
Instructions.md 2/17/2020

1 / 5

LIACS Robotics, 2020

Simultaneous Localization and Mapping Workshop

During this workshop you will need to write simple commands in Python to make a two-wheeled robot reach 
its goal destination in a virtual environment. To do this, you will have access to its motors and the LIDAR 
sensor information that is attached to the robot.

You will learn the basics of:

1. Utilizing a LIDAR sensor for controlling a robot and reconstructing the scene using a SLAM algorithm.
2. Using the CoppeliaSim robot simulation software. 

CoppeliaSim

CoppeliaSim (previously known as V-Rep) is a robot simulator that has various premade robot models and 
the ability to create custom environments. It also has rich functionality for robotics-related tasks such as 
Inverse Kinematics, path planning and has great sensor integration (lidars, cameras, force sensors, collision 
processing). It is frequently used by the research community as it features an extensive programming 
interface that you can use with 6 different programming languages (Python, C++, Matlab, Lua, etc.). You are 
highly advised to download it on your machines (available on all platforms) and experiment with it, extensive 
tutorials can be found here. 

http://www.coppeliarobotics.com/helpFiles/


Instructions.md 2/17/2020

2 / 5

Setting up (after downloading and extracting the SLAM.zip file):

To set everything up that is needed for this workshop (works on Linux machines only):

1. Open a terminal in the ../SLAM directory.

2. Create and activate the python virtual environment:

python3 -m venv env 
source env/bin/activate 

3. Download the required packages (numpy, opencv, matplotlib):

pip install -e slam/python 

4. Start CoppeliaSim with the custom scene loaded by running:

python start.py 



Instructions.md 2/17/2020

3 / 5

Task

You can see a simple indoor scene cluttered with every-day objects and a stationary Pioneer P3DX two-
wheeled robot that has a LIDAR sensor attached to it. The sensor has a 270 degree coverage (135 degrees
in both directions) and is represented as an array of 270 floating point numbers that correspond to the
distance $d$ to the closest object at that angle.

To start the simulation and display the reconstruction of the scene from the lidar data using the SLAM
algorithm you can run the script (stop it using CTRL+C):

python run.py 

Your goal is to create a simple python script that will make the wheeled robot move from its starting
position towards the ending point (marked by the red circle) by utilizing the LIDAR information to detect
doorways.

The file run.py contains a function loop that you need to modify in order to make the robot perform
actions in the environment. All the relevant information can be accesed by refencing the attributes and
methods of the object agent which are detailed in the page below. The logic inside this looping function
gets executed in every frame of the simulation.

https://github.com/simondlevy/BreezySLAM


Instructions.md 2/17/2020

4 / 5

    Motors: 
1. agent.change_velocity([ speed_left: float, speed_right: float

]) 
"""  Set the target angular velocities of left 

and right motors with a LIST of values: 
e.g. [1., 1.] in radians/s.

Values in range [-5:5] """ 

2. agent.current_velocity()
"""  Returns a LIST of current angular velocities 

of the motors 
[speed_left: float, speed_right: float] in radians/s. 

""" 

    Lidar: 
1. agent.read_lidar()
"""  Returns a list of floating point numbers that you can

indicate the distance towards the closest object at a 
particular angle. 

Basic configuration of the lidar: 
Angle: [-135:135] Starting with the  
leftmost lidar point -> clockwise. """ 

     Position:  
1. agent.position_history

"""  A list containing 200 last positions of the agent 
(the numbers are arbitrary, only useful in terms of 

comparison)"""  

Assignment: Using these methods and variables design a viable room traversing strategy using a 
combination of logic statements. After running your run.py script the robot should traverse through 
the four rooms and end up at the red spot in the fourth room. Submit !only! your run.py file as 
answer to this assignment.



Instructions.md 2/17/2020

5 / 5

Interacting with the simulation

You can freely interact with the CoppeliaSim scene in various ways when the simulation is not running.

You can move and rotate all the objects in the scene using the following buttons: 

Just click on an object to select it and try dragging it around.

Once you make some progress in order not to run the same route, you can just move the robot and test
the behaviours out in different spots of the environment. Having said that, your goal is still to make the
agent traverse all 4 rooms, starting at the center one.




