggest that one could express the interplay of the modal and
Boolean operators by a distributive law between the funttdescribing the modal
operators and the mon&dF’ describing the Boolean operators. This approach does
not work asL is not even defined on underlying sets but only on algebras.

6. An approach based on monads would not be appropriate because we do not want
to insist thatAlg(L) has free algebras. (For an example whilgg L) doesn't have
free algebras although has, take4 to be the category of complete atomic Boolean
algebras and. the dual of the powerset.)

Definition 7 will allows us to presemlg(L) by composing a presentation gf with

a presentation of,, see Theorem 15. Logically, this corresponds to extending a basic
propositional logic (which present$) with modal operators and modal axioms (which
presentl). This is also the idea underlying the following examples.

Example 9. 1. As mentioned already in the introduction, to define a fundtdry
describingL A by generators and relations is a common technique. In all of the cited
[12,13,25,31] the given presentations are in fact presentationshyf operations
and equations. The reason to make this notion explicit here is to have a uniform
translation from presentations to logics that works for funcfoiie general (see
Theorems 15 and 27).

2. The functory of Example 1 is presented by a signature containing one unary oper-
ationO, that is,Gs X = X. Further,V = {vo,v1}, C = {V'}, and, writing * = -’
instead of (-,-)’, By ={0T = T,0(vg Awvy) = Ovg A Doy }.

3. The functorV above is the dual of the powerspaceSinne. Other type construc-
tors onStone are studied in [18] (called Vietoris polynomial functors) and their
duals orBA are all presentable by operations and equations.

4. The Kripke polynomial functors oBet (including powerset) of [11] have duals
on complete atomic Boolean algebras, which have a presentation. The description
of the dual of the finite (or compact) powerspace on posets and sets in [7] also
provides examples of presentations of functors.

Proposition 10. Each presentation presents a functor.

Proof. Given a presentatiofl”, E') we define the functoL on objects4 as

o )
FEy, —= FGyUFV "X paeA 4w 1A )
|

T2
whereq, is the joint coequaliser of all paild’'GsUwv o ﬁ,FGgUU o wg) wherew
ranges over arrows8'V — A. The universal property of. A gives the action of on
morphisms and the naturality of;.

Proposition 11. The functors that have a presentation are closed under composition.

Proof (Sketch)ConsiderL; andL, with presentation§X, Ey), (X2, Es). ThenLy Lo
is presented by} _, ., n;)-ary operation® ((¢;);c») Whereo € X is n-ary and the;
aren;-ary Xp-terms inUFG 5, V. The equations((¢;):cn) = s'((t})ien) are all those
that can be obtained from the equatiens s’ derivable fromFE; and then substituting
termst; = t; (with identities derivable fronk,).



Remark 12. The proposition shows that we can build up presentations modularly. The
construction in the proof has the disadvantage though, that (many) new operations and
equations have to be introduced. In practice, therefore, one would rather introduce an
additional sort with the benefit of using exactly the operations and equations of the two
original presentations. This is as in, eg, [1,27,11,9,30] and will be detailed elsewhere.

Although we are not interested in the cage= Set as such, the following shows that
Definition 6 is natural: Up to a size restriction, any functorSen has a presentation. In
particular

Proposition 13. A functor onSet has a finite presentation if and only if it is finitary.

Proof. If an endofunctorL on Set is given as in Diagram (2), then it is not difficult
to show that it preserves filtered colimits, given t#atU, andG do so and the sets
V' are finite. Conversely, given a finitady, we obtainX’ and E as follows [24, 1.5].
For X we let each element ifin be ann-ary operatiorf, that is,Gs X =[], Ln x
X" Further,V = {v; | i < w},C = {V}andEy = {(Lf(0))(vo,.-.Vm—1) =
(V) - Vf(n—1)) | n < w,0 € Ln,f : n — m}. The natural transformation
ga:GeUA —» LAthenmaps < w,0 € Ln, f:n — AtoLf(o) € LA.

If we do not insist on4 = Set, the two notions become different as the second part of
the proof does not generalise. A general characterisation of the functors having a finite
presentation will be given elsewhere.

We still have to show how functors that are presentable by operations and equations
give rise to logics. Sinced is monadic ovelSet, we can assume that we a have a
presentation of4 as a category of algebradg(X 4, E 4) given by a signaturé&l 4, and
equationgt 4.

Definiton 14 (¥4 + X1, E4 + Ep). Let A = Alg(XY' 4, E4) andL : A — A be
presented byX';, E;). Denote by 4 + X, the disjoint union of the signatures and by
E 4+ Ey, the disjoint union where equations i), andE;, are understood as equations
over¥ 4+ ¥.”

E 4 + Eyp, is asound and complete (equational) logic fealgebras:

Theorem 15. Let A = Alg(X 4, E 4) be monadic andX';,, E},) a presentation oL :
A — A. ThenAlg(X 4 + X1, E4 + Ep) is isomorphic taAlg(L).

Proof (Sketch)Write ¥ = Y4 + X, E = E4 + E;,. Considera : LA — A. The
correspondingZ-algebraA has carriel/ A and the interpretation® of operationsr €

XY isgiven by(UA)" — UFGs, UA Y rA %S U A. A satisfies the equations

5 Writing Ln we assume that is the sef{0,...n — 1}.

7 Strictly speaking £, was defined on equivalence classegiof-terms. Formally, one obtains
the newE, denotedE’; , as follows. LetT's , V be the set of 4-terms overl”. Consider a
half-inversem of the quotien’s , G, Ts , V — UFGx, UFV (m chooses a representative
for each equivalence class). Thefy = {(m(t), m(s)) | (¢,s) € Er}.



E 4 becaused does.A satisfies the equationfs;, becausey4 does (Definition 7) and
because of the formé#E )y C (UFGs, UFV)2.

Conversely, everyY, E)-algebraA is also an algebra inl. We then obtain, from
the operations irt';,, a functionGx, UA — U A, ie a morphismf : FGy,, UA — A.
Since A satisfies the equatiorfs, we obtain by the universal property of Definition 7
amorphismy = f+: LA — A.

Remark 16. 1. Without requiring(E)y C (UFGx, UFV)? in Definition 7, L-

algebras would not need to satisfy the equatiBips

2. We do not insist thaAlg(L) — Set be monadic (Remark 8.6).

3. Assume thay = Set and thatZ has a finitary presentation. Then Theorem 15 and
Proposition 13 specialise to the well-known result thigf(L) is a variety that can
be described by equations without nesting of operation symbols, see [3, Section
111.3.2, 111.4.3]. Let us remark that [3] does not have the notion of a presentation of
a functor. We need it here to generalise frGen to other monadic categorie$.

3 A Brief Review of Coalgebras and Stone Duality

Coalgebras Given a functorT’ on a categoryt’, a T'-coalgebra(notation: (X, £) or
justé)isanarrow : X — TX in X. Amorphismf : £ — ¢ isanarrowf : X — X’
suchthatl'f o £ = &' o f.

Throughout the paper it will be the case thats the categorpet of sets and functions

or some category of topological spaces or domains. It makes therefore sense to speak of
the elements, ostates of someX € X. We say that two states z' of ¢ : X — TX

and¢’ : X' — TX' arebehaviourally equivalentr bisimilar if there are coalgebra
morphismsf, f' with f(x) = f(z'). This notion of bisimilarity agrees with the standard

one in all cases we are aware of.

Stone Duality We sketch some background on Stone duality. It may be skipped and
consulted later. Aopological spacé X, O) is a setX together with a collectio) of
subsets ofX closed under finite intersections and arbitrary unions. Elemeat® are
calledopensets. A function( X, 0) — (X', 0') is continuousf f~! preserves opens,
that is, restricts to a ma@’ — . Topological spaces and continuous maps form the
categoryTop. Note thatf—! preserves finite intersections and arbitrary unions.

Abstracting from the set of point& and axiomatising the algebraic properties of a
topology O, one arrives at the following notion. kamé A is a distributive lattice
(with bottom L and topT) with infinite joins satisfying the infinite distributive law
aANVC =\V{anc ]| ce C} foralla € A and all subset€ C A. Frames
with functions preserving arbitrary joins and finite meets form the categony Frm
has free algebras, in other words, the forgetful functor ffom to Set mapping each
frame to its underlying set is monadic.

8 The notions ‘frame’ and ‘Kripke frame’ come from different areas are not related.



There are contravariant functors

P
—\

Top - Frm
5

P(X,0) = O, P(f) = f~! (‘P since P associates to a space the algebra of
predicates oveKX). If (X, O) is a discrete topological space, thBrs the contravariant
powerset functorS(A) = Frm(A4, 2), where2 is the two element frame (consisting of
1,T). S(A) carries the topology generated by the sets, for eachA, {s € S(A4) |
s(a) =T}H S(f) =As € S(A) . sof. Forexample, ifA is a Boolean algebra, thehd

is the space of ultrafilters ovet (ultrafilters represent maximal consistent theories).

Fact 17. P, S are adjoint on the right, that is, there is a bijection, naturalihand A,
Top(X,SA) = Frm(A, PX).

The adjunction restricts to a dual equivalence on the subcategories of spaces
framesA for which the unitsX — SPX andA — PSA are isomorphisms. These
spaces and frames are callsaberandspatial respectively. We will need later that a
frame A is spatial iff

Va,a' € A(a € d = Jse€ SA.(s(a) =T & s(a’) = 1)). (3)

The dual equivalence of sober spaces and spatial frames can be restricted to ob-
tain a large number of interesting examples. We mention here only the duality of the
categoriesStone of Stone spaces arBlA of Boolean algebras and the duality of the
categorie$pec of spectral spaces aal of distributive lattices. For details and more
examples see [12,31,2].

The adjunction can also be ‘upgraded’ to an adjunction betWwiegnand OFrm,
the category of observation frames [5]. It restricts to a dual equivalence for all TO-
spaces. We can then include the category of posets into the list of possible topological
spaces and treat propositional logics without negation but with infinitary meets [6]. This
approach was also used in [7].

4 Abstract Logics for Coalgebras

It is shown that adequate logics forcoalgebras are given by the functthat is dual
to T'. This section is independent of Section 2.

Definition 18 (dual functor). LetP : X - A andS : A — X be a dual equivalence
andT a functor onX. (L, d), or simplyL, is called a (or the) dual & on A if there is
a natural isomorphismi: LP — PT.

All duals of T' are naturally isomorphic and the canonical on®8S (but more inter-
esting are those duals that have a purely algebraic description (Definition 7) which
does not go viaY). § allows us to consider the collection of predicates on a coalgebra



as anL-algebra. That is, we can lift the functaFsandsS to an equivalence of algebras
and coalgebras. Explicitly, on objects, the liftBdandS are given as

P(x,¢) = LPX 25 pTrx 25 px

S(A,a) = SA 5% spa =~ sppsa P8

SPTSA=TSA

In order to interpret the dual equivalence connectihgnd X’ as a duality between
a logical calculus and its semantics, we need to more spdeificthe remainder of the
paperwe will be working in the situation described by the following diagram

Coalg(T) Alg(L) (4)

T X

where we assume that

— the dual equivalence betweéhand.4 arises from the adjunction dfop andFrm
(or Top andOFrm) by restricting to subcategories (see Section 3),

— L is dual toT (see Definition 18),

— Ais monadic (see p.3),

— Alg(L) — A has a left adjoint (ilg(L) has free algebras).

Let us emphasise that the last requirement is not essential [7]. But it simplifies the pre-
sentation considerably, as we can now take the initial algebidgifl.) as a canonical

set of propositions. We consider this algebra of propositions asbatract logic for
T'-coalgebrassee Definition 21.

Definition 19 (Prop(Var)). Denote byProp( Var) the (carrier of the) fred.-algebra
over Var and call the elements &frop( Var) propositions over variables ifiar.

The algebraic semantics is defined in the usual way. Recall that there is a bijection
between functiond/ar — U A and morphism&rop( Var) — A.

Definition 20 (algebraic semantics)The algebraic semantigs*"* of » € Prop( Var)
wrt an algebrad € Alg(L) and a valuation of variablels : Var — UA is " =
h# () whereh® : Prop(Var) — A is the unique extension @f. Alg(L) = (¢ < 9)
if A" < 4" for all algebrasd and allh : Var — UA.

To each coalgebréX, ¢) we can associate ViR the algebra of propositions ovéf.
This gives the coalgebraic semantics.

Definition 21 (coalgebraic semantics)The semantic§y]x,¢,») of a formulay €
Prop( Var) wrt a coalgebrd X, ¢) € Coalg(T") and a valuatior : Var — PX is given

by [elx.e,n) = @P(X’g)’h- We write Coalg(T) = (¢ ) if [¢](x.e.n) € [¥](x.e,n)
for all coalgebras and all valuations.



The following proposition can be extended to account for propositions with variables if
the notion of bisimulation is appropriately adapted. But we will restrict ourselves to

Proposition 22. Propositions irProp, are invariant under bisimilarity.

Proof. We have to show that, given a coalgebra morphfsm(X,¢) — (X', ¢') and
v € X, thatr € [p]xe & f(2) € [¢lxey- This follows directly from the
universal property of the initial algebRropg.

The essence of completeness wrt to the coalgebraic semantics is:
Proposition 23. Alg(L) |E (¢ <) < Coalg(T) E (¢ F ).

Proof. * = ’ (soundness) is immediate. For< ’ (completeness) assuméA,g(L)
@ < 1, iep £ 1 in Prop(Var). SinceProp(Var) is spatial (see (3)), there isin
S(Prop(Var)) such thatr € [o]prop(vary @Ndz & [¥]prop( var)-

Proposition 24. Prop, is expressive. That is, if two elementsz’ of two coalgebras
(X,€), (X', &) are not bisimilar, then there §s € Propg suchthatr |= ¢ & ' | ¢.

Proof. Without loss of generality, let us assume that' are two different elements of
the final coalgebrdZ, ¢). The two points can be distinguished by a proposition since
Propy — P(Z,() is surjective and”Z is a TO-space.

To summarise the section, we have seen how to obtain an adequate logic for
coalgebras (wher@' is an arbitrary functor on a categody satisfying the conditions
summarised under Diagram (4)): Just consider as formulae the elements of thé initial
algebra wherd. is the dual ofl". We called this logic abstract as these formulae do not
have much structure. For example, modal operators, an explicit inductive construction
of the set of formulae and a logical calculus are still missing.

5 Concrete Logics for Coalgebras

We can now combine the abstract logics from Section 4 with the presentations of func-
tors of Section 2. Assuming thdt has a presentation, Theorem 15 gives us an equa-
tional calculus forAlg(L). Via the coalgebraic semantics of Definition 21 this yields
an equational logic fof'-coalgebras, which is adequate by Propositions 22 to 24 and
concrete in the sense that we have the equational calculus for reasoning about the coal-
gebras.

In this section, we translate the equational logic of Theorem 15 to a modal logic.
In the case of4 = BA (which corresponds to adding a modal logic to classical propo-
sitional logic) this is particularly simple: An equatien= s corresponds to the modal
formulat < s. As we are interested also i = DL (and various subcategories), we do
not assume here that the logics have implication. We therefore use in the modal logics
the notationy F v to represent the algebrajc < . As it is clear from Definition 21,
F corresponds to local consequence in the terminology of modal logic.



Definition 25 (modal logic for T'-coalgebras)Let X and.A be categories as described
in Diagram (4) andl" a functor onX'. Assume that the dudl of T has a presenta-
tion (X', E;) (Definition 7) and letd = Alg(X 4, E 4). Operations in¥ 4 are called
propositional connectives and operationstip are called modal operators. Following
established notation, we write modal operators X', as[o]. We define

Formulae The set of formulae over a s&ur of propositional variables is the smallest
set containingVar and closed under operationsih, andX’;,.

Sequents A sequentp F ¢ consists of two formulag, 1.

Axiom SchemesEach equationp = 1 in E4 or Ep gives rise to axiom schemes
¢ F 1 andy F . An axiom is obtained from an axiom scheme by replacing the
variable$ with formulae.

Calculus We usep-t1 as an abbreviation fop - ¢ and+y F ¢. The rules have
to guarantee thatt is an equivalence relation. Moreover, for eaclry operator
o € Y 4+ X, we have the congruence rule

o (i) o (i)
Semantics Given a coalgebréX, ¢) and a valuatiorh : Var — PX, the semantics

[l (x.e,n) Of aformula is defined inductively on the structure of formulae. For an
n-ary modal operatar € Xy, its semantics is given by (faérsee Definition 18)

(UPX)" —~Gs, UPX “*~ yrpx 2 uprx 2 upx

mappind([¢:](x.¢.n))o<i<n t0 [[o](¥:)].

Remark 26 (other approaches to modal logics for coalgebrasppart from Moss

[21], all subsequent work we are aware of (as eg [28,11,18,22]) can be casted in terms
of so-called predicate liftings as in Pattinson [23]. Predicate liftings give semantics to
modal operators fof-coalgebras. They appear here(8&PX)" — Gx, UPX ‘5

vLPx % UPTX. It was shown in [16] that any logic given by predicate liftings
can be described by a functbron BA that has a presentation. Our approach therefore
subsumes existing ones. But we have also vastly generalised the previous work by mov-
ing from set to other topological categories and frBAito other algebraic categories.
Moreover, we established a criterion for functdr$o give rise to an adequate logic.

Theorem 27. Let £ be a logic forT-coalgebras as described in Definition 25. The
formulae ofZ are invariant under bisimilarity and is sound, complete and expressive.

Proof (Sketch)First show that equational deduction is equivalent to deductidh in

then follows from Theorem 15 th&op( Var) is a quotient of the set af-formulae wrt

to the interderivabilityd- (the so-called Lindenbaum-Tarski algebra@f Moreover,

the coalgebraic semantics (Definition 21) ©fis equivalent to the one from Defini-

tion 25. Now, having established the relationship between equational and modal logic,
soundness and completeness is Proposition 23. Invariance under behavioural equiva-
lence and expressiveness are Propositions 22 and 24, respectively.

% These are the variables from, see Definition 7, which are different from the propositional
variables fromVar.



Remark 28. To keep the presentation in Section 4 simple, we assumed therdgla)

has free algebras. But, as shown in [7], this assumption is not necessary (neither always
desirable: ifT" is the powerset functor, thefvalg(7") does not have a final coalgebra
andAlg(L) does not have an initial algebra). Theorem 27 then still holds (assuming, as
in [7], thatT weakly preserves limits of chains).

Example 29. 1.In the case of4 = BA one can use- instead of-. For example, the
equational logic for the functoy (Example 9.2) translates to a modal logic that adds
to classical propositional logic the two axiom schergs <> T andO(vg A v1) =

Owvp A Ov;. This is easily seen to be equivalent to the standard calculus of modal logic.

2. The logics of [18] can be understood as presentations of the respective functors.

3. The presentations of the duals of the Kripke polynomial functors of [11] give rise to
the infinitary versions of the logics studied there.

Example 30. In [7], we derived in a uniform way the logic for finitely branching tran-
sition systems on different topological spaces. The idea was to describe the dfial

the finite (= compact) powerspace, similarly to Example 1, by generators and relations.
The completeness proof of the corresponding logics proceeded by, what we call here,
the abstract logic (Section 4) éf But the step from the presentation by generators and
relations to the logic was not worked out, being routine and tedious. This gap can now
be filled by simply appealing to Theorem 27.

6 Conclusion and Further Work

This paper introduced the notion of a functor having a presentation by operations and
equations. It explains how generators and relations give rise to modal operators and
axioms and leads to Theorems 15 and 27 which give automatic adequateness proofs
once a presentation is given. From a mathematical point of view, the work contributes
to the question when a categdkig(L) has a presentation by operations and equations.

Further Work 1. The completeness result relates dual categories BaemdStone

or DL andSpec. How completeness wrt Set-coalgebras can be derived from these results
is investigated in [17].

2. Remark 12 indicated how to compose presentations of functors. A detailed exposi-
tion of this important topic is future work.

3. Proposition 13 showed that the functorsSemn with a finite presentation are precisely
the finitary functors. A generalisation of this result to other monadic categorieS¢han
will be given elsewhere.

4. An important extension will introduce presentations by operations and implications.
These would be necessary to account for some of the functors in, for example, [1].

5. In [8] we apply the notion of a functor having a presentation to the extension of dis-
tributive lattices with operators. We show that presentations over posets (which amounts
to moving from algebras to ordered algebras) are useful to handle monotone operators.

6. Another important extension will be to replaBet with a presheaf categot§et”
(which amounts essentially to moving from one-sorted to many-sorted algebras). This
will allow us to treat logics with quantifiers or logics for name-passing calculi.
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