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Abstract. We present a general framework for logics of transition systems based
on Stone duality. Transition systems are modelled as coalgebras for a fdhctor
on a categoryX’. The propositional logic used to reason about state spaces from
X is modelled by the Stone dual of X (e.g. if X' is Stone spaces theA is
Boolean algebras and the propositional logic is the classical one). In order to
obtain a modal logic for transition systems (i.e. fBrcoalgebras) we consider

the functorL on A that is dual toT'. An adequate modal logic fof-coalgebras

is then obtained from the category bfalgebras which is, by construction, dual

to the category ofl’-coalgebras. The logical meaning of the duality is that the
logic is sound and complete and expressive (or fully abstract) in the sense that
non-bisimilar states are distinguished by some formula.

We apply the framework to Vietoris coalgebras on topological spaces, using the
duality between spaces and observation frames, to obtain adequate logics for tran-
sition systems on posets, sets, spectral spaces and Stone spaces.

Keywords: transition systems, coalgebras, Stone duality, topological dualities, modal
logic

1 Introduction

The framework presented in this paper aims at a general theory of logics for transition
systems built on Stone duality. The relationship between these notions can be displayed
as follows.

systems—— coalgebras

Stone duality
logics——— algebras

The upper row refers to the theory of coalgebras as laid out by Rutten [22] which pro-
poses coalgebras as a general framework allowing to treat a large variety of different
(transition) systems in a uniform way.

The lower row refers to the connection between logics and algebras as familiar
from propositional logic/Boolean algebras or intuitionistic logic/Heyting algebras. The
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modal logics that are the basis for most logics of transition systems have similar alge-
braic counterparts [3].

The connection between the two rows will be provided by Stone duality (John-
stone [13]). Stone duality provides set-theoretic representations of algebras, or, in other
words, provides a state-based semantics for the logics described as algebras. It has been
used, for example, in the ground breaking work @fidson and Tarski [15] and Gold-
blatt [11] in modal logic and Abramsky [1, 2] in domain theory.

Lifting a Stone Duality via Dual Functors In this paper we show that there is a
simple general principle underlying all these works. It can be formalised in a framework
parametric in the basic duality and the type of the transition structure. The key role in
this framework will be provided by a suitable duality between a catego¢g.g. Stone
spaces [13]) and a category of algehrhée.g. Boolean algebras). This duality extends
to a duality between relational structuresite.g. descriptive general frames [11]) and
modal algebras ol whenever there are dual endofunct@ist — X andL: A — A.
rCx a0
The relational semantics is given [y+coalgebras and the algebraic semantics is given
by L-algebras. The respective categor@slg(7) andAlg(L) are dually equivalent
by construction. Informally speakind] encodes the possible next-step transitions a
T-coalgebra may engage in; arddescribes how to construct, up to logical equiva-
lence, modal formulae of depthfrom propositional formulae. We show in Theorem 5
that under fairly general circumstances dual functors on dual categories automatically
give rise to a modal logic and an adequate relational semantics (i.e. the logic is sound,
complete, and expressive).

Instantiating the Framework with a Powerdomain for 7,-spacesWe instantiate the
above framework to show that a number of modal logics arise in a uniform way if we
take X above to be a suitable category of topological spacesZand be a variant

of the powerset functor. In particular, we want to be able to characterise the relational
structure providing an adequate semantics to positive modal logic with infinite joins and
infinite meets. This builds on the work of [6] since such a characterisation will require
a duality betweenf, topological spaces and so-called spatial observation frames. As a
novel result, we present a functérdefining the modal algebras dual to the relational
structures induced b¥'. It is a non-trivial extension of the Vietoris functor on locales

as defined in [14].

By considering suitable subcategories of topological spaces we obtain modal log-
ics with an adequate relational semantics on transition systems over posets, sets, spec-
tral spaces, and Stone spaces. The last two cases give us well known modal logics,
namely the positive and the classical ones, with(L) being positive modal algebras
and Boolean algebras with operators, respectively, Gtk ( T') being theK ™-spaces
of [8] and the descriptive general frames of [11], respectively. This unifies and extends
recent work [21, 17] showing th& "-spaces and descriptive general frames can be
described afoalg(T) for an appropriate functof’. Compared to [21], which uses
Priestley spaces, our descriptionkf -spaces as coalgebras is simpler in that the def-
inition of the Vietoris functor on spectral spaces avoids taking a quotient identifying
indistinguishable subsets.



Related Work The idea of relating constructions on algebras and topological spaces
is extensively discussed in [23] and, for a specific class of topological spaces, in [1].
Our approach is more general since it also treats logics with infinitary conjunctions.
Moreover, the models we are interested in are not only the solutions of recursive do-
main equations (final coalgebras) but any coalgebras. On the other hand, we only deal
here with categories that do not accommodate the function spaces important in domain
theory.

Our algebraic description of the Vietoris construction is a generalisation of that pre-
sented in [13, 14], since it allows for equations involving infinite conjunctions. How-
ever, when these are not necessary, the two constructions coincide. The equations for
spectral spaces of Section 5, for example, are the same as those presented in [14].

Soundness and completeness of an infinitary modal logic for transition systems has
been proved in [7] using a topological duality. Completeness, however, is obtained by
significantly restricting the class of transition systems under consideration. For exam-
ple, they form a subclass of the descriptive general frames. Our result here incorporates
the above as a special case, obtained by considering a specific category of topological
spaces. Furthermore, by applying our framework to the category of posets, we obtain
completeness for a larger class of transition systmisiding the descriptive general
frames. To our knowledge, this is the first such result for a positive infinitary modal
logic.

Overview We proceed as follows. The next section introduces some basic notions on
coalgebras, algebras and their presentation by generators and relations. In Section 3 we
describe the framework for the use of dualities for a coalgebraic semantics of modal
logic. In Section 4, we introduce a duality for topological spaces and set up, in Sec-
tion 5, the necessary ingredients for finally applying in Section 6 the above framework
to obtain sound, complete, and expressive modal logics for transition systems. We con-
clude with a discussion on possible future directions in Section 7.

2 Preliminaries

Although category theory does not play a major role in this paper, we will have to
assume some basic notions. As usiyat, denotes the category of sets and functions.

Algebras and Coalgebras for a FunctorRoughly speaking, coalgebras for a functor
generalise transition systems, whereas algebras for a functor generalise the ordinary al-
gebras for a signature where carriers are not sets but taken from some category. Further,
(co-)algebras for a functor give rise to the principle of (co-)induction [22].

Given a functorT:X — X on a categoryk’, a T-coalgebra(X, £) consists of an
objectX € X and an arronf: X — TX. A coalgebra morphisnfi:(X,¢) — (X', ¢')
is an arrowf: X — X’ suchthat’ o f = Tf o £. Dually, anL-algebraon a categoryd
is given by an arrowv: LA — A, and an algebra morphisfn(A4,a) — (4’,a') is an
arrowf:A — A’ such thatt’ o Lf = f o a. The respective categories are denoted by
Coalg(T) andAlg(L).

If the categoryX’ has a forgetful (i.e. faithful) functod”:X — Set then we can
talk about the elements of a coalgebra. In particular, we have a canonical notion of be-
havioural equivalence (or bisimulation). Explicitly, giveicoalgebrag X , &), (X', &)



and elements € VX, ' € VX', we say thatr andz’ arebehaviourally equivalent
or bisimilar, denotedx ~ 1, if there is a coalgebraY,v) and there are coalgebra
morphismsf:(X, &) — (Y,v) andf’:(X’,&') — (Y, v) such thatVf(z) = Vf'(2).

Example 1. If X is the categorySet of sets and functions an@ = P is the pow-
erset functor (mapping a set to its powerset and a function to the direct image func-
tion), thenCoalg(T) is the category of Kripke frames with bounded morphisms (also
called p-morphisms [11]). Kripke models w.r.t. a given Betp of atomic propositions
are(P(Prop) x P)-coalgebras. Behavioural equivalence yields the standard notion of
bisimulation in both cases.

The Final and Initial SequencesThe intuition thatT describes the possible next-step
transitions can be made precise using the final (coalgebra) sequence. Moreover, in cases
were the final coalgebra does not exist, one can still work with the final sequence. We
just outline the basics, for further information see e.g. [25].

Thefinal sequenceor terminal sequence) éf:X — X
n+1

1
Do p
TO%Tl%"' TnéTn-‘rl(;

is an ordinal indexed sequence of objegtisin X together with a family(p}, ), <» Of
arrowsp:T,, — T,, for all ordinalsm < n such that

— Tny1 = T(T,) andp)st = T(pr) forall m < n,
— pp =idp, andp} = p*opl fork < m < n,
— the cong T,,, (p.))m<~ is limiting whenevem is a limit ordinal.

Here we are assuming that has the necessary limits (in particular, a final obj&g}.
Theinitial sequenceof an endofunctor is defined dually.

Intuitively, T, represents behaviours that can be observedsteps. This can be
formalised by observing that, for every coalgebid ), there are arrows

En: X = T,

where¢,: X — T, is T(&n) o€ if n = m + 1 and¢,, is the unique map satisfying
Em = pi o &, forall m < nif nis alimit ordinal. If V:X — Set is the forgetful
functor we now consideV’ ¢,, as the map assigning to each staits n-step behaviour,
thatis, for(X, &), (X', &) andz € VX, 2’ € VX' definez, 2’ to ben-step equivalent
denoted by ~,, «/, if £, (z) = &, (z').

The final sequence is said to converge if there is an ordinar which p2*! is
iso. Then the inversép”*1)~! is the final T-coalgebra. In this case, two states are
behaviourally equivalent if and only if they are identified by the (unique) morphisms
into the final coalgebra, that is,~,, =’ for all ordinalsn.

Example 2. Let X = Set. If TX is the powerseP X of X, thenn-step equivalence
coincides with the notion of bounded bisimulation as e.g. in [10]. The final coalgebra
does not exist (as an object@alg(T)) since its carrier is not a set but a proper class.



Presenting Algebras by Generators and Relation# categoryA is algebraicwhen

it comes with a monadic functdy: 4 — Set [18]. In this case, the functal has a left
adjoint F':Set — A, mapping every sef to thefree algebraF’s. Furthermore, every
object of A can be presented by generators and relations, that is, for&achd we
can find a sef5 (the elements of which are callggneratorsn this context) and a set
R C FS x FS (the elements of which are calleglationsin this context) such that is
the quotient?’S/ R. Algebraically speaking, objects gf can be identified with algebras
of an (infinitary) algebraic theofy Clearly, everypresentationA(S|R) by generators
S and relationsk defines an algebra id.

Example 3. A frame is a complete latticd. that satisfies the infinite distributive law
aNVC =\{aNnc]|ce C}forall a € Land all subsets C L. Frames with
functions preserving arbitrary joins and finite meets form a category calied The
forgetful functor fromFrm to Set mapping each frame to its underlying set is monadic.
Hence the infinitary algebr&rm (S|R) presented by a set of generatétsaand a set

of relationsR presents a frame and every frame can be presented by generators and
relations. In particular, the free frame over a Setan be presented d@&m (S|0).

A model of a presentatiod (S| R) is a pair(B, f:S — UB) such thatB € A and
f(e)) = ff(e.), where(e;, e,) € R andf:FS — B is the unique extension ¢f
such thatfT(n(s)) = f(s) for eachs € S, with 5 the unit of the adjunction between
F and U. It follows that presentations are canonical:A{S|R) is a presentation of
A € Athen it comes equipped with a functifr] ,:5 — UA such that for every other
model(B, f:S — UB) there exists a unique functigi: A — B with the property that
*([s]4) = f(s) for eachs € S.

Example 4. A complete latticel is acompletely distributive latticécdl) if, for all sets

C of subsets of, itholds thatA{\/ C | C € C} = VV{Af(C) | f € &(C)}, wheref(C)
denotes the s€tf (C) | C € C} and®(C) is the set of all functiong: C — | JC such
thatf (C) € Cforall C € C. Completely distributive lattices with functions preserving
both arbitrary meets and arbitrary joins form a category, denoted'by. Also the
forgetful functor fromCDL to Set mapping each completely distributive lattice to its
underlying set is monadic.

Since every cdl is a frame we have th@DL (S| R) together with the functiofi—] .
is a model ofF' = Frm(S|R). Therefore, the identity function over a sgtcan be
uniquely extended to a frame morphism frdmm (S|R) to CDL(S|R) for each set of
frame relationsR. In other words,CDL(S|R) is the presentation of the free cdl over
the frame presented biyrm (S|R).

% The converse is, in general, false. For example, there is no free complete Boolean algebra over
a set of two generators.



3 The Framework: Dualities for Modal Logic

This section describes a general framework for the use of dualities in modal logic.
Consider the following situation

o
A /‘\
r(C YA E
v

)

Set Set

where© and Pt are a dual equivalence (or duality, for short) between the categories
X and A, i.e. O and Pt are contravariant functors and there are isomorphigms»
PtOX, A — OPtA, forall X € X, A € A. Further,V is a faithful functor from
X to Set, and L and T' aredual functorsin the sense that there is an isomorphism
PtL — T°P Pt. Clearly,Alg(L) andCoalg(T') are dual categories.

We assume thadl is a category of algebras ov&et, that is, categorically speaking,
the functorU: A — Set is monadic. In particular, for any sétrop the free algebra
F(Prop) € A exists. We callUF ( Prop) the set of propositional formulae in variables
(or atomic propositionsProp. Since algebras can be represented by generators and
relations we can find, for each algebtaa set of generator§ A and a surjective algebra
morphismr4:FGA — LA. We assumé to be a functor from4d — Set andr, to be
natural inA4.*

These ingredients allow us to define modal formulae and their algebraic semantics.
Consider the diagram

Ly — FGL) — - FGL, — ---
iqo lth illrwrl
L L Ly — -

where the lower row is the initial sequence (Section 2) of the funictes L+ F(Prop),

that is, L, is the initial objectinA, L, | = L(L},) + F'(Prop). The elements oF GL;,

are the modal formulae of depth+ 1. The horizontal arrows allow us to consider
a formula of depthn as a formula of depthn for any m > n. The vertical arrows

g, assign to each formula of depthits algebraic semantics (which is an equivalence
class of modal formulae) and are given ty composed with the left injection into
L(L,) + F(Prop). By naturality ofr, the above diagram commutes. If the sequence
converges, the colimit adf GL!, is the set of all modal formulas and the colimit of thig

is the Lindenbaum-Tarski algebra of the logic. In many interesting cases, the sequence
will converge (even aftep steps), but since we also want to cover infinitary logics we
can not assume this.

4 For example, we can také&: A — Set to be the functorGA = ]_[BeA ULFUB x
A(FUB, A) andta(f,g) = ULg(f). But often, as in the case studied in this paper, a much
more economical presentation is possible.



In this paper, the objects of will always be (distributive) lattices, that is, although
all objects are equipped with a partial ordethey may lack implication. This means
that we cannot reduce consequende v to theoremhoodt ¢ — 1. We define

oY < q.(0) < g,(¢) for some ordinah, n > depth ofgp, ¢

On the semantic side, in this paper, the object&’ofill be 7)-spaces an@® maps
continuous functions to their inverse image functions. We can now describe the coal-
gebraic semantics for the logic. LétX — TX be a coalgebra and in X. Due to
the duality,L, is dual toT), whereT’ = T x Pt(F(Prop)), thatis, there are isomor-
phismsj,,:L!, — O(T}). Note that al’-coalgebra X, (¢, v)) is a T-coalgebrg X, &)
together with a valuation: X — P¢(F(Prop)). That is, for eachl'-coalgebra X, ¢)
together with a valuation: X — Pt(F(Prop)) there are arrow§s, v),,: X — T, (see
Section 2). The situation is summarised in

FGLy = L —= O(T}) —— OX

We define the semantids of - w.r.t. a coalgebrd¢, v) as follows.¢ Ik .y ¥ if for
some ordinah, n > depth ofg, ),

(& 0)7 Gn(an(9))) S (€ 0)7 (n(gn () 1)

Intuitively, (£, v),,*(j.(gn(¢))) is the set of elements ok that satisfy the formula
¢ under valuationw. As usual,¢ I ¢ meansg¢ I ,y ¥ for all coalgebras; and
valuationsy. We can now prove soundness, completeness, invariance under bisimilarity
and expressiveness.

The theorem can be proved under two different assumptions. This paper employs
the theorem under the first assumption, the second assumption will be useful to treat the
non-compact powerspace.

Theorem 5. In the situation described above assume that either

1. the final7’-coalgebra exists or
2. T" weakly preserves limits ef-chains for all limit ordinalsn.

Then the modal logic is sound and complete w.r.t. its coalgebraic semantics, that is,
¢ -y < ¢ F . Moreover, formulae are invariant under behavioural equivalence and
the logic is expressive in the sense that any non-bisimilar points are separated by some
formula.

Proof. We first sketch the proof undékssumption 2vhich means that all arrows in
the final sequence of’ are surjective (split epi)SoundnessAssume¢ + 1, i.e.
qn(6) < gn (). Since(g, v),* o j, is a morphism and therefore monotone it follows
¢ IF 9. CompletenessAssumes t/ ¢, i.e. ¢,(¢) £ ¢, (¥). Sincej,:L, — O(T))

is an injective morphism, there is € j,(¢)) such thatt ¢ j,(v). It follows from
assumption 2 that each arrge} *1: 7(T!) — T/, in the final sequence has a right-
inverse(. ¢ is a T’-coalgebra for whichy ¢ 1, the (counter)example being In-
variance: It is immediate from the definition that formulae are invariant under



Expressivenesdf (¢, v), (¢, v’) are two coalgebras and z’ are two elements with
(&, v)n(z) #£ (£, v"),(2") then, by surjectivity ofj, (and the spaces beirif), there
must be some such that,, (¢, (¢)) contains one of z, 2’} but not the other. Hencg
separates andz’.

Under Assumption 1the proof is essentially the same. One replagedy the mor-
phism to the initialL’-algebra,¢, v),, by the morphism to the fingl”-coalgebra and
by the final coalgebra itself.

Remark 6. Expressiveness of the logic can also be considered as full abstractness of
the final semantics.

Example 7. We briefly illustrate the notions with a well-known example. l&be the
category of Boolean algebras aitlthe category of Stone spacdsPtd = A(A,2)

is the set of ultrafilters oved. (Similarly, writing 2 » for the two-element Stone space,
we have thal7Q X = X (X,2y) is the set of clopens oX .) If we take GA = A and
74(a) = Oa and LA to be the quotient of GA defined by the equations expressing
thatd preserves meets, thetig(L) is the category of modal algebras (Boolean alge-
bras with operators)zL,, = {O¢ | ¢ € L)} and FGL,, is the closure ofGL!, under
propositional operations (modulo Boolean equations). The furiEtdual to L is the
Vietoris functor andCoalg( T') is the category of descriptive general frames. The conti-
nuity of a valuationv: X — Pt(F(Prop)) = []p,,, 2x means that the extension of a
propositional variable ifProp has to be a clopen set. See [17] for detalils.

4 Topological Duality

In this section we set up the necessary ingredients for applying the above framework.
In particular we will briefly introduce a duality for topological spaces, generalising the
Stone duality considered in the previous example.

Recall that dopological spacés a setX together with a collection of subsets &f,
called opens, closed under arbitrary unions and finite intersections. A function between
two setsX and Y is continuous if its inverse maps opensofto opens ofX'.

Each topological spac& induces alosure operatomapping each subsétof X
to the least (w.r.t. subset inclusion) sub&esuch thatX \ X is open. Each topological
space induces alsoe-orderon X defined byz < y if and only if z € o implies
y € o for each operv of X. A spaceX is said to beZ, when the above pre-order
is a partial order. We denote W¥op, the category of allZ topological spaces with
continuous functions as morphisms.

For the category of algebras we consider the cate@diym of observation frames,
a structure introduced in [6] for representing topological spaces abstracthbgerva-
tion frameis an order-reflecting frame morphismst — L between a framé and a
completely distributive latticé, such that

4= N\ocalF)|q< o}

for every elemeny of L. A morphism between two observation frames’ — L
andjs:G — H is a pair{f, g) consisting of a frame morphisfth¥ — G and a cdl-
morphismg: L — H suchthatyoa = o f.



Example 8. Each topological spac& defines an observation frandeX as the inclu-
sion map between the fram@(X) of all open subsets ok and the cdIQ(X) of all
upclosed subsets of . Furthermore® can be extended to a functor by mapping a
continuous functiorf: X — Y to (f~1:0(Y) — O(X),f~1:Q(Y) — Q(X)).

The functorU:OFrm — Set mapping an observation frameF — L to «(F)
is monadic [5]. Therefore every observation framg’ — L can be presented as
OFrm(S|R) for some sef of generators and sé of relationse; = e,.. Heree; ande,
are expressions formed by applying the infinite meet opeygttar expressions formed
from the generators i by applying the infinite join operatdy and finite meet oper-
ator A. In particular,L is isomorphic inCDL to CDL(S|R), whereasF' is isomorphic
in Frm to Frm(S|R~), whereR~ is the subset o obtained by considering relations
involving only finite meet and infinite join operators. Sinde [—] ;) is a model for the
presentation of’, the frame morphism: F' — L is obtained as the canonical extension
of the identity onS. Similarly, every presentatio@Frm(S|R) presents an observation
frame.

Next we show that the functd?: Top, — OFrm°P has a right adjoint. Le2 be the
two-element cdl withT, as top element and , as bottom one, an? be the identity
morphism or2. For an observation frame F' — L we denote byPt(«) the topological
space given by the séFrm(«, 2) together with a topology with open sets defined, for
everyz € F,by A(z) = {{f,g9):a — 2| f(z) = Ta}.

Theorem 9 ([6]). For every observation frame, the assignment — Pt(«) can be
extended to a functor fro@Frm°? to Topg Which is right adjoint ofO.

For every7, topological spaceX, the unitnx:X — Pt(O(X)) of the above ad-
junction is an isomorphism, whereas for each observation frarfie— L the counit
A(=):F — O(Pt(«)) is injective. We say that is spatial when A is an isomor-
phism. The above adjunction thus restricts to an equivalence betiuggrand the full
subcategonbOFrm of spatial observation frames [6].

5 Two Vietoris Functors

In order to apply the duality framework introduced in Section 3 we define two endofunc-
torsP. andV on Topg and OFrm, respectively, and prove that they are dual functors
using the duality introduced in the previous section.

We call a subset of a topological spac& convexif ¢ = ¢TN ¢, wherecTis the
upclosure ofc w.r.t. the pre-order induced by whereas is its topological closure.

Definition 10. Given a spaceX, define the Vietoris hyperspag&(X) to be the set of
all convex compact subsets &fequipped with the topology generated by the sub-basic
sets

{ceP.(X)|cCo} and {c € P(X) | cNo # 0}

for eacho € O(X).



The restriction to convex subsets in the definition/f X ) guarantees that the
hyperspac®.(X) is 7y if X is a7, space [19]P. extends to an endofunctor dfopo.

Example 11. If X is a set, i.e. a discrete topological space, tfenX) is the set of
all finite subsets ofY taken with the discrete topology. Also, X is anw-algebraic
complete partial order equipped with the Scott topology, therX') coincides with the
Plotkin powerdomain.

For the definition of the endofunctd+ on OFrm it is enough to define a presenta-
tion of V(«) for each observation frame Its set of generators is

Gla)={Oa|aca(F)}U{la|aca(F)}

and the relations are given by the following rule schemes

g Arai <b o O _ O
( */\) m ( *\/) \/]ai*\/l a;

NraANb<c
(O-V) O(aVvb)<OaVob =N

A;Oa; AOb < Oc
(COM) OV, a = VJeFm(I) OV, a,

whereFin(I) is the set of all finite subsets éf Rules(D— A) and { — A\) generalise
corresponding rules for the Vietoris locale [14] basically by imposingtheperator
to distribute over all meets af' which are preserved by as meet ofL.. The scheme
(COM) corresponds to restricting to compact subsets in the definitigh at in [14,

23] and states thab distributes over directed joins.

Theorem 12. For every7, spaceX, PtVOX = P.X.

If v is a spatial observation frame ther® O Pt« and it follows PtVa = P, Pta.
Hence the functor®. andV were dual ifSOFrm was closed undey. This is not the
case in general [14], but we will see below that it is true for many important subcate-
gories of SOFrm to which we then apply the framework of Section 3.

Posets The categoryPoSet of posets with monotone functions can be characterised as
the full subcategory oflop, that has as objects those topological spaces where open
sets are closed under arbitrary intersections (the Alexandroff topology). The category
PoSet is closed under the Vietoris funct@,. The adjunction in Theorem 9 restricts
to a duality between the categoRpSet and AlgCDL, the category of algebraic cdl's.
AlgCDL is equivalent to the full sub-category 6fFrm whose objects are observation
framesa: F — L with o(F) = L and L algebraic [5]. The duality implies that these
observation frames are spatial.

The categorydlgCDL is closed under the Vietoris functdt. To see this one can
first note that because( F) = L the presentation dP« can be simplified by replacing
the scheme&d — A) and($ — A) with the following two:

@O-A) A;Oa=0A;a (O—A) OaAOb<O(and).

That the cdl presented B is algebraic (and hence spatial) follows from the following
lemma, similar to one in [2, 24].



Lemma 13. Let a:F — L be an observation frame and a subset ofx(F). In the
observation fram&a we have 0V a; =V jc iy (OV; ai AN Oas)

Summarising, the categorig2Set and AlgCDL are dual and closed under the two
Vietoris functorsP, andV, respectively. Furthermore, the two functors are also dual,
and the categoryllgCDL is algebraic.

Sets The categorySet of sets and functions is a full subcategorymiSet. It can be
characterised as the full subcategory®fp, with as objects the topological spaces
with open sets closed under arbitrary intersections and complement (the discrete topol-
ogy). We have already seen th#&tt is closed under the Vietoris funct®.. The dual-
ity between the categorieBoSet and AlgCDL restricts to a duality betweefket and
CABool the full sub-category ofllgCDL with objects equivalent to observation frames
a:F — Lwith o(F) = LandL an algebraic boolean algebra. Note that algebraic com-
plete boolean algebras are just complete atomic boolean algebras.

If «:F' — L is an observation frame as above then in the observation ftamié
holds

O—-=-) davO-a=T and (0 —-) aAO-a=1.

for eacha € a(F) with complement-a € «(F). Hence{—a is the complement of
Oa. The presentation df« can thus be simplified by replacing the schertigs- /),
(O—v)and(® — A) with (O— A"), (O— =) and(¢ — —). By applying the framework
described in Section 3 we obtain an infinitary modal logic (with negation) that is sound
and complete w.r.t. its coalgebraic semantics.

Spectral SpacesThe categorySpec of spectral spaces is a subcategorylop, with
as objects topological spaces with compact open sets closed under finite intersections
and forming a base for the topology. MorphismsSigec are continuous functions with
inverse preserving compact opens. As for the other categories ajmeis closed
under the Vietoris functdP,. [13, 23]. The adjunction in Theorem 9 restricts to a duality
between the categor§pec and DLat, the category of distributive lattices, equivalent
to the full sub-category oDFrm whose objects are observation framed” — L
with F' an algebraic arithmetic frame arddthe free completely distributive lattice over
F'. Equivalently, observation frames iLat can be presented by relations using only
finite meet and finite join operators, because they are equivalent to distributive lattices.
It follows that observation frames iRLat are spatial.

The categoryD Lat is closed under the Vietoris functdt, because itv: F — L is
an observation frame i Lat, then the presentation df« can be simplified by using
the following relations:

(O-A) O@@Adb)=0Oan0b @dO-T) OT=T
(O—=V) OaVvbh)=0avob (0—1) 0L=1
(O0-=vVv) Ovd)<OaVvob (0—A) OaAOb<O(and).

Note that these axioms are precisely those which have to be added to distributive lattices
to define positive modal algebras, see e.qg. [8]. It follows #igt)), with V restricted

to DLat, is (isomorphic to) the category of positive modal algebras. From Section 3,

it follows that Coalg(P.), with P. restricted to spectral spaces, provides an adequate



relational semantics for positive modal logic. Compared to [21] this yields an alternative
description ofK T-spaces ([8]) as coalgebras.

Stone SpacesStone spaces are spectral spaces with compact opens closed under com-
plement. LetStone be the full subcategory a$pec with Stone spaces as objects. We

can restrict the duality betweefpec and DLat to a duality betweerstone and Bool,

the full subcategory o) Lat with as object boolean algebras.dfF* — L is an ob-
servation frame equivalent to a boolean algebra then in the observationfiarneth

(0 — =) and (¢ — —) hold. Hence the presentation Bé for DLat can be simplified

by replacing the schemé&] — v) and (¢ — A) with (O — =) and (0 — —). We can
further simplify by reducing the set of generators?¢n) = {a | a € «(F)} and the
relations to

(O—A) O@nab)=0aA0b (O-T) OT=T

Note that these axioms are precisely those which have to be added to Boolean algebras
to define modal algebras (Boolean algebras with operator). It followg\Mpgay), with

V restricted toBool, is (isomorphic to) the category of modal algebras. The category
Coalg(P.), with P. restricted toStone, is isomorphic to the category of descriptive
general frame and has also been described in [17].

6 Modal Logics for Transition Systems

In order to obtain sound, complete, and expressive modal logics, we now apply the
framework of Section 3 to the dualities obtained in the previous section. For all four

dualities
~ PN
P. k, X -~ A 3 %

the final coalgebra of the funct®, exists, so that we can apply Theorem 5. The corre-
sponding propositional logic is obtained in the following way.

For a description ofd via signatureX’ and equation# take the formulae to be the
terms built from the signatur&’ plus the two unary operation symbdlsand . The
calculus is given by the calculus for equational logic plus the equatiopisis the rules
describing the functoy (some of the rules have been given as inequationsp bty
can be considered a shorthand dor ¢ = ).

As it is well-known, such an equational calculus can be translated into a proposi-
tional modal calculus. Since our algebras are lattices we can use inequations instead
of equations. We write - v for ¢ < . That is,¢ 1 corresponds to the equation
¢ N\ = 1) and, conversely, an equatign= 1 to inequations + ¢, ¥ - ¢.

As it is apparent from (1) in Section 3, the semanticspof ¢ is the so-called
local consequence of modal logic. In classical modal logic, local consequence can be
formulated as theorem-hood becadse ¢ is equivalent té- ¢ — 1. Butasine.g. [1,

7, 8], not all our logics have-'. We will detail below the modal calculi arising in the
way just described from the four dualities of the previous section.



Posets and Spectral Spacedhe first is the infinitary version of the second. In both
cases, the modal operators will obey the rule schemes

P o

- @
oF OV 06+ 0p

Posets The signatureX is {\/, A} and these operators are axiomatised according to
the laws of completely distributive lattices (i.e. , negation free infinitary propositional
logic).> The axiom schemes for the modal operators are the following.

/\IDQSH—D/\]DQSZ' <>\/1¢i'_\/1<>¢i
O(gVvy) LoV Oy Ho A Oy = O AY)
D\/I bi - \/JeFin(I)D\/J g

Spectral Space§ he signatureX is {T, L, V, A} and these operators are axiomatised
according to the laws of distributive lattices (i.e. , negation free propositional logic).
The axiom schemes for the modal operators are the following.

O(aAb)FOaAOb  TFOT
QaVObE O(aV D) OLF L
O(aVvd)FOavOob OaAObEO(and).

In the previous section some of the inequalities above are presented as equalities. The
‘missing’ directions follow from the monotonicity rules (2).

Sets and Stone spacebhe first is the infinitary version of the second. Since we have
classical implication, we only need to axiomatise- ¢ which we abbreviate bl ¢.
Since we have negation, we need only one modal operatol,say

Sets The signatureX’ is {\,—} and these operators are axiomatised according to
the laws of completely distributive lattices with negation (i.e. , classical propositional
logic). In order to stay close to the equational axiomatisation it is convenient to choose
as a rule scheme

Fo o

- O « Oy 3

(which is the congruence rule of equational logicfdrand as axiom schemes
FAOg; — ONA ¢ FT—0OT

FOV;¢i < \/JeFm(I) OV, ¢

Stone Space¥he signaturel’ consists of the operators, v, — which are axiomatised
according to the laws of boolean algebra (i.e. classical propositional logic). In order

5 The categoryA of Section 3 isAlgCDL whereas the category described by the signature is
CDL. But sinceV preserves algebraic cdls, the initial sequencéfoemains indigCDL.



to stay close to the standard calculus of modal logic, it is convenient to choose the
following rule and axiom scheme

=
— FO@—v) — (0o — 0O
ey (¢ — ) — (0o ¥)
These schemes correspond to the equations from the previous section because they are
equivalent to the rule 3 together withC(¢ A ¢)) «» O A Oy and- OT < T.

7 Conclusion and Further Work

We have presented a general framework relating modal logics and their relational (i.e.
coalgebraic) semantics. It can be read in two directions: describe a given logic as a
functor L and work out the adequate relational semantics by describing the dual functor
T; or, for a given notion of transitions systems’Bscoalgebras, work out the adequate
logic by describing the dual of' via generators and relations. To apply this idea and
equip the coalgebraic logic of Moss [20] with modal operators (given by the generators)
and a complete axiomatisation is one of many directions for future research.

Another one is to look at other functofsthan the compact hyperspace. An obvious
candidate is the non-compact hyperspace which is expected to give interesting infinitary
logics for the categories of posets and sets (the infinitary counterparts of spectral and
Stone spaces, respectively). Further candidates are the Kripke-polynomial functors of
Jacobs [12].

Furthermore, it would be interesting to determine the range of the framework of
Section 3. Apart from generalising some of the specific assumptions, there is also the
question which logics can be described by categories of algebras that admit a duality,
leading to connections with algebraic logic [9].
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