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Abstract. We present a general framework for logics of transition systems based
on Stone duality. Transition systems are modelled as coalgebras for a functorT
on a categoryX . The propositional logic used to reason about state spaces from
X is modelled by the Stone dualA of X (e.g. if X is Stone spaces thenA is
Boolean algebras and the propositional logic is the classical one). In order to
obtain a modal logic for transition systems (i.e. forT -coalgebras) we consider
the functorL onA that is dual toT . An adequate modal logic forT -coalgebras
is then obtained from the category ofL-algebras which is, by construction, dual
to the category ofT -coalgebras. The logical meaning of the duality is that the
logic is sound and complete and expressive (or fully abstract) in the sense that
non-bisimilar states are distinguished by some formula.
We apply the framework to Vietoris coalgebras on topological spaces, using the
duality between spaces and observation frames, to obtain adequate logics for tran-
sition systems on posets, sets, spectral spaces and Stone spaces.
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1 Introduction

The framework presented in this paper aims at a general theory of logics for transition
systems built on Stone duality. The relationship between these notions can be displayed
as follows.

systems coalgebras

logics algebras

Stone duality

The upper row refers to the theory of coalgebras as laid out by Rutten [22] which pro-
poses coalgebras as a general framework allowing to treat a large variety of different
(transition) systems in a uniform way.

The lower row refers to the connection between logics and algebras as familiar
from propositional logic/Boolean algebras or intuitionistic logic/Heyting algebras. The
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modal logics that are the basis for most logics of transition systems have similar alge-
braic counterparts [3].

The connection between the two rows will be provided by Stone duality (John-
stone [13]). Stone duality provides set-theoretic representations of algebras, or, in other
words, provides a state-based semantics for the logics described as algebras. It has been
used, for example, in the ground breaking work of Jónnson and Tarski [15] and Gold-
blatt [11] in modal logic and Abramsky [1, 2] in domain theory.

Lifting a Stone Duality via Dual Functors In this paper we show that there is a
simple general principle underlying all these works. It can be formalised in a framework
parametric in the basic duality and the type of the transition structure. The key role in
this framework will be provided by a suitable duality between a categoryX (e.g. Stone
spaces [13]) and a category of algebrasA (e.g. Boolean algebras). This duality extends
to a duality between relational structures onX (e.g. descriptive general frames [11]) and
modal algebras onA whenever there are dual endofunctorsT :X → X andL:A → A.
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The relational semantics is given byT -coalgebras and the algebraic semantics is given
by L-algebras. The respective categoriesCoalg(T ) andAlg(L) are dually equivalent
by construction. Informally speaking,T encodes the possible next-step transitions a
T -coalgebra may engage in; andL describes how to construct, up to logical equiva-
lence, modal formulae of depth1 from propositional formulae. We show in Theorem 5
that under fairly general circumstances dual functors on dual categories automatically
give rise to a modal logic and an adequate relational semantics (i.e. the logic is sound,
complete, and expressive).

Instantiating the Framework with a Powerdomain for T0-spacesWe instantiate the
above framework to show that a number of modal logics arise in a uniform way if we
takeX above to be a suitable category of topological spaces andT to be a variant
of the powerset functor. In particular, we want to be able to characterise the relational
structure providing an adequate semantics to positive modal logic with infinite joins and
infinite meets. This builds on the work of [6] since such a characterisation will require
a duality betweenT0 topological spaces and so-called spatial observation frames. As a
novel result, we present a functorL defining the modal algebras dual to the relational
structures induced byT . It is a non-trivial extension of the Vietoris functor on locales
as defined in [14].

By considering suitable subcategories of topological spaces we obtain modal log-
ics with an adequate relational semantics on transition systems over posets, sets, spec-
tral spaces, and Stone spaces. The last two cases give us well known modal logics,
namely the positive and the classical ones, withAlg(L) being positive modal algebras
and Boolean algebras with operators, respectively, andCoalg(T ) being theK+-spaces
of [8] and the descriptive general frames of [11], respectively. This unifies and extends
recent work [21, 17] showing thatK+-spaces and descriptive general frames can be
described asCoalg(T ) for an appropriate functorT . Compared to [21], which uses
Priestley spaces, our description ofK+-spaces as coalgebras is simpler in that the def-
inition of the Vietoris functor on spectral spaces avoids taking a quotient identifying
indistinguishable subsets.



Related Work The idea of relating constructions on algebras and topological spaces
is extensively discussed in [23] and, for a specific class of topological spaces, in [1].
Our approach is more general since it also treats logics with infinitary conjunctions.
Moreover, the models we are interested in are not only the solutions of recursive do-
main equations (final coalgebras) but any coalgebras. On the other hand, we only deal
here with categories that do not accommodate the function spaces important in domain
theory.

Our algebraic description of the Vietoris construction is a generalisation of that pre-
sented in [13, 14], since it allows for equations involving infinite conjunctions. How-
ever, when these are not necessary, the two constructions coincide. The equations for
spectral spaces of Section 5, for example, are the same as those presented in [14].

Soundness and completeness of an infinitary modal logic for transition systems has
been proved in [7] using a topological duality. Completeness, however, is obtained by
significantly restricting the class of transition systems under consideration. For exam-
ple, they form a subclass of the descriptive general frames. Our result here incorporates
the above as a special case, obtained by considering a specific category of topological
spaces. Furthermore, by applying our framework to the category of posets, we obtain
completeness for a larger class of transition systemsincluding the descriptive general
frames. To our knowledge, this is the first such result for a positive infinitary modal
logic.

Overview We proceed as follows. The next section introduces some basic notions on
coalgebras, algebras and their presentation by generators and relations. In Section 3 we
describe the framework for the use of dualities for a coalgebraic semantics of modal
logic. In Section 4, we introduce a duality for topological spaces and set up, in Sec-
tion 5, the necessary ingredients for finally applying in Section 6 the above framework
to obtain sound, complete, and expressive modal logics for transition systems. We con-
clude with a discussion on possible future directions in Section 7.

2 Preliminaries

Although category theory does not play a major role in this paper, we will have to
assume some basic notions. As usual,Set denotes the category of sets and functions.

Algebras and Coalgebras for a FunctorRoughly speaking, coalgebras for a functor
generalise transition systems, whereas algebras for a functor generalise the ordinary al-
gebras for a signature where carriers are not sets but taken from some category. Further,
(co-)algebras for a functor give rise to the principle of (co-)induction [22].

Given a functorT :X → X on a categoryX , aT -coalgebra(X , ξ) consists of an
objectX ∈ X and an arrowξ:X → TX . A coalgebra morphismf :(X , ξ) → (X ′, ξ′)
is an arrowf :X → X ′ such thatξ′ ◦ f = Tf ◦ ξ. Dually, anL-algebraon a categoryA
is given by an arrowα:LA → A, and an algebra morphismf :(A, α) → (A′, α′) is an
arrow f :A → A′ such thatα′ ◦ Lf = f ◦ α. The respective categories are denoted by
Coalg(T ) andAlg(L).

If the categoryX has a forgetful (i.e. faithful) functorV :X → Set then we can
talk about the elements of a coalgebra. In particular, we have a canonical notion of be-
havioural equivalence (or bisimulation). Explicitly, givenT -coalgebras(X , ξ), (X ′, ξ′)



and elementsx ∈ VX , x ′ ∈ VX ′, we say thatx andx ′ arebehaviourally equivalent
or bisimilar, denotedx ' x ′, if there is a coalgebra(Y , ν) and there are coalgebra
morphismsf :(X , ξ) → (Y , ν) andf ′:(X ′, ξ′) → (Y , ν) such thatVf (x ) = Vf ′(x ′).

Example 1. If X is the categorySet of sets and functions andT = P is the pow-
erset functor (mapping a set to its powerset and a function to the direct image func-
tion), thenCoalg(T ) is the category of Kripke frames with bounded morphisms (also
called p-morphisms [11]). Kripke models w.r.t. a given setProp of atomic propositions
are(P(Prop) × P)-coalgebras. Behavioural equivalence yields the standard notion of
bisimulation in both cases.

The Final and Initial SequencesThe intuition thatT describes the possible next-step
transitions can be made precise using the final (coalgebra) sequence. Moreover, in cases
were the final coalgebra does not exist, one can still work with the final sequence. We
just outline the basics, for further information see e.g. [25].

Thefinal sequence(or terminal sequence) ofT :X → X

T0 T1

p1
0oo . . .oo Tn Tn+1

pn+1
noo . . .oo

is an ordinal indexed sequence of objectsTn in X together with a family(pn
m)m≤n of

arrowspn
m :Tn → Tm for all ordinalsm ≤ n such that

– Tn+1 = T (Tn) andpn+1
m+1 = T (pn

m) for all m ≤ n,
– pn

n = idTn
andpn

k = pm
k ◦ pn

m for k ≤ m ≤ n,
– the cone(Tn , (pn

m))m<n is limiting whenevern is a limit ordinal.

Here we are assuming thatX has the necessary limits (in particular, a final objectT0).
The initial sequenceof an endofunctor is defined dually.

Intuitively, Tn represents behaviours that can be observed inn steps. This can be
formalised by observing that, for every coalgebra(X , ξ), there are arrows

ξn :X → Tn

whereξn :X → Tn is T (ξm) ◦ ξ if n = m + 1 andξn is the unique map satisfying
ξm = pn

m ◦ ξn for all m < n if n is a limit ordinal. If V :X → Set is the forgetful
functor we now considerV ξn as the map assigning to each statex its n-step behaviour,
that is, for(X , ξ), (X ′, ξ′) andx ∈ VX , x ′ ∈ VX ′ definex , x ′ to ben-step equivalent,
denoted byx 'n x ′, if ξn(x ) = ξ′n(x ′).

The final sequence is said to converge if there is an ordinaln for which pn+1
n is

iso. Then the inverse(pn+1
n )−1 is the finalT -coalgebra. In this case, two states are

behaviourally equivalent if and only if they are identified by the (unique) morphisms
into the final coalgebra, that is,x 'n x ′ for all ordinalsn.

Example 2. Let X = Set . If TX is the powersetPX of X , thenn-step equivalence
coincides with the notion of bounded bisimulation as e.g. in [10]. The final coalgebra
does not exist (as an object inCoalg(T )) since its carrier is not a set but a proper class.



Presenting Algebras by Generators and RelationsA categoryA is algebraicwhen
it comes with a monadic functorU :A → Set [18]. In this case, the functorU has a left
adjointF :Set → A, mapping every setS to thefree algebraFS . Furthermore, every
object ofA can be presented by generators and relations, that is, for eachA ∈ A we
can find a setS (the elements of which are calledgeneratorsin this context) and a set
R ⊆ FS ×FS (the elements of which are calledrelationsin this context) such thatA is
the quotientFS/R. Algebraically speaking, objects ofA can be identified with algebras
of an (infinitary) algebraic theory3. Clearly, everypresentationA〈S |R〉 by generators
S and relationsR defines an algebra inA.

Example 3. A frame is a complete latticeL that satisfies the infinite distributive law
a ∧

∨
C =

∨
{a ∧ c | c ∈ C} for all a ∈ L and all subsetsC ⊆ L. Frames with

functions preserving arbitrary joins and finite meets form a category calledFrm. The
forgetful functor fromFrm to Set mapping each frame to its underlying set is monadic.
Hence the infinitary algebraFrm〈S |R〉 presented by a set of generatorsS and a set
of relationsR presents a frame and every frame can be presented by generators and
relations. In particular, the free frame over a setS can be presented asFrm〈S |∅〉.

A model of a presentationA〈S |R〉 is a pair〈B , f :S → UB〉 such thatB ∈ A and
f †(el) = f †(er ), where(el , er ) ∈ R and f †:FS → B is the unique extension off
such thatf †(η(s)) = f (s) for eachs ∈ S , with η the unit of the adjunction between
F andU . It follows that presentations are canonical: ifA〈S |R〉 is a presentation of
A ∈ A then it comes equipped with a function[[−]]A:S → UA such that for every other
model〈B , f :S → UB〉 there exists a unique functionf ‡:A → B with the property that
f ‡([[s]]A) = f (s) for eachs ∈ S .

Example 4. A complete latticeL is acompletely distributive lattice(cdl) if, for all sets
C of subsets ofL, it holds that

∧
{
∨

C | C ∈ C} =
∨
{
∧

f (C) | f ∈ Φ(C)},wheref (C)
denotes the set{f (C ) | C ∈ C} andΦ(C) is the set of all functionsf : C →

⋃
C such

thatf (C ) ∈ C for all C ∈ C. Completely distributive lattices with functions preserving
both arbitrary meets and arbitrary joins form a category, denoted byCDL. Also the
forgetful functor fromCDL to Set mapping each completely distributive lattice to its
underlying set is monadic.

Since every cdl is a frame we have thatCDL〈S |R〉 together with the function[[−]]F
is a model ofF = Frm〈S |R〉. Therefore, the identity function over a setS can be
uniquely extended to a frame morphism fromFrm〈S |R〉 to CDL〈S |R〉 for each set of
frame relationsR. In other words,CDL〈S |R〉 is the presentation of the free cdl over
the frame presented byFrm〈S |R〉.

3 The converse is, in general, false. For example, there is no free complete Boolean algebra over
a set of two generators.



3 The Framework: Dualities for Modal Logic

This section describes a general framework for the use of dualities in modal logic.
Consider the following situation
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whereO andPt are a dual equivalence (or duality, for short) between the categories
X andA, i.e.O andPt are contravariant functors and there are isomorphismsX →
PtOX , A → OPtA, for all X ∈ X ,A ∈ A. Further,V is a faithful functor from
X to Set , andL andT aredual functors in the sense that there is an isomorphism
PtL → T opPt . Clearly,Alg(L) andCoalg(T ) are dual categories.

We assume thatA is a category of algebras overSet , that is, categorically speaking,
the functorU :A → Set is monadic. In particular, for any setProp the free algebra
F (Prop) ∈ A exists. We callUF (Prop) the set of propositional formulae in variables
(or atomic propositions)Prop. Since algebras can be represented by generators and
relations we can find, for each algebraA, a set of generatorsGA and a surjective algebra
morphismτA:FGA → LA. We assumeG to be a functor fromA → Set andτA to be
natural inA.4

These ingredients allow us to define modal formulae and their algebraic semantics.
Consider the diagram

L′0 //

q0

��

FGL′0

q1

��

// . . . FGL′n

qn+1

��

// . . .

L′0 // L′1 // . . . L′n+1
// . . .

where the lower row is the initial sequence (Section 2) of the functorL′ = L+F (Prop),
that is,L′0 is the initial object inA, L′n+1 = L(L′n)+F (Prop). The elements ofFGL′n
are the modal formulae of depthn + 1. The horizontal arrows allow us to consider
a formula of depthn as a formula of depthm for any m ≥ n. The vertical arrows
qn assign to each formula of depthn its algebraic semantics (which is an equivalence
class of modal formulae) and are given byτL′n composed with the left injection into
L(L′n) + F (Prop). By naturality ofτ , the above diagram commutes. If the sequence
converges, the colimit ofFGL′n is the set of all modal formulas and the colimit of theL′n
is the Lindenbaum-Tarski algebra of the logic. In many interesting cases, the sequence
will converge (even afterω steps), but since we also want to cover infinitary logics we
can not assume this.

4 For example, we can takeG:A → Set to be the functorGA =
∐

B∈AULFUB ×
A(FUB ,A) andτA(f , g) = ULg(f ). But often, as in the case studied in this paper, a much
more economical presentation is possible.



In this paper, the objects ofA will always be (distributive) lattices, that is, although
all objects are equipped with a partial order≤ they may lack implication. This means
that we cannot reduce consequenceφ ` ψ to theoremhood̀ φ→ ψ. We define

φ ` ψ ⇔ qn(φ) ≤ qn(ψ) for some ordinaln, n ≥ depth ofφ, ψ

On the semantic side, in this paper, the objects ofX will be T0-spaces andO maps
continuous functions to their inverse image functions. We can now describe the coal-
gebraic semantics for the logic. Letξ:X → TX be a coalgebra andx in X . Due to
the duality,L′n is dual toT ′

n whereT ′ = T × Pt(F (Prop)), that is, there are isomor-
phismsjn :L′n → O(T ′

n). Note that aT ′-coalgebra(X , 〈ξ, v〉) is aT -coalgebra(X , ξ)
together with a valuationv :X → Pt(F (Prop)). That is, for eachT -coalgebra(X , ξ)
together with a valuationv :X → Pt(F (Prop)) there are arrows〈ξ, v〉n :X → T ′

n (see
Section 2). The situation is summarised in

FGL′n−1 qn

// L′n jn
// O(T ′

n)
〈ξ,v〉−1

n

// OX

We define the semantics of ` w.r.t. a coalgebra〈ξ, v〉 as follows.φ 〈ξ,v〉 ψ if for
some ordinaln, n ≥ depth ofφ, ψ,

〈ξ, v〉−1
n (jn(qn(φ))) ⊆ 〈ξ, v〉−1

n (jn(qn(ψ))) (1)

Intuitively, 〈ξ, v〉−1
n (jn(qn(φ))) is the set of elements ofX that satisfy the formula

φ under valuationv . As usual,φ  ψ meansφ 〈ξ,v〉 ψ for all coalgebrasξ and
valuationsv . We can now prove soundness, completeness, invariance under bisimilarity
and expressiveness.

The theorem can be proved under two different assumptions. This paper employs
the theorem under the first assumption, the second assumption will be useful to treat the
non-compact powerspace.

Theorem 5. In the situation described above assume that either

1. the finalT ′-coalgebra exists or
2. T ′ weakly preserves limits ofn-chains for all limit ordinalsn.

Then the modal logic is sound and complete w.r.t. its coalgebraic semantics, that is,
φ  ψ ⇔ φ ` ψ. Moreover, formulae are invariant under behavioural equivalence and
the logic is expressive in the sense that any non-bisimilar points are separated by some
formula.

Proof. We first sketch the proof underAssumption 2which means that all arrows in
the final sequence ofT ′ are surjective (split epi).Soundness:Assumeφ ` ψ, i.e.
qn(φ) ≤ qn(ψ). Since〈ξ, v〉−1

n ◦ jn is a morphism and therefore monotone it follows
φ  ψ. Completeness:Assumeφ 6` ψ, i.e. qn(φ) 6≤ qn(ψ). Sincejn :L′n → O(T ′

n)
is an injective morphism, there ist ∈ jn(φ)) such thatt /∈ jn(ψ). It follows from
assumption 2 that each arrowpn+1

n :T ′(T ′
n) → T ′

n in the final sequence has a right-
inverseζ. ζ is a T ′-coalgebra for whichφ 6ζ ψ, the (counter)example beingt . In-
variance: It is immediate from the definition that formulae are invariant under'n .



Expressiveness:If 〈ξ, v〉, 〈ξ′, v ′〉 are two coalgebras andx , x ′ are two elements with
〈ξ, v〉n(x ) 6= 〈ξ′, v ′〉n(x ′) then, by surjectivity ofjn (and the spaces beingT0), there
must be someφ such thatjn(qn(φ)) contains one of{x , x ′} but not the other. Henceφ
separatesx andx ′.
UnderAssumption 1, the proof is essentially the same. One replacesqn by the mor-
phism to the initialL′-algebra,〈ξ, v〉n by the morphism to the finalT ′-coalgebra andζ
by the final coalgebra itself.

Remark 6. Expressiveness of the logic can also be considered as full abstractness of
the final semantics.

Example 7. We briefly illustrate the notions with a well-known example. LetA be the
category of Boolean algebras andX the category of Stone spaces.VPtA = A(A,2)
is the set of ultrafilters overA. (Similarly, writing2X for the two-element Stone space,
we have thatUOX = X (X , 2X ) is the set of clopens ofX .) If we takeGA = A and
τA(a) = �a andLA to be the quotient ofFGA defined by the equations expressing
that� preserves meets, thenAlg(L) is the category of modal algebras (Boolean alge-
bras with operators).GL′n = {�φ | φ ∈ L′n} andFGL′n is the closure ofGL′n under
propositional operations (modulo Boolean equations). The functorT dual toL is the
Vietoris functor andCoalg(T ) is the category of descriptive general frames. The conti-
nuity of a valuationv :X → Pt(F (Prop)) ∼=

∏
Prop 2X means that the extension of a

propositional variable inProp has to be a clopen set. See [17] for details.

4 Topological Duality

In this section we set up the necessary ingredients for applying the above framework.
In particular we will briefly introduce a duality for topological spaces, generalising the
Stone duality considered in the previous example.

Recall that atopological spaceis a setX together with a collection of subsets ofX ,
called opens, closed under arbitrary unions and finite intersections. A function between
two setsX andY is continuous if its inverse maps opens ofY to opens ofX .

Each topological spaceX induces aclosure operatormapping each subsetS of X
to the least (w.r.t. subset inclusion) subsetX such thatX \X is open. Each topological
space induces also apre-orderon X defined byx ≤ y if and only if x ∈ o implies
y ∈ o for each openo of X . A spaceX is said to beT0 when the above pre-order
is a partial order. We denote byTop0 the category of allT0 topological spaces with
continuous functions as morphisms.

For the category of algebras we consider the categoryOFrm of observation frames,
a structure introduced in [6] for representing topological spaces abstractly. Anobserva-
tion frame is an order-reflecting frame morphismsα:F → L between a frameF and a
completely distributive latticeL such that

q =
∧
{o ∈ α(F ) | q ≤ o}

for every elementq of L. A morphism between two observation framesα:F → L
andβ:G → H is a pair〈f , g〉 consisting of a frame morphismf :F → G and a cdl-
morphismg :L → H such thatg ◦ α = β ◦ f .



Example 8. Each topological spaceX defines an observation frameOX as the inclu-
sion map between the frameO(X ) of all open subsets ofX and the cdlQ(X ) of all
upclosed subsets ofX . Furthermore,O can be extended to a functor by mapping a
continuous functionf :X → Y to 〈f −1:O(Y ) → O(X ), f −1:Q(Y ) → Q(X )〉.

The functorU :OFrm → Set mapping an observation frameα:F → L to α(F )
is monadic [5]. Therefore every observation frameα:F → L can be presented as
OFrm〈S |R〉 for some setS of generators and setR of relationsel = er . Hereel ander
are expressions formed by applying the infinite meet operator

∧
to expressions formed

from the generators inS by applying the infinite join operator
∨

and finite meet oper-
ator∧. In particular,L is isomorphic inCDL to CDL〈S |R〉, whereasF is isomorphic
in Frm to Frm〈S |R−〉, whereR− is the subset ofR obtained by considering relations
involving only finite meet and infinite join operators. Since〈L, [[−]]L〉 is a model for the
presentation ofF , the frame morphismα:F → L is obtained as the canonical extension
of the identity onS . Similarly, every presentationOFrm〈S |R〉 presents an observation
frame.

Next we show that the functorO:Top0 → OFrmop has a right adjoint. Let2 be the
two-element cdl with>2 as top element and⊥2 as bottom one, and2 be the identity
morphism on2. For an observation frameα:F → L we denote byPt(α) the topological
space given by the setOFrm(α,2) together with a topology with open sets defined, for
everyx ∈ F , by4(x ) = {〈f , g〉:α→ 2 | f (x ) = >2}.

Theorem 9 ([6]). For every observation frameα, the assignmentα 7→ Pt(α) can be
extended to a functor fromOFrmop to Top0 which is right adjoint ofO.

For everyT0 topological spaceX , the unitηX :X → Pt(O(X )) of the above ad-
junction is an isomorphism, whereas for each observation frameα:F → L the counit
4(−):F → O(Pt(α)) is injective. We say thatα is spatial when4 is an isomor-
phism. The above adjunction thus restricts to an equivalence betweenTop0 and the full
subcategorySOFrm of spatial observation frames [6].

5 Two Vietoris Functors

In order to apply the duality framework introduced in Section 3 we define two endofunc-
torsPc andV on Top0 andOFrm, respectively, and prove that they are dual functors
using the duality introduced in the previous section.

We call a subsetc of a topological spaceX convexif c = c↑∩ c, wherec↑ is the
upclosure ofc w.r.t. the pre-order induced byX whereasc is its topological closure.

Definition 10. Given a spaceX , define the Vietoris hyperspacePc(X ) to be the set of
all convex compact subsets ofX equipped with the topology generated by the sub-basic
sets

{c ∈ Pc(X ) | c ⊆ o} and {c ∈ Pc(X ) | c ∩ o 6= ∅}

for eacho ∈ O(X ).



The restriction to convex subsets in the definition ofPc(X ) guarantees that the
hyperspacePc(X ) is T0 if X is aT0 space [19].Pc extends to an endofunctor onTop0.

Example 11. If X is a set, i.e. a discrete topological space, thenPc(X ) is the set of
all finite subsets ofX taken with the discrete topology. Also, ifX is anω-algebraic
complete partial order equipped with the Scott topology, thenPc(X ) coincides with the
Plotkin powerdomain.

For the definition of the endofunctorV onOFrm it is enough to define a presenta-
tion of V(α) for each observation frameα. Its set of generators is

G(α) = {�a | a ∈ α(F )} ∪ {♦a | a ∈ α(F )}

and the relations are given by the following rule schemes

(�−
∧

)

∧
I ai ≤ b∧

I �ai ≤ �b
(♦−

∨
) ♦

∨
I ai =

∨
I ♦ai

(�− ∨) �(a ∨ b) ≤ �a ∨ ♦b (♦−
∧

)

∧
I ai ∧ b ≤ c∧

I �ai ∧ ♦b ≤ ♦c
(COM ) �

∨
I ai =

∨
J∈Fin(I ) �

∨
J ai ,

whereFin(I ) is the set of all finite subsets ofI . Rules(�−
∧

) and (♦−
∧

) generalise
corresponding rules for the Vietoris locale [14] basically by imposing the� operator
to distribute over all meets ofF which are preserved byα as meet ofL. The scheme
(COM ) corresponds to restricting to compact subsets in the definition ofPc as in [14,
23] and states that� distributes over directed joins.

Theorem 12. For everyT0 spaceX , PtVOX ∼= PcX .

If α is a spatial observation frame thenα ∼= OPtα and it followsPtVα ∼= PcPtα.
Hence the functorsPc andV were dual ifSOFrm was closed underV. This is not the
case in general [14], but we will see below that it is true for many important subcate-
gories ofSOFrm to which we then apply the framework of Section 3.

PosetsThe categoryPoSet of posets with monotone functions can be characterised as
the full subcategory ofTop0 that has as objects those topological spaces where open
sets are closed under arbitrary intersections (the Alexandroff topology). The category
PoSet is closed under the Vietoris functorPc . The adjunction in Theorem 9 restricts
to a duality between the categoryPoSet andAlgCDL, the category of algebraic cdl’s.
AlgCDL is equivalent to the full sub-category ofOFrm whose objects are observation
framesα:F → L with α(F ) = L andL algebraic [5]. The duality implies that these
observation frames are spatial.

The categoryAlgCDL is closed under the Vietoris functorV. To see this one can
first note that becauseα(F ) = L the presentation ofVα can be simplified by replacing
the schemes(�−

∧
) and(♦−

∧
) with the following two:

(�−
∧′)

∧
I �ai = �

∧
I ai (♦− ∧) �a ∧ ♦b ≤ ♦(a ∧ b) .

That the cdl presented byVα is algebraic (and hence spatial) follows from the following
lemma, similar to one in [2, 24].



Lemma 13. Let α:F → L be an observation frame andX a subset ofα(F ). In the
observation frameVα we have �

∨
I ai =

∨
J∈Fin(I )(�

∨
J ai ∧

∧
J ♦ai) .

Summarising, the categoriesPoSet andAlgCDL are dual and closed under the two
Vietoris functorsPc andV, respectively. Furthermore, the two functors are also dual,
and the categoryAlgCDL is algebraic.

Sets The categorySet of sets and functions is a full subcategory ofPoSet . It can be
characterised as the full subcategory ofTop0 with as objects the topological spaces
with open sets closed under arbitrary intersections and complement (the discrete topol-
ogy). We have already seen thatSet is closed under the Vietoris functorPc . The dual-
ity between the categoriesPoSet andAlgCDL restricts to a duality betweenSet and
CABool the full sub-category ofAlgCDL with objects equivalent to observation frames
α:F → L with α(F ) = L andL an algebraic boolean algebra. Note that algebraic com-
plete boolean algebras are just complete atomic boolean algebras.

If α:F → L is an observation frame as above then in the observation frameVα it
holds

(�− ¬) �a ∨ ♦¬a = > and (♦− ¬) �a ∧ ♦¬a = ⊥ .

for eacha ∈ α(F ) with complement¬a ∈ α(F ). Hence♦¬a is the complement of
�a. The presentation ofVα can thus be simplified by replacing the schemes(�−

∧
),

(�−∨) and(♦−
∧

) with (�−
∧′), (�−¬) and(♦−¬). By applying the framework

described in Section 3 we obtain an infinitary modal logic (with negation) that is sound
and complete w.r.t. its coalgebraic semantics.

Spectral SpacesThe categorySpec of spectral spaces is a subcategory ofTop0 with
as objects topological spaces with compact open sets closed under finite intersections
and forming a base for the topology. Morphisms inSpec are continuous functions with
inverse preserving compact opens. As for the other categories above,Spec is closed
under the Vietoris functorPc [13, 23]. The adjunction in Theorem 9 restricts to a duality
between the categorySpec andDLat , the category of distributive lattices, equivalent
to the full sub-category ofOFrm whose objects are observation framesα:F → L
with F an algebraic arithmetic frame andL the free completely distributive lattice over
F . Equivalently, observation frames inDLat can be presented by relations using only
finite meet and finite join operators, because they are equivalent to distributive lattices.
It follows that observation frames inDLat are spatial.

The categoryDLat is closed under the Vietoris functorV, because ifα:F → L is
an observation frame inDLat , then the presentation ofVα can be simplified by using
the following relations:

(�− ∧) �(a ∧ b) = �a ∧�b (�−>) �> = >
(♦− ∨) ♦(a ∨ b) = ♦a ∨ ♦b (♦−⊥) ♦⊥ = ⊥
(�− ∨) �(a ∨ b) ≤ �a ∨ ♦b (♦− ∧) �a ∧ ♦b ≤ ♦(a ∧ b) .

Note that these axioms are precisely those which have to be added to distributive lattices
to define positive modal algebras, see e.g. [8]. It follows thatAlg(V), with V restricted
to DLat , is (isomorphic to) the category of positive modal algebras. From Section 3,
it follows that Coalg(Pc), with Pc restricted to spectral spaces, provides an adequate



relational semantics for positive modal logic. Compared to [21] this yields an alternative
description ofK+-spaces ([8]) as coalgebras.

Stone SpacesStone spaces are spectral spaces with compact opens closed under com-
plement. LetStone be the full subcategory ofSpec with Stone spaces as objects. We
can restrict the duality betweenSpec andDLat to a duality betweenStone andBool ,
the full subcategory ofDLat with as object boolean algebras. Ifα:F → L is an ob-
servation frame equivalent to a boolean algebra then in the observation frameVα both
(� − ¬) and(♦ − ¬) hold. Hence the presentation ofVα for DLat can be simplified
by replacing the schemes(� − ∨) and(♦ − ∧) with (� − ¬) and(♦ − ¬). We can
further simplify by reducing the set of generators toG(α) = {�a | a ∈ α(F )} and the
relations to

(�− ∧) �(a ∧ b) = �a ∧�b (�−>) �> = >

Note that these axioms are precisely those which have to be added to Boolean algebras
to define modal algebras (Boolean algebras with operator). It follows thatAlg(V), with
V restricted toBool , is (isomorphic to) the category of modal algebras. The category
Coalg(Pc), with Pc restricted toStone, is isomorphic to the category of descriptive
general frame and has also been described in [17].

6 Modal Logics for Transition Systems

In order to obtain sound, complete, and expressive modal logics, we now apply the
framework of Section 3 to the dualities obtained in the previous section. For all four
dualities

XPc

(( ))
Ajj V

vv

the final coalgebra of the functorPc exists, so that we can apply Theorem 5. The corre-
sponding propositional logic is obtained in the following way.

For a description ofA via signatureΣ and equationsE take the formulae to be the
terms built from the signatureΣ plus the two unary operation symbols� and♦. The
calculus is given by the calculus for equational logic plus the equationsE plus the rules
describing the functorV (some of the rules have been given as inequations, butφ ≤ ψ
can be considered a shorthand forφ ∧ ψ = ψ).

As it is well-known, such an equational calculus can be translated into a proposi-
tional modal calculus. Since our algebras are lattices we can use inequations instead
of equations. We writeφ ` ψ for φ ≤ ψ. That is,φ ` ψ corresponds to the equation
φ ∧ ψ = ψ and, conversely, an equationφ = ψ to inequationsφ ` ψ, ψ ` φ.

As it is apparent from (1) in Section 3, the semantics ofφ ` ψ is the so-called
local consequence of modal logic. In classical modal logic, local consequence can be
formulated as theorem-hood becauseφ ` ψ is equivalent tò φ→ ψ. But as in e.g. [1,
7, 8], not all our logics have ‘→’. We will detail below the modal calculi arising in the
way just described from the four dualities of the previous section.



Posets and Spectral SpacesThe first is the infinitary version of the second. In both
cases, the modal operators will obey the rule schemes

φ ` ψ
�φ ` �ψ

φ ` ψ
♦φ ` ♦ψ

(2)

Posets The signatureΣ is {
∨
,
∧
} and these operators are axiomatised according to

the laws of completely distributive lattices (i.e. , negation free infinitary propositional
logic).5 The axiom schemes for the modal operators are the following.∧

I �φi ` �
∧

I �φi ♦
∨

I φi `
∨

I ♦φi

�(φ ∨ ψ) ` �φ ∨ ♦ψ �φ ∧ ♦ψ ` ♦(φ ∧ ψ)
�

∨
I φi `

∨
J∈Fin(I ) �

∨
J φi

Spectral SpacesThe signatureΣ is {>,⊥,∨,∧} and these operators are axiomatised
according to the laws of distributive lattices (i.e. , negation free propositional logic).
The axiom schemes for the modal operators are the following.

�(a ∧ b) ` �a ∧�b > ` �>
♦a ∨ ♦b ` ♦(a ∨ b) ♦⊥ ` ⊥
�(a ∨ b) ` �a ∨ ♦b �a ∧ ♦b ` ♦(a ∧ b) .

In the previous section some of the inequalities above are presented as equalities. The
‘missing’ directions follow from the monotonicity rules (2).

Sets and Stone spacesThe first is the infinitary version of the second. Since we have
classical implication, we only need to axiomatise> ` φ which we abbreviate bỳ φ.
Since we have negation, we need only one modal operator, say�.

Sets The signatureΣ is {
∧
,¬} and these operators are axiomatised according to

the laws of completely distributive lattices with negation (i.e. , classical propositional
logic). In order to stay close to the equational axiomatisation it is convenient to choose
as a rule scheme

` φ↔ ψ

` �φ↔ �ψ
(3)

(which is the congruence rule of equational logic for�) and as axiom schemes

`
∧

�φi ↔ �
∧
φi ` > ↔ �>

` �
∨

I φi ↔
∨

J∈Fin(I ) �
∨

J φi

Stone SpacesThe signatureΣ consists of the operators>,∨,¬ which are axiomatised
according to the laws of boolean algebra (i.e. classical propositional logic). In order

5 The categoryA of Section 3 isAlgCDL whereas the category described by the signature is
CDL. But sinceV preserves algebraic cdls, the initial sequence forV remains inAlgCDL.



to stay close to the standard calculus of modal logic, it is convenient to choose the
following rule and axiom scheme

` φ
` �φ

` �(φ→ ψ) → (�φ→ �ψ)

These schemes correspond to the equations from the previous section because they are
equivalent to the rule 3 together with̀�(φ ∧ ψ) ↔ �φ ∧�ψ and` �> ↔ >.

7 Conclusion and Further Work

We have presented a general framework relating modal logics and their relational (i.e.
coalgebraic) semantics. It can be read in two directions: describe a given logic as a
functorL and work out the adequate relational semantics by describing the dual functor
T ; or, for a given notion of transitions systems asT -coalgebras, work out the adequate
logic by describing the dual ofT via generators and relations. To apply this idea and
equip the coalgebraic logic of Moss [20] with modal operators (given by the generators)
and a complete axiomatisation is one of many directions for future research.

Another one is to look at other functorsT than the compact hyperspace. An obvious
candidate is the non-compact hyperspace which is expected to give interesting infinitary
logics for the categories of posets and sets (the infinitary counterparts of spectral and
Stone spaces, respectively). Further candidates are the Kripke-polynomial functors of
Jacobs [12].

Furthermore, it would be interesting to determine the range of the framework of
Section 3. Apart from generalising some of the specific assumptions, there is also the
question which logics can be described by categories of algebras that admit a duality,
leading to connections with algebraic logic [9].
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