Robotics

Erwin M. Bakker| LIACS Media Lab

18-2 2020

Universiteit Leiden

Bij ons leer je de wereld kennen

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

- assignments (40% of grade).
- It is necessary to be at every class and to complete every workshop.

Overview

- Robotic Actuators
- Configuration Space
- Rigid Body Motion
- Forward Kinematics
- Inverse Kinematics
- Link: <u>http://modernrobotics.org</u>

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

Universiteit Leiden. Bij ons leer je de wereld kennen

DC Motor Controllers

Pololu Simple Motor Controllers

• USB, TTL Serial, Analog, RC Control, I2C

	Original versions, not recommended for new designs (included for comparison purposes)					G2 versions, released November 2018			
				Alt I	100			1	8
	<u>SMC</u> <u>18v7</u>	<u>SMC</u> <u>18v15</u>	<u>SMC</u> 24v12	<u>SMC</u> 18v25	<u>SMC</u> 24v23	<u>SMC G2</u> <u>18v15</u>	<u>SMC G2</u> 24v12	SMC G2 18v25	<u>SMC G2</u> 24v19
Minimum operating voltage:	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	6.5 V	6.5 V	6.5 V	6.5 V
Recommended max operating voltage:	24 V (1)	24 V (1)	34 V (2)	24 V (1)	34 V (2)	24 V (1)	34 V (2)	24 V (1)	34 V (2)
Max nominal battery voltage:	18 V	18 V	28 V	18 V	28 V	18 V	28 V	18 V	28 V
Max continuous current (no additional cooling):	7 A	15 A	12 A	25 A	23 A	15 A	12 A	25 A	19 A
USB, TTL serial, Analog, RC control:	×	×	✓	✓	✓	×	✓	✓	✓
I ² C control:						✓	✓	✓	✓
Hardware current limiting:						✓	✓	✓	✓
Reverse voltage protection:						✓	✓	✓	✓

https://www.pololu.com/category/94/pololu-simple-motor-controllers

Keplinger, et al. PNAS March 9, 2010 107 (10) 4505-4510; https://doi.org/10.1073/pnas.0913461107

Röntgen WC (1880) Ueber die durch Electricität bewirkten Form—und Volumenänderungen von dielectrischen Körpern. Ann Phys Chem 11:771–786.

Universiteit Leiden. Bij ons leer je de wereld kennen

See also TED Talk **The artificial muscles that will power robots of the future by** Christoph Keplinger <u>https://www.youtube.com/watch?v=ER15KmrB8h8</u>

MIT Artificial Muscles

- Combination of two dissimilar polymers into a single fiber
- The polymers have very different thermal expansion coefficients (as in bimetals)
- Developed by Mehmet Kanik, Sirma Örgüç, working with Polina Anikeeva, Yoel Fink, Anantha Chandrakasan, and C. Cem Taşan, and five others

http://news.mit.edu/2019/artificial-fiber-muscles-0711

How to move to a goal?

Problem: How to move to a goal?

• Grasp, Walk, Stand, Dance, Follow, etc.

Solution:

- 1. Program step by step
- Computer Numerical Control (CNC), Automation.
- 2. Inverse kinematics:
- take end-points and move them to designated points.
- 3. Tracing movements
- by specialist, human, etc.
- 4. Learn the right movements
- **Reinforcement Learning**, give a reward when the movement resembles the designated movement.

https://pybullet.org/wordpress/

Configuration Space

Robot Question: Where am I?

Answer:

The robot's configuration: a specification of the positions of all points of a robot.

Here we assume:

Robot links and bodies are rigid and of known shape => only a few variables needed to describe it's configuration.

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

Configuration Space

[1] Definition 2.1.

The **configuration** of a robot is a complete specification of the position of every point of the robot.

The minimum number *n* of real-valued coordinates needed to represent the configuration is the number of **degrees of freedom** (**dof**) of the robot.

The *n*-dimensional space containing all possible configurations of the robot is called the **Configuration Space** (**C-space**).

The configuration of a robot is represented by a point in its C-space.

Open-chain robot: Manipulator (in V-REP). [1]

Closed-chain robot: Stewart-Gough platform. [1]

14

End

Effector

Planar Mechanism DOF = 4

N = 5 links

J = 4 joints

Base

 $f_i = 1$, for all i $c_i=2$, for all i

0

Degrees of Freedom of a Robot

Proposition (Grübler's formula)

Consider a mechanism consisting of

- N links, where ground is also regarded as a link.
- J number of joints,
- m number of degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for spatial mechanisms),
- \mathbf{f}_i the number of freedoms provided by joint i, and
- c_i the number of constraints provided by joint i, where $f_i + c_i = m$ for all i.

Then Grübler's formula for the number of degrees of freedom of the robot is

$$dof = m(N-1) - \sum_{i=1}^{J} c_i = m(N-1-J) + \sum_{i=1}^{J} f_i$$

This formula holds only if all joint constraints are independent. If they are not independent then the formula provides a lower bound on the number of degrees of freedom.

Universiteit Leiden. Bij ons leer je de wereld kennen

Example 2.7 (Delta robot). The Delta robot of Figure 2.8 consists of two platforms – the lower one mobile, the upper one stationary – connected by three legs. Each leg contains a parallelogram closed chain and consists of three revolute joints, four spherical joints, and five links. Adding the two platforms, there are N = 17 links and J = 21 joints (nine revolute and 12 spherical). By Grübler's formula,

dof = 6(17 - 1 - 21) + 9(1) + 12(3) = 15.

- Links: 1 + 3 + 3 + 6 + 3 + 1 = 17
- Joints: 21: 9x R(1 dof) and 12 x S(3 dof)
- m= 6

Universiteit Leiden. Bij ons leer je de wereld kennen

C-Space (Configuration Space)

How to describe a rigid body's position and orientation in C-Space?

Fixed reference frame {s} Reference fame attached to body {b} Can be described by a 4x4 matrix with 10 constraints (constraints, e.g.: unit-length, orthogonal) Note: a point in $\mathbb{R}^3 x S^2 x S^1$

Matrix can be used to:

- 1. Translate or rotate a vector or a frame
- 2. Change the representation of a vector or a frame
 - for example from relative to $\{s\}$ to relative to $\{b\}$

Cylindrical

(C)

Universal

(U)

Spherical

(S)

 $\mathbb{R}^3 \times S^2 \times S^1$. Universiteit Leiden. Bij ons leer je de wereld kennen

C-Spaces

- The C-space of a rigid body in the plane can be written as $\mathbb{R}^2 \times S^1$ since the configuration can be represented as the concatenation of the coordinates (x, y) representing \mathbb{R}^2 and an angle θ representing S^1 .
- The C-space of a PR robot arm can be written $\mathbb{R}^1 \times S^1$ (We will occasionally ignore joint limits, i.e., bounds on the travel of the joints, when expressing the topology of the C-space; with joint limits, the C-space is the Cartesian product of two closed intervals of the line.)
- The C-space of a 2R robot arm can be written $S^1 \times S^1 = T^2$, where T^n is the *n*-dimensional surface of a torus in an (n+1)-dimensional space. (See Table 2.2.) Note that $S^1 \times S^1 \times \cdots \times S^1$ (*n* copies of S^1) is equal to T^n , not S^n ; for example, a sphere S^2 is not topologically equivalent to a torus T^2 .
- The C-space of a planar rigid body (e.g., the chassis of a mobile robot) with a 2R robot arm can be written as $\mathbb{R}^2 \times S^1 \times T^2 = \mathbb{R}^2 \times T^3$

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting mechanism

The **workspace** is a specification of the configurations that the end-effector of the robot can reach.

Universiteit Leiden. Bij ons leer je de wereld kennen

described by (x, y, z, φ)

 \Rightarrow task space $R^3 x S^1$ and

 \Rightarrow workspace as the reachable points in (x, y, z), since all orientations ϕ can be achieved at all reachable points.

Revolute

(R)

Prismatic (P)

Helical

(H)

Universiteit Leiden. Bij ons leer je de wereld kennen

Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the vector p and the directions of the unit axes $\hat{\mathbf{x}}_{\mathbf{b}}$ and $\hat{\mathbf{y}}_{\mathbf{b}}$. In this example, p = (2, 1) and $\theta = 60^{\circ}$, so $\hat{\mathbf{x}}_{\mathbf{b}} = (\cos \theta, \sin \theta) = (0.5, 1/\sqrt{2})$ and $\hat{\mathbf{y}}_{\mathbf{b}} = (-\sin \theta, \cos \theta) = (-1/\sqrt{2}, 0.5)$.

These are called the **exponential coordinates** for the planar rigid-body displacement.

Universiteit Leiden. Bij ons leer je de wereld kennen

Forward Kinematics

The forward kinematics of 3R Planar Open Chain can be written as a product of four homogeneous transformation $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \{4\}$

Universiteit Leiden. Bij ons leer je de wereld kennen

Organization and Overview

Period:	February 4th – April 28th 2020
Time:	Tuesday 14.15 – 16.00
Place:	LIACS, Room 407-409 (Workshops Room 302-304)
Lecturer:	Dr Erwin M. Bakker (erwin@liacs.nl)
Assistant:	Laduona Dai

NB E-mail your name and student number to erwin@liacs.nl

Schedule:

4-2	Introduction and Overview
17-2	No class
18-2	Locomotion and Inverse Kinematics &
	Yetiborg Introduction
25-2	Robotics Sensors and Image Processing
3-3	Project Proposals (presentation by students)
10-3	Yetiborg Qualification Challenge
17-3	Robotics Image Processing and Understanding
24-3	Yetiborg Race
31-3	Project Progress Report (by students)
7-4	Robotics Reinforcement Learning
14-4	Robotics Reinforcement Learning Workshop II
21-4	TBA
28-4	Project Demos (by students)

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Universiteit Leiden. Bij ons leer je de wereld kennen

Grading (6 ECTS):

- Presentations and Robotics Project (60% of grade).
- Class discussions, attendance, workshops and assignments (40% of grade).
- It is necessary to be at every class and to complete every workshop.

Robotics Homework I

Assignment I:

Give a link to the coolest, strangest, most impressive, most novel, or technologically inspirational robot you could find.

Assignment II:

Visit <u>http://modernrobotics.org</u> and obtain the pdf of the <u>book</u>. Read Chapters 1 and 2 and answer the following exercises:

- 2.2
- 2.9 for Figures 2.18 c, d, and f
- 2.18.

Due: Monday 24-2 at 14.00 PM.

Email your answers to erwin@liacs.nl with subject 'Robotics HW1'.

Universiteit Leiden. Bij ons leer je de wereld kennen

YetiBorg Racing Teams

1) Form YetiBorg Racing Teams of 4 people Appoint one person who will be responsible for the robot.

Email your teams to <u>erwin@liacs.nl</u> with subject 'Robotics YetiBorg Racing Team'. **Due:** Monday 24-2 at 14.00 PM.

References

- 1. K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017. (DOI: 10.1017/9781316661239)
- 2. https://pybullet.org/wordpress/