Best Practices: Software Engineering, Machine Learning, and AutoML

Koen van der Blom

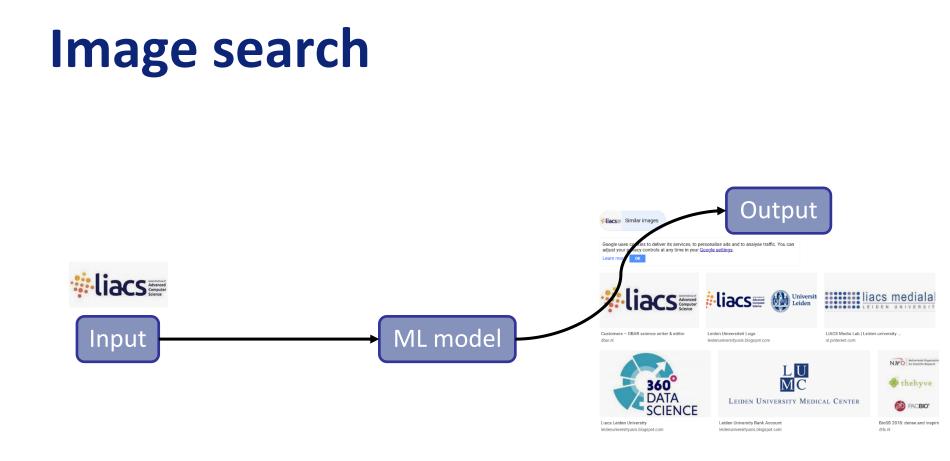
2021-05-21

Koen van der Blom

- Background
 - The Hague University of Applied Sciences
 - Bachelor Informatica
 - Leiden University
 - MSc Comp. Sci. \rightarrow PhD \rightarrow Postdoc
- Research
 - Meta-algorithmics, automated ML+AI
 - Multi-objective optimisation
 - Evolutionary computation and swarm intelligence
 - Software engineering for ML

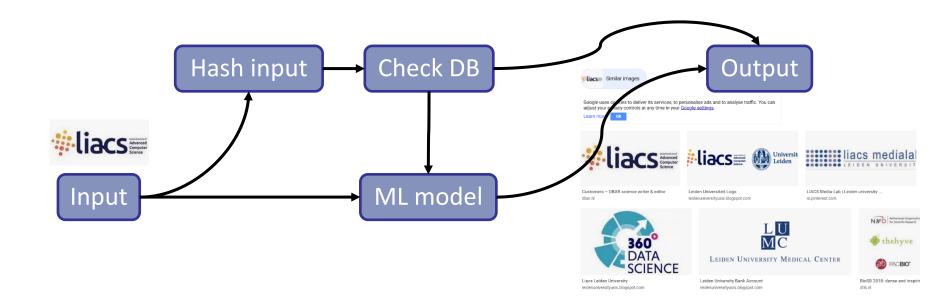
Machine learning

- Many techniques
- You learned
 - How they work
 - How you can use them
- Industry 'real-world'
 - ML as part of a larger system



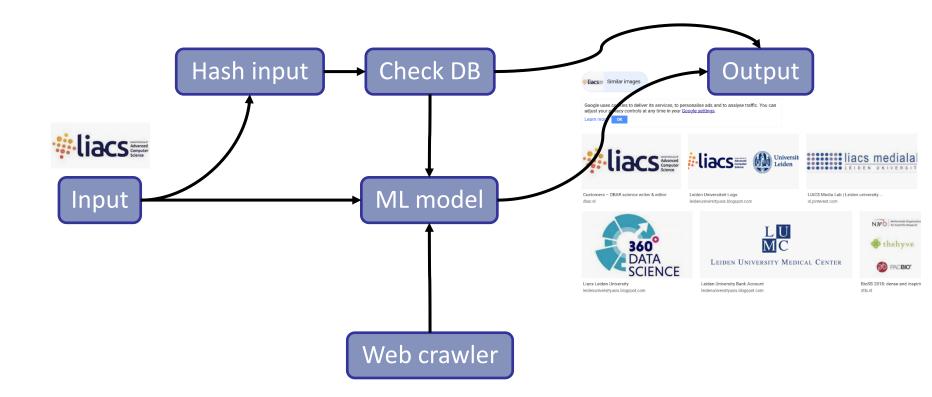
(imaginary system)

Koen van der Blom



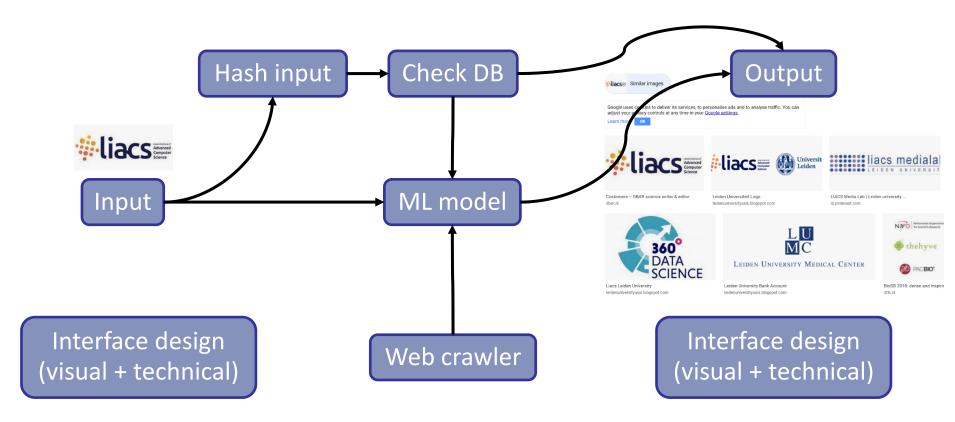
(imaginary system)

Koen van der Blom



(imaginary system)

Koen van der Blom



(imaginary system)

Koen van der Blom

- Find (source of) original or similar image
- Input image
 - Did someone look for it before?
 - Check input URL/image;
 - Hash function;
 - Basic/cheap features
 - Yes: Look up in database, done!
 - No: Run through ML model
- Interface: Also part of the system!
 - Receive user input
 - Display results

Engineering software with ML

- Software engineering (SE)
 - + Machine learning
- Best practices: Guidelines, can have exceptions!

Engineering software with ML

- Software engineering (SE)
 - + Machine learning
- Best practices: Guidelines, can have exceptions!
- Improve
 - Agility
 - Software quality
 - Team effectiveness
 - Traceability

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add functionality?
 - Is it easy to make a change, e.g. based on user feedback?

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add functionality?
 - Is it easy to make a change, e.g. based on user feedback?
- Software quality: High technical and functional quality
 - Does the design make sense for what we are trying to achieve?

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add functionality?
 - Is it easy to make a change, e.g. based on user feedback?
- Software quality: High technical and functional quality
 - Does the design make sense for what we are trying to achieve?
- Team effectiveness: Efficient collaboration between professionals with different skills
 - Are we getting the most out of the team we have?

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add functionality?
 - Is it easy to make a change, e.g. based on user feedback?
- Software quality: High technical and functional quality
 - Does the design make sense for what we are trying to achieve?
- Team effectiveness: Efficient collaboration between professionals with different skills
 - Are we getting the most out of the team we have?
- Traceability: Trace work items in the development lifecycle
 - Why did we develop this code?
 - Does it do what we intended?

Best practices for SE

• What do you already know?

Best practices for SE

- What do you already know?
- Things that may be familiar
 - Collaborative code management (e.g. git)
 - Testing (unit tests, regression tests)
 - Documentation (comments, diagrams)
 - Development methodology (e.g. agile/scrum)

- Automate deployment
 - and rollback in case of errors

- Automate deployment
 - and rollback in case of errors
- Shared backlog

Image by Jeff.lasovski – License: https://creativecommons.org/licenses/by-sa/3.0/deed.en

- Automate deployment
 - and rollback in case of errors
- Shared backlog
- Continuous integration
 - Automatic build/compilation, static analysis, testing

- Automate deployment
 - and rollback in case of errors
- Shared backlog
- Continuous integration
 - Automatic build/compilation, static analysis, testing
- Peer review

- Automate deployment
 - and rollback in case of errors
- Shared backlog
- Continuous integration
 - Automatic build/compilation, static analysis, testing
- Peer review
- Versioning

Software with ML components

- SE with ML is different from just SE
- Do engineering practices still apply?
- Do we have to change practices?
- Do we need new practices?

Software with ML components

- SE with ML is different from just SE
- Do engineering practices still apply?
- Do we have to change practices?
- Do we need new practices?
- Yes ...all of those!

Practices that still apply

- Still working with code
 - Automated regression testing \rightarrow Does it still work?
 - Continuous integration → Automatically build/compile
 - Static analysis → Check code quality
- Still a team effort
 - Collaborative development platform \rightarrow Integrate changes
 - Use a shared backlog \rightarrow Task status, priority
 - Communicate → Still working towards the same goal?

Practices that still apply

• Limited attention for these practices in ML

Out of 29TitleRankRun Automated Regression Tests27Use Continuous Integration16Use Static Analysis to Check Code Quality24Use A Collaborative Development Platform8Work Against a Shared Backlog9Communicate, Align, and Collaborate With Multidisciplinary Team Members10

From: Serban et al. 2020

• Adopt and you are ahead of the competition!

What is different with ML?

Koen van der Blom

What is different with ML?

- Use data
- Create ML models
- Optimise ML system for accuracy
 - Choose best features
 - Optimise parameter settings
 - Etc.

• Run on new data, from real people...

• Testing \rightarrow Feature extraction code

- Testing → Feature extraction code
- Documentation → What does each feature mean, why does it make sense to use?

- Testing → Feature extraction code
- Documentation → What does each feature mean, why does it make sense to use?
- Peer review → Training scripts

- Testing → Feature extraction code
- Documentation → What does each feature mean, why does it make sense to use?
- Peer review → Training scripts
- Versioning \rightarrow Datasets, models, etc.

- Testing → Feature extraction code
- Documentation → What does each feature mean, why does it make sense to use?
- Peer review \rightarrow Training scripts
- Versioning \rightarrow Datasets, models, etc.
- Automate \rightarrow Model deployment, roll backs

- Testing → Feature extraction code
- Documentation → What does each feature mean, why does it make sense to use?
- Peer review \rightarrow Training scripts
- Versioning \rightarrow Datasets, models, etc.
- Automate \rightarrow Model deployment, roll backs
- Logging → Every prediction a model makes, including version numbers and input data

New practices

• Check the data is complete, balanced, well distributed

New practices

- Check the data is complete, balanced, well distributed
- Create reusable scripts for cleaning and merging

New practices

- Check the data is complete, balanced, well distributed
- Create reusable scripts for cleaning and merging
- Make sure data labelling is done as controlled process

- Check the data is complete, balanced, well distributed
- Create reusable scripts for cleaning and merging
- Make sure data labelling is done as controlled process
- Share data sets → ensure everyone works on the same

• Share clear training objectives in the team

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand
- Remove or archive unused features

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand
- Remove or archive unused features
- Enable parallel training experiments

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand
- Remove or archive unused features
- Enable parallel training experiments
- Share experimental results \rightarrow Avoid repetition

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand
- Remove or archive unused features
- Enable parallel training experiments
- Share experimental results \rightarrow Avoid repetition
- Monitor deployed models

Automated machine learning

- Feature generation
- Feature selection
- Model selection
- Algorithm selection
- Hyperparameter optimisation
- Algorithm configuration
- Neural architecture search

Automated machine learning

- Feature generation
- Feature selection
- Model selection
- Algorithm selection

but all automated!

- Hyperparameter optimisation
- Algorithm configuration
- Neural architecture search

Automated machine learning

- Feature generation
- Feature selection
- Model selection
- Algorithm selection

but all automated!

- Hyperparameter optimisation
- Algorithm configuration
- Neural architecture search

...and more

Automated selection

- Which model/algorithm to choose?
- Best is not always the same
 - Even with relatively small changes!
- Manually run things, see what works where

Automated selection

- Which model/algorithm to choose?
- Best is not always the same
 - Even with relatively small changes!
- Manually run things, see what works where
- Or: Automated ML system
- E.g. Automate choice of model to deploy
- Predict which model to use for which input

Automated tuning / configuration

- Which settings/parameters to use?
- Which algorithm/model architecture works best?
- Difficult to know what works well
 - Try many things \rightarrow takes a lot of human time
 - Find improvements \rightarrow but is it really the best?

Automated tuning / configuration

- Which settings/parameters to use?
- Which algorithm/model architecture works best?
- Difficult to know what works well
 - Try many things \rightarrow takes a lot of human time
 - Find improvements \rightarrow but is it really the best?
- Or: Automated ML system
- E.g. Neural architecture search
 - Optimised (deep) neural network for our use case

All is well then, ... or is it?

- Can we trust the system?
- Uses data, but which data, and how?
- Are the results biased?
- Do the users know it is an ML system, can they raise concerns when things go wrong?
- Can we explain why the ML system does what it does?

• Test for social bias in training data

- Test for social bias in training data
- Stop discriminatory attributes from being used as features

- Test for social bias in training data
- Stop discriminatory attributes from being used as features
- Watch out for subgroup bias

- Test for social bias in training data
- Stop discriminatory attributes from being used as features
- Watch out for subgroup bias
- Use privacy preserving ML techniques
 E.g. federated learning

- Assure application security
 - Data
 - Manipulation of system behaviour

- Assure application security
 - Data
 - Manipulation of system behaviour
- Perform risk assessments

- Assure application security
 - Data
 - Manipulation of system behaviour
- Perform risk assessments
- Provide audit trails

- Assure application security
 - Data
 - Manipulation of system behaviour
- Perform risk assessments
- Provide audit trails
- Have your application audited

- Establish responsible AI values
 - What does it mean to be responsible?

- Establish responsible AI values
 - What does it mean to be responsible?
- Use interpretable models whenever possible

- Establish responsible AI values
 - What does it mean to be responsible?
- Use interpretable models whenever possible
- Use team process for decision making
 - Higher accuracy 'blackbox' model or slightly less accurate interpretable model?
 - E.g. When do we accept a blackbox model?

• Inform users about ML usage

• Inform users about ML usage

Provide safe channels to raise concerns

- Inform users about ML usage
- Provide safe channels to raise concerns
- Explain results and decisions to users

Many practices, where to start?

• One step at a time

Many practices, where to start?

- One step at a time
- Aim: Rank by difficulty (work in progress)

Use Versioning for Data, Model, Configurations and Training Scripts	Training	basic
Share Status and Outcomes of Experiments Within the Team	Training	basic
Run Automated Regression Tests	Coding	advanced
Use Continuous Integration	Coding	medium
Use Static Analysis to Check Code Quality	Coding	advanced

Summary

- SE for ML is still SE
 - Don't abandon best practices
 - Adapt and extend them
- AutoML to maximise performance
- Build a system we can trust
- Learn more: <u>https://se-ml.github.io</u>