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Abstract 

Building spatial design is in practice a co-evolutionary design process. To optimize a building spatial design, an 

evolutionary algorithm can be used, but the search space is large and complex. In simulations of co-evolutionary design 

processes the size and complexity are not hindering the search. Such simulations are in the presented work proposed for 

finding search spaces that are small but still contain high quality solutions. 
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1. Introduction 

Building spatial design (BSD) entails the search for the spatial layout and the dimensions of a building for a given set of 

design requirements. In design practice it is traditionally performed as a co-evolutionary design process. Here, co-

evolution is the principle in which not only the design solution can change, but also the design requirements, and typically 

the solution and its requirements interact [1]. For example, for a building spatial design a structural design is generated 

such that a structural performance can be computed. If, in the structural model of this example, components are modified, 

removed, or added in order to improve the structural performance (e.g. by topology optimization), it is possible that a 

space in the building spatial design cannot exist or must be modified before it can accommodate the changes made to the 

structural design. Changing the BSD, consequently changes the design requirements with which the structural design was 

generated. Building spatial design can also be formulated as an optimization problem, although the search space that 

contains all possible solutions is large and complex. Modern optimization techniques can search for building spatial 

designs only in a search space which size has been reduced, which is typically achieved with a so-called super structure. 

A super structure is a representation of the design problem in which design variables are fixed or limited to a certain range 

[2]. Unfortunately, a super structure may exclude Pareto optimal points. In earlier work a super structure free optimization 

technique named simulation of co-evolutionary design processes (SCDP) together with a super structured evolutionary 

algorithm (EA) have been applied to building spatial design optimization [3]. The work suggested that  SCDP may be 

able to find better solutions than the EA (this was also observed in [4]), albeit that they lie outside of the super structure 

of the EA. It was also observed that in the same search space the EA is better than SCDP in finding high quality solutions. 

 In this work, the ability of SCDP to improve a design is investigated. Additionally, it is studied whether the search 

direction of SCDP can be controlled. If so, it would be possible to find a super structure for an EA that is suitable for 

specific objectives. The studies performed in this work will be in the scope of structural building design and thermal 

building design. Therefore, two objectives are defined: minimizing the strain energy; and, minimizing the sum of the 

heating and cooling loads in the building. A parameter study is employed for the investigation into SCDP, which is 

introduced in section 2, together with the problem representations, objective evaluations, and the SCDP and EA algorithms. 

The results are then presented in section 3, and finally, in section 4 the conclusion and outlook are given. 

2. Methodology 

The methodology of the presented work is presented as follows. First, the used problem representations for a building 

spatial design are given. Thereafter, the evaluation of the optimization objectives is explained. Accordingly, two 

optimization methods are introduced, an evolutionary algorithm and SCDP. Finally, the setup of a parameter study is 

presented which will give insights into the ability of SCDP to improve designs and steer the search. 



 Building Spatial Design Representations 

Two building spatial design representations have been developed within the research framework of which this work is a 

part. Both representations are limited in the sense that they can only represent cuboid spaces that are arranged in a 

orthogonal grid. This limitation is adopted to simplify various optimization phenomena like mutation/modification and 

constraints. As such, research (like the work presented here) need not be distracted by special cases introduced by e.g. 

round spaces. The first representation to mention is the so-called “SuperCube” (SC) representation, which is a collection 

of cells that are defined by a 3D grid. The grid can be dimensioned for each column/row in each direction individually. 

Each space is then defined by a different bitmask, with which each cell is activated or de-activated for that space. This 

representation has a fixed number of variable, making it well suited to traditional EA’s. The second representation is the 

so-called “Movable and Sizable” (MS) representation, which is a collection of spaces. Each space in the MS 

representation is defined by two vectors, location and (orthogonal) dimensions. A spatial design in MS representation 

can—in contrast to the SC representation—be easily imagined by the human mind. This is useful for SCDP, in which 

modification steps are defined using the intuition and experience of an engineer. For the interested reader, a detailed 

description and visuals of both representations can be found in [5]. 

 Optimization Objectives 

Two optimization objectives are defined, minimal strain energy for Structural Design (SD) and minimal sum of heating 

and cooling loads for building physics (BP). These objectives cannot directly be obtained from a BSD itself. Therefore, 

so-called design grammars are used to generate the structural and the building physics model, these are detailed below. 

 The structural design grammar places a flat shell component that represents a concrete structure (𝐸 = 3.00e4 N/mm²; 

𝑡 = 150 mm; 𝜈 = 0.3) at the location of each wall and floor in the building spatial designs. Wind loads (pressure: 1.0 

kN/m²; suction 0.8 kN/m²; and shear 0.4 kN/m²) are placed on the external flat shells, four wind load cases are defined, 

one for each azimuthal direction (+𝑥,+𝑦,−𝑥,−𝑦). Moreover, a life load (5.0 kN/m² in −𝑧-direction) load case is added 

to the model on each floor in the structural model. Constraints in 𝑥-, 𝑦-, and 𝑧-direction are placed on horizontally 

oriented edges that have a 𝑧 -coordinate at or below zero (𝑧 ≤ 0 ). Each flat shell component is meshed into 3 by 3 

quadrilateral elements describing normal-, shear-, and bending action using 2×2 integration points (Gaussian quadrature). 

After meshing, the resulting system is solved by using direct sparse LLT Cholesky factorizations. The SD objective is 

then calculated by taking the total sum of strain energy (Nmm) over all elements in the structural model. For a space’s 

performance, the strain energy of all elements that border a space is summed, note that in this way one element can be 

considered for one or two spaces simultaneously. 

 The building physics design grammar places a construction at the location of each wall and floor in the building 

spatial model. Each construction has a thickness of 𝑡 = 150 mm, a specific weight of γ = 2400 kg/m³, a specific heat 

capacity of 𝐶 = 850 J/(K∙kg), and a thermal conduction coefficient of 𝜆 = 1.8 W/(K∙m), which represents the thermal 

behavior of concrete. Additionally, an insulation layer is added on the exterior of the external walls and floors (𝑡 = 150 

mm; 𝛾 = 60 kg/m³; 𝐶 = 850 J/(K∙kg); 𝜆 = 0.04 W/(K∙m)). The BP model is a resistor capacitor (RC) network, in which, 

constructions and spaces are each modelled by one temperature point. The heat capacity of a construction or space is 

modelled by a grounded capacitor. Connections between spaces and constructions are modelled with a resistance. At each 

space’s temperature point, an ideal power source is modelled with a capacity of 100 W/m³ for both cooling and heating. 

If the temperature of a space rises above a setpoint of 25 °C, cooling is activated, if it drops below a setpoint of 20 °C, 

heating is activated. The outdoor temperature in the model is modelled with real world measurements obtained at De Bilt 

in The Netherlands [6], and for the ground temperature a constant temperature of 10 °C is modelled. Two periods of each 

3 days (72 hours) are simulated, a typical warm period (July 2nd - 4th 1976) and a typical cold period (December 30th 1978 

– January 1st 1979). A warm up period of four days is prepended to both simulation periods in order to start the periods 

with appropriate initial temperatures. The RC-network is described by a system of ordinary differential equations, which 

is solved by the 5th order Dormand-Prince algorithm using error control. The BP objective for each space is then calculated 

as the sum of heating and cooling power over the simulated periods. The objective value for the entire building is 

calculated as the sum of the objective value per space over all spaces. A more detailed explanation of the design grammars 

and the evaluation of objectives can be found in [5]. 



 Evolutionary Algorithm  

In this work the tailored SMS-EMOA algorithm published in [7] is used for multi-objective optimization. The algorithm 

uses the SMS-EMOA algorithm with tailored mutation an initialization operators, such that these do not generate 

infeasible designs. For constraints, specific parameter configurations, and other details the reader is referred to [7]. 

 Simulation of Co-evolutionary Design Processes (SCDP) 

An algorithm that is designed to simulate a co-evolutionary design processes is introduced next. In principle, the algorithm 

removes a number of spaces, and splits an equal amount of the remaining spaces. For this, it looks at the objective values 

per space and it takes two arguments: a space removal ratio, here denoted by 𝜂𝑟; and a sorting method, denoted by 𝜂𝑠. 

 The sorting parameter 𝜂𝑠 specifies how a certain objective is sorted, and which objectives are considered in the 

sorting process. An objective is included in the sorting process if it is supplied with two two-letter terms, of which the 

first term specifies the objective itself (“sd” or “bp”) and the last the ordering. For the sorting process, the objective 

values are normalized between 0 and 1 in two different ways: “lh”, the minimum is normalized to 0 and the maximum is 

normalized to 1; or vice versa “hl”, maximum to 0 and minimum to 1. If both objectives are accounted for the parameter 

is a concatenation of two pairs of terms, where each pair is concatenated with a “+”. For example 𝜂𝑠 = “sdlh+bplh” 

denotes that both SD and BP objectives are included, and their respective minima are normalized to 0 and their maxima 

to 1. Once the normalized values are computed, two sorted lists are computed: the “best” list contains—per space—the 

Euclid distance from a vector containing the normalized objective value to the utopian point; and the “worst” list is similar, 

but contains distances in reference to the dystopian point. Here the utopian point is the 0⃗  vector and the dystopian point 

is the 1⃗  vector, where each vector’s dimension equals the number of considered objective values. 

 Space removal is based upon a selection from the “worst” list, where the number of removed spaces is 𝑛𝑑𝑒𝑙 and the 

removed spaces are the 𝑛𝑑𝑒𝑙 spaces with the lowest values in the list. Here, 𝑛𝑑𝑒𝑙 is set to 𝑛𝑙𝑜𝑤 if 𝑛𝑢𝑝/𝑛𝑡𝑜𝑡 > 0.5 and 

is set to 𝑛𝑢𝑝 otherwise, where 𝑛𝑙𝑜𝑤 is a lower bound of spaces to be removed, 𝑛𝑢𝑝 an upper bound, and 𝑛𝑡𝑜𝑡 the total 

amount of spaces in the BSD. The values for 𝑛𝑙𝑜𝑤 and 𝑛𝑢𝑝 are determined via a bi-sectioning algorithm that finds a 

value 𝑎 and a value 𝑏 within a margin of 0.01 where 𝑎 <  𝑏. Accordingly the bounds are determined as follows: 𝑛𝑙𝑜𝑤 

is the number of values in the “worst” list that are less or equal to 𝑎; and 𝑛𝑢𝑝 is the number of values in that list that are 

lower or equal to 𝑏. In each iteration of the bi-sectioning algorithm (𝑎 + 𝑏)/2 is assigned to 𝑎 if the number of values 

in the “worst” list that is lower than that value is less than 𝜂𝑟𝑎𝑡𝑖𝑜 ∙ 𝑛𝑡𝑜𝑡, otherwise it is assigned to 𝑏. 

 After 𝑛𝑑𝑒𝑙 spaces are removed, the remaining spaces are scaled in 𝑥- and 𝑦- direction by a factor of √𝑉/𝑉0 in 

order to restore the BSD’s volume 𝑉 to the original volume 𝑉0. After scaling, 𝑛𝑑𝑒𝑙 of the remaining spaces are split, 

starting at the top of the sorted “best” list. When split, a space is divided in two halves along the direction of its smallest 

horizontal dimension, if the two horizontal dimensions are within 1% of each other, the space is split along the 𝑥-

direction. If splitting a space would lead to a dimension smaller than 500 mm, the space is skipped, unless there are not 

enough spaces left to reach the criteria of 𝑛𝑑𝑒𝑙 split spaces. The latter prevents spaces from becoming too narrow, and 

also enforces one of the constraints that are imposed on the BSD for the EA optimization (see [7]). 

 Parameter study 

In order to assess the ability of SCDP to improve the results of optimization with EA, first the EA is employed for an 

optimization task. The supercube for that task is set to contain a grid of 3×3×3 cells (𝑥, 𝑦, 𝑧), with which 10 spaces 

should be defined. A volume constraint for the total building volume is set to 357 m³. The EA’s evaluation budget is set 

to 1e+4 of which the first 50 are the initial population. To avoid a large dependency on the stochastic initialization and 

variation the EA is run 35 times using these settings. The results from all 35 runs are depicted in Fig. 1, a grey/black dot 

represents the performance of one evaluated design, the gradient represents at which iteration the performance was found. 

Note that the axis on which the strain energy is plotted uses a logarithmic scale. The Pareto Front Approximation (PFA), 

is here the set of non-dominated points. Depicted with blue triangles is the PFA over all runs after all iterations, depicted 

with red circles is the PFA over all runs after just 100 iterations. Note that, in order to take into account stochasticity, the 

median of all PFAs over all runs would be representative. However, here the best solutions overall are chosen so that 

SCDP can be compared with the best found designs in the chosen supercube 



For the parameter study, three designs are selected from the EA’s results, which are depicted on the right in Fig. 1. These 

designs serve as initial BSD’s onto which the SCDP algorithm will be applied. In the parameter study, the sorting 

parameter 𝜂𝑠 will be varied in every unique mutation of its terms, which yields 8 configurations for this parameter. 

Furthermore, the space removal ratio 𝜂𝑟, will be varied with the following values {0.1, 0.2, 0.3, 0.4, 0.5}. As such, the 

increment of 0.1 for the 𝜂𝑟 parameter signifies one space for a BSD with 10 spaces and thus 1, 2, 3, 4, or 5 spaces can 

be removed. Finally, SCDP will be applied successively as well, i.e. search depth, for this parameter study SCDP will be 

applied successively for four iterations. This successive application yields a tree structure in the parameter study for both 

𝜂𝑟  and 𝜂𝑠 , however only 𝜂𝑠  will be varied after each successive SCDP application. Altogether, 3 ∙ 5 ∙ 84 = 61440 

configurations can be evaluated with 3 ∙ 5 ∙ ∑ 8𝑖3
𝑖=0 = 8775 evaluations if each node in the search tree is evaluated once. 

3. Results 

The results of the parameter study are shown in Fig. 2, each evaluated design’s performance is indicated with a grey dot, 

the PFA from the EA with a blue triangle, and the selected designs (1, 2, and 3) with a red circle. The PFA of the SCDP 

results is depicted with a green rhombus, a selection of these is shown on the bottom right. The SCDP results are plotted 

in three fold, in each plot the convex hull of a distinct collection of performances is drawn. At the top left of Fig. 2, a 

distinction is made in the initial design that was selected from the EA results. From this plot no clear distinction can be 

observed with respect to initial design, which suggests SCDP is not significantly sensitive to the initial design. When a 

distinction is made in the space removal ratio 𝜂𝑟 (top right), it seems that higher ratios lead to better designs, and a ratio 

of 0.1 does not seem to improve at all. Finally, a distinction in the search depth shows that just two iterations of SCPD in 

the parameter study barely lead to better results. However, in the third and fourth iterations improvements are found. 

From the plots it can be concluded that it is beneficial to have at least 3 successive SCDP steps with a relatively high 

space removal ratio (0.4-0.5). 

 When looking at the supercube of the designs in the bottom right of Fig. 2, it can be concluded that by using SCDP 

different supercube sizes have successfully been found. The newly found supercubes are lower but wider, which allows 

all spaces to be placed on the ground floor. This is beneficial for the structural design objective as the wind and life loads 

can be transferred to the boundary conditions in a more direct path, therefore generating less strain energy. Also note that 

the sizes of the supercube in Fig. 2 (16 and 12 cells) are smaller than the size of the supercube used for the EA (27 cells), 

thus the search spaces of the found supercubes are smaller whilst they contain better solutions. 

 Although the performances of the designs improve after using SCDP, it should also be noted that only the structural 

design objective seems to benefit from applying SCDP. This can be explained from the fact that a perfect cube is in this 

case optimal for thermal building design because it has the smallest possible surface to volume ratio in the orthogonal 

case. From the EA results, it can be seen that the EA can already find such optimal designs.  

Figure 1. Results from the evolutionary algorithm and a visualization of the selection of building spatial designs. 



It may be clear that SCDP is able to improve the results found by an EA, albeit in a different search space. However, for 

the sake of supporting an EA by finding suitable search spaces, it is of interest to steer the performance of a design into 

certain directions. As stated, SCDP does not seem to be able to improve the BP objective in the parameter study, but it 

would be interesting to see if the improvements in the SD objective can be generalized into a set of SCDP steps that 

guarantee an improvement. Unfortunately such a clear conclusion cannot be drawn from the presented work. Even though 

some sorting configurations for 𝜂𝑠 seem to be more likely to improve a BSD, when looking at the sorting steps made for 

each SCDP in Fig. 3 no clear preference or pattern can be observed. Additionally, the depicted design paths also contain 

values for 𝜂𝑠 that—judging from the statistics of the parameter study—seem highly unlikely to improve a design. In Fig. 

3 it can be observed that every design path first leads to worse designs before it leads to a better design. This makes it 

more difficult to generalize the configurations for the sorting parameter 𝜂𝑠. 

 Discussion 

The presented work has showed that SCDP is able to improve designs, and as such it can be used to find suitable search 

spaces for optimization with an EA. However some critical remarks should be made. First, the implemented SCDP 

modification is naïve as it is not reasoning from a physics point of view, but merely from an objective value point of view. 

A better modification for SD might be—for example—to split a space below a floor with high strain and to remove a wall 

with low normal forces. Second, no clear answer was found on the question if SCDP can steer a BSD’s performance into 

a certain direction. Additional studies that aim to find such SCDP configurations should be performed to conclude on that.  

Figure 2. Results of SCDP with convex hull of performances per design (tl), space removal ratio (tr), and iteration (bl). 



4. Conclusion and Outlook 

In this paper, an algorithm that simulates a co-evolutionary design process (SCDP) of building spatial designs is 

introduced. It is reasoned that SCDP can help to optimize using evolutionary algorithms (EA), by finding promising 

search spaces. A parameter study is performed on the SCDP algorithm, using designs that were found by the EA. It has 

been shown that better designs than the EA’s results can be found using SCDP, albeit that they lie in a different search 

space. The latter proves that SCDP can be used to suggest suitable search spaces to EAs. However, the parameter study 

did not prove to be sufficient in identifying the parameters that allow to steer the performance of a building spatial design 

into specific directions. Therefore, future work will focus on further development and research of the SCDP algorithm in 

order to be capable of steering a design’s performance into specific directions. 
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