
Sparkle
Making meta-algorithms more accessible

Koen van der Blom, Jeroen Rook,
Holger Hoos & Chuan Luo

#BenchOpt2022

30-05-2022

Meta-algorithms

(Per-instance) Automated Algorithm Selection (AAS)
For a given problem instance, which algorithm from a portfolio of
algorithms is most able to solve it best? [Rice,’76]

Automated Algorithm Configuration (AAC)
What are the best hyperparameters of an algorithm for a given
problem?

Get the best performance out of algorithms
More accurately represent the state of the art in solving
challenging problems in AI.

Sparkle – Van der Blom & Rook 1

Adoption of meta-algorithms

▶ Adoption is limited, even in ML research [Bouthillier &

Varoquaux, 2020]

▶ Meta-algorithms are complex and difficult for non-experts

▶ Substantial pitfalls, e.g., in AAC [Eggensperger et al., 2019]

▶ Errors are costly, e.g., re-running AAC is computationally
expensive

Sparkle – Van der Blom & Rook 2

Goals of Sparkle

▶ Simplify the use of meta-algorithms

▶ Increase the adoption of meta-algorithms

▶ Prevent common pitfalls and often-made errors

▶ Ensure proper experimentation pipelines

▶ Improve our ability to assess, access and improve the SOTA in
computational problem solving

Sparkle – Van der Blom & Rook 3

Sparkle

Algorithms

Instances

Feature
extractors

Sparkle
AAS
AAC

LATEX report

Set-up
Results
Analysis

Sparkle – Van der Blom & Rook 4

Simple Command Line Interface

1: Commands/initialise.py

2: Commands/add instances.py path/to/PTN/

3: Commands/add solver.py --deterministic 0 path/to/PbO-CSCCSAT/

4: Commands/add solver.py --deterministic 0 path/to/CSCCSat/

5: Commands/add solver.py --deterministic 0 path/to/MiniSAT/

6: Commands/add feature extractor.py path/to/Extractor/

7: Commands/compute features.py

8: Commands/construct sparkle portfolio selector.py

9: Commands/generate report.py

Sparkle – Van der Blom & Rook 5

Reports

Configuration Report for the Solver PbO-CCSAT-Generic on
the Training Instance Set PTN in Sparkle

Automatically generated by Sparkle (version: 1.0.0)

8th March 2022

1 Introduction
Sparkle [3] is a multi-agent problem-solving platform based on Programming by Optimisation (PbO)
[2], and would provide a number of effective algorithm optimisation techniques (such as automated
algorithm configuration, portfolio-based algorithm selection, etc) to accelerate the existing solvers.

This experimental report is automatically generated by Sparkle. This report presents experimental
results on the scenario of configuring the solver PbO-CCSAT-Generic on the training instance set
PTN.

2 Information about the Instance Set(s)
• Training set: PTN, consisting of 12 instances

3 Information about the Configuration Protocol
The configurator used in Sparkle is SMAC (Sequential Model-based Algorithm Configuration) [4], and
the version of SMAC used in Sparkle is 2.10.03.

During the configuration process, Sparkle performs 10 independent SMAC runs for configuring
the solver PbO-CCSAT-Generic on the trainging instance set PTN; the configuration objective is
RUNTIME; the whole configuration time budget is 3600 seconds; the cutoff time for each run is 120
seconds.

Each independent run of SMAC would result in one optimised configuration. As a result, Sparkle
would obtain 10 optimised configurations. Each of these was then evaluated on the entire training
set, with one solver run per instance and a cutoff time of 120 seconds, and the configuration with the
lowest PAR10 value was selected as the result of the configuration process.

4 Information about the Optimised Configuration
After the configuration process mentioned above, Sparkle obtained the optimised configuration. The
details of the optimised configuration are described as below.

-gamma_hscore2 ’351’ -init_solution ’1’ -p_swt ’0.20423712003341465’ -perform_aspiration ’1’ -
perform_clause_weight ’1’ -perform_double_cc ’0’ -perform_first_div ’0’ -perform_pac ’1’ -prob_pac
’0.005730374136488115’ -q_swt ’0.6807207179674418’ -sel_clause_div ’1’ -sel_clause_weight_scheme
’1’ -sel_var_break_tie_greedy ’4’ -sel_var_div ’2’ -threshold_swt ’32’

1

5 Comparison between Configured Version and Default Version
on the Training Instance Set

In order to investigate the performance on the training instance set, Sparkle would run the configured
version of PbO-CCSAT-Generic and the default version of PbO-CCSAT-Generic on the training in-
stance set. During this phase, each version was performed one run per instance with a cutoff time of
120 seconds. The results are reported as follows.

• PbO-CCSAT-Generic (configured), PAR10: 3.2082931200663247

• PbO-CCSAT-Generic (default), PAR10: 621.2856854001681

The empirical comparison between the PbO-CCSAT-Generic (configured) and PbO-CCSAT-Generic
(default) on the training set of PTN is presented in Figure 1.

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

C
o

n
fi
g

u
re

d
 p

a
ra

m
e

te
rs

 [
P

A
R

1
0

]

Default parameters [PAR10]

Figure 1: Empirical comparison between the PbO-CCSAT-Generic (configured) and PbO-CCSAT-Generic
(default) on the training set of PTN.

Table 1 shows on how many instances the PbO-CCSAT-Generic (configured) and PbO-CCSAT-
Generic (default) timed out (did not solve the instance within the cutoff time of 120 seconds) on the
training set of PTN, as well as on how many instances both timed out.

configured default overlap
0 6 0

Table 1: Number of time-outs for PbO-CCSAT-Generic (configured), PbO-CCSAT-Generic (default), and for
how many instances both timed out on the training set of PTN.

6 Parameter importance via Ablation
Ablation analysis [1] is performed from the PbO-CCSAT-Generic (default) to PbO-CCSAT-Generic
(configured) to see which parameter changes between them contribute most to the improved per-
formance. The ablation path is constructed and validated with the training set PTN. The set of

2

parameters that differ in the two configurations will form the ablation path. Starting from the default
configuration, the path is computed by performing a sequence of rounds. In a round, each available
parameter is flipped in the configuration and is validated on its performance. The flipped parameter
with the best performance in that round, is added to the configuration and the next round starts
with the remaining parameters. This repeats until all parameters are flipped, which is the best found
configuration. The analysis resulted in the ablation path presented in Table 2.

Table 2: Ablation path from PbO-CCSAT-Generic (default) to PbO-CCSAT-Generic (configured) where
parameters with higher importance are ranked higher.

Round Flipped parameter Source value Target value Validation result
0 -source- N/A N/A 610.48433
1 sel_var_div 3 2

sel_var_break_tie_greedy 2 4
gamma_hscore2 1000 351 116.32313

2 perform_pac 0 1
prob_pac 5.800000000000001E-4 0.005730374136488115 18.91441

3 p_swt 0.3 0.20423712003341465 122.56680
4 q_swt 0.0 0.6807207179674418 17.40350
5 threshold_swt 300 32 103.07659
6 perform_double_cc 1 0 3.85328
7 -target- N/A N/A 3.85717

References
[1] Chris Fawcett and Holger H. Hoos. Analysing differences between algorithm configurations through

ablation. J. Heuristics, 22(4):431–458, 2016.

[2] Holger H. Hoos. Programming by Optimization. Communications of the ACM, 55(2):70–80, 2012.

[3] Holger H. Hoos. Sparkle: A pbo-based multi-agent problem-solving platform. Technical report,
Department of Computer Science, University of British Columbia, 2015.

[4] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization (LION 5), pages 507–523, 2011.

3

Sparkle – Van der Blom & Rook 6

Conclusion

Sparkle makes meta-algorithms accessible for
improving the state of the art in solving challenging

problems in AI.

Try out Sparkle yourself!
bitbucket.org/sparkle-ai/sparkle

Contact
Koen van der Blom

Jeroen Rook

