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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Biology Fundamentals (1): DNA Structure

 DNA: helix-shaped molecule 

whose constituents are two 

parallel strands of nucleotides

 DNA is usually represented by 

sequences of these four 

nucleotides

 This assumes only one strand 

is considered; the second 

strand is always derivable 

from the first by pairing A’s 

with T’s and C’s with G’s and 

vice-versa

 Nucleotides (bases)

 Adenine (A)

 Cytosine (C)

 Guanine (G)

 Thymine (T)
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Biology Fundamentals (2): Genes

 Gene: Contiguous subparts of single 

strand DNA that are templates for 

producing proteins.  Genes can 

appear in either of the DNA strand.

 Chromosomes: compact chains of 

coiled DNA

 Genome: The set of all genes in a 

given organism.

 Noncoding part: The function of DNA 

material between genes is largely 

unknown.  Certain intergenic regions 

of DNA are known to play a major 

role in cell regulation (controls the 

production of proteins and their 

possible interactions with DNA).
Source: www.mtsinai.on.ca/pdmg/Genetics/basic.htm 
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Biology Fundamentals (3): Transcription

 Proteins: Produced from DNA using 3 operations or 
transformations: transcription, splicing and translation

 In eukaryotes (cells with nucleus): genes are only a 
minute part of the total DNA 

 In prokaryotes (cells without nucleus): the phase of 
splicing does not occur (no pre-RNA generated)

 DNA is capable of replicating itself (DNA-polymerase)

 Genes are transcribed into pre-RNA by a complex 
ensemble of molecules (RNA-polymerase).  During 
transcription T is substituted by the letter U (for uracil).  

 Pre-RNA can be represented by alternations of sequence 
segments called exons and introns.  The exons represents 
the parts of pre-RNA that will be expressed, i.e., translated 
into proteins.
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Biology Fundamentals (4): Proteins

 Splicing (by spliceosome—an ensemble of proteins): concatenates 

the exons and excises introns to form mRNA (or simply RNA)

 Translation (by ribosomes—an ensemble of RNA and proteins)

 Repeatedly considers a triplet of consecutive nucleotides (called 

codon) in RNA and produces one corresponding amino acid

 In RNA, there is one special codon called start codon and a few 

others called stop codons

 An Open Reading Frame (ORF): a sequence of codons starting with a 

start codon and ending with an end codon.  The ORF is thus a 

sequence of nucleotides that is used by the ribosome to produce the 

sequence of amino acid that makes up a protein.

 There are basically 20 amino acids (A, L, V, S, ...) but in certain rare 

situations, others can be added to that list. 
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Biological Information:  From 
Genes to Proteins

Gene
DNA

RNA

Transcription

Translation

Protein Protein folding

genomics

molecular 

biology

structural 

biology

biophysics
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Biology Fundamentals (5): 3D Structure

 Since there are 64 different codons and 20 amino acids, the ―table 

look-up‖ for translating each codon into an amino acid is redundant: 

multiple codons can produce the same amino acid

 The table used by nature to perform translation is called the genetic 

code

 Due to the redundancy of the genetic code, certain nucleotide 

changes in DNA may not alter the resulting protein

 Once a protein is produced, it folds into a unique structure in 3D 

space, with 3 types of components:α-helices, β-sheets and coils.

 The secondary structure of a protein is its sequence of amino acids, 

annotated to distinguish the boundary of each component

 The tertiary structure is its 3D representation
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DNA / amino acid

sequence 3D structure                       protein functions 

DNA (gene) →→→ pre-RNA →→→ RNA →→→ Protein

RNA-polymerase Spliceosome Ribosome

CGCCAGCTGGACGGGCACACC

ATGAGGCTGCTGACCCTCCTG

GGCCTTCTG…

TDQAAFDTNIVTLTRFVMEQG

RKARGTGEMTQLLNSLCTAVK

AISTAVRKAGIAHLYGIAGST

NVTGDQVKKLDVLSNDLVINV

LKSSFATCVLVTEEDKNAIIV

EPEKRGKYVVCFDPLDGSSNI

DCLVSIGTIFGIYRKNSTDEP

SEKDALQPGRNLVAAGYALYG

SATML

From Amino Acids to Proteins Functions
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Biology Fundamentals (6): 
Functional Genomics

 The function of a protein is 

the way it participates with 

other proteins and molecules 

in keeping the cell alive and 

interacting with its 

environment

 Function is closely related to 

tertiary structure

 Functional genomics: studies 

the function of all the 

proteins of a genome

Source: fajerpc.magnet.fsu.edu/Education/2010/Lectures/26_DNA_Transcription.htm
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Biology Fundamentals (7): Cell Biology

 A cell is made up of molecular 
components that can be 
viewed as 3D-structures of 
various shapes

 In a living cell, the molecules 
interact with each other (w. 
shape and location).  An 
important type of interaction 
involve catalysis (enzyme) 
that facilitate interaction.

 A metabolic pathway is a 
chain of molecular interactions 
involving enzymes

 Signaling pathways are 
molecular interactions that 
enable communication 
through the cell’s membrane

Source: www.mtsinai.on.ca/pdmg/images/pairscolour.jpg

Human Genome—23 pairs of chromosomes
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Lab Tools for Determining Bio. Data (I)

 Sequencer: machines capable of reading off a sequence of 

nucleotides in a strand of DNA in biological samples

 It can produce 300k base pairs per day at relatively low cost

 A user can order from biotech companies vials containing short 

sequences of nucleotides specified by the user

 Since sequences gathered in a wet lab consist of short random 

segments, one has to use the shotgun method (a program) to 

reassemble them

 Difficulty: redundancy of seq. and ambiguity of assembly.

 Mass spectroscopy: identifies proteins by cutting them into short 

sequences of amino acids (peptides) whose molecular weights can be 

determined by a mass spectrograph, and then computationally infer 

the constituents of peptides
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Lab Tools for Determining Bio. Data (II)

 The 3D-structure of proteins is mainly determined (costly) by 

 X-ray crystallography: X-ray passing through a crystallized sample 
of that protein, and 

 nuclear magnetic resonance (NMR): obtain a number of matrices 
that express that fact that two atoms are within a certain distance 
and then deduce a 3D shape

 Expressed sequence tags (ESTs): RNA chunks that can be gathered 
from a cell in minute quantities (not containing the materials that 
would be present in introns), can be used to infer positions of introns

 Libraries of variants of a given organism: 

 Each variant may correspond to cells having a single one of its 
genes knocked out

 Enable biologists to perform experiments and deduce information 
about cell behavior and fault tolerance

 RNA-i: (the i denoteing interference): chunks of the RNA of a 
given gene are inserted in the nucleus of a cell, that may prevent 
the production of that gene
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Lab Tools for Determining Bio. Data (III)

 Microarrays: determine simultaneously the amount of mRNA production 
(gene expression) of thousands of genes. It has 3 phases:

 Place thousands of different one-strand chunks of RNA in minuscule 
wells on the surface of a small glass chip

 Spread genetic material obtained by a cell experiment one wishes to 
perform

 Use a laser scanner and computer to measure the amount of 
combined material and determine the degree (a real number) of 
gene expression for each gene on the chip

 Protein-arrays: chips whose wells contain molecules that can be bound 
to particular proteins (for study of protein expression)

 Determining protein interaction by two-hybrid experiments:

 Construct huge Boolean matrices, whose rows and columns 
represent the proteins of a genome

 If a protein interacts with another, the corresp. position is set to true
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Gene Expression and Microarray
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Biological Data Available

 Vast majority of data are sequence of symbols (nucleotides―genomic 

data, but also good amount on amino acids).

 Next in volume: microarray experiments and also protein-array data

 Comparably small: 3D structure of proteins (PDB)

 NCBI (National Center for Biotechnology Information) server:

 Total 26B bp: 3B bp human genome, then several bacteria (e.g., 

E. Coli), higher organisms: yeast, worm, fruitful, mouse, and 

plants

 The largest known genes has ~20million bp  and the largest 

protein consists of ~34k amino acids

 PDB has a catalogue of only 45k proteins, specified by their 3D 

structure (i.e, need to infer protein shape from sequence data)
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Bioinformatics

 Computational management and 

analysis of biological information

 Interdisciplinary Field (Molecular 

Biology, Statistics, Computer 

Science, Genomics, Genetics, 

Databases, Chemistry, Radiology 

…)

 Bioinformatics vs. computational 

biology (more on algorithm 

correctness, complexity and other 

themes central to theoretical CS)

Bioinformatics

Genomics

Proteomics

Functional

Genomics

Structural

Bioinformatics
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Comparing Sequences

 All living organisms are related to evolution

 Alignment: Lining up sequences to achieve the maximal level of identity

 Two sequences are homologous if they share a common ancestor

 Sequences to be compared: either nucleotides (DNA/RNA) or amino acids 

(proteins)

 Nucleotides: identical

 Amino acids: identical, or if one can be derived from the other by 

substitutions that are likely to occur in nature

 Local vs. global alignments: Local—only portions of the sequences are 

aligned.  Global—align over the entire length of the sequences

 Use gap ―–‖ to indicate preferable not to align two symbols

 Percent identity: ratio between the number of columns containing identical 

symbols vs. the number of symbols in the longest sequence

 Score of alignment: summing up the matches and counting gaps as negative
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Sequence Alignment: Problem Definition

 Goal:

 Given two or more input sequences

 Identify similar sequences with long conserved 

subsequences

 Method:

 Use substitution matrices (probabilities of substitutions 

of nucleotides or amino-acids and probabilities of 

insertions and deletions)

 Optimal alignment problem: NP-hard

 Heuristic method to find good alignments
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Pair-Wise Sequence Alignment

 Example

 Which one is better?  Scoring alignments

 To compare two sequence alignments, calculate a score

 PAM (Percent Accepted Mutation) or BLOSUM (Blocks Substitution 

Matrix) (substitution) matrices: Calculate matches and 

mismatches, considering amino acid substitution

 Gap penalty: Initiating a gap

 Gap extension penalty: Extending a gap

HEAGAWGHEE

PAWHEAE

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE
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Pair-Wise Sequence Alignment: 
Scoring Matrix

A E G H W

A 5 -1 0 -2 -3

E -1 6 -3 0 -3

H -2 0 -2 10 -3

P -1 -1 -2 -2 -4

W -3 -3 -3 -3 15

Gap penalty: -8

Gap extension: -8

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE

(-8) + (-8) + (-1) + 5 + 15 + (-8)

+ 10 + 6 + (-8) + 6 = 9

Exercise: Calculate for 
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Formal Description

 Problem: PairSeqAlign

 Input: Two sequences             x, y

Scoring matrix               s

Gap penalty                  d

Gap extension penalty    e

 Output: The optimal sequence alignment 

 Difficulty: 

If x, y are of size n then

the number of possible     

global alignments is
nn

n

n

n n2

2

2

)!(

)!2(2
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Global Alignment: Needleman-Wunsch

 Needleman-Wunsch Algorithm (1970)

 Uses weights for the outmost edges that encourage the best 

overall (global) alignment

 An alternative algorithm: Smith-Waterman (favors the contiguity 

of segments being aligned)

 Idea: Build up optimal alignment from optimal alignments of 

subsequences HEAG

--P-

-25

HEAGA

--P-A

-20

HEAGA

--P—

-33

HEAG-

--P-A

-33

Add score from table

Gap with bottom
Gap with top Top and bottom

HEAGAWGHE-E

--P-AW-HEAE
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Global Alignment

 Uses recursion to fill in 

intermediate results table

 Uses O(nm) space and time

 O(n2) algorithm

 Feasible for moderate 

sized sequences, but not 

for aligning whole 

genomes.

F(i,j)F(i-1,j)

F(i,j-1)F(i-1,j-1)

s(xi,yj) d

d

xi aligned to gap

yj aligned to gap

While building the table, 
keep track of where optimal 
score came from, reverse 
arrows
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Pair-Wise Sequence Alignment

( , ),

(0,0) 0

( 1, 1) ( , )

( , ) max ( 1, )

( , 1)

i j

i j

Given s x y d

F

F i j s x y

F i j F i j d

F i j d

( , ),

(0,0) 0

0

( 1, 1) ( , )
( , ) max

( 1, )

( , 1)

i j

i j

Given s x y d

F

F i j s x y
F i j

F i j d

F i j d

Alignment:  F(0,0) – F(n,m) Alignment:  0 – F(i,j) 

We can vary both the model and the alignment strategies 
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Dot Matrix Alignment Method

 Dot Matrix Plot: Boolean matrices representing possible 
alignments that can be detected visually

 Extremely simple but

 O(n2) in time and space

 Visual inspection
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Heuristic Alignment Algorithms

 Motivation: Complexity of alignment algorithms: O(nm) 

 Current protein DB: 100 million base pairs

 Matching each sequence with a 1,000 base pair query takes 

about 3 hours!

 Heuristic algorithms aim at speeding up at the price of possibly 

missing the best scoring alignment

 Two well known programs

 BLAST: Basic Local Alignment Search Tool

 FASTA: Fast Alignment Tool

 Both find high scoring local alignments between a query 

sequence and a target database

 Basic idea: first locate high-scoring short stretches and then 

extend them
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FASTA (Fast Alignment)

 Approach [Pearson & Lipman 1988]

 Derived from the logic of the dot matrix method

 View sequences as sequences of short words (k-tuple)

 DNA: 6 bases,  protein: 1 or 2 amino acids

 Start from nearby sequences of exact matching words

 Motivation

 Good alignments should contain many exact matches

 Hashing can find exact matches in O(n) time

 Diagonals can be formed from exact matches quickly

 Sort matches by position (i – j)

 Look only at matches near the longest diagonals

 Apply more precise alignment to small search space at the end
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FASTA (Fast Alignment)
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BLAST (Basic Local Alignment Search Tool)

 Approach (BLAST) (Altschul et al. 1990, developed by NCBI)

 View sequences as sequences of short words (k-tuple)

 DNA: 11 bases, protein: 3 amino acids

 Create hash table of neighborhood (closely-matching) words

 Use statistics to set threshold for ―closeness‖

 Start from exact matches to neighborhood words

 Motivation

 Good alignments should contain many close matches

 Statistics can determine which matches are significant

 Much more sensitive than % identity

 Hashing can find matches in O(n) time

 Extending matches in both directions finds alignment

 Yields high-scoring/maximum segment pairs (HSP/MSP)
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BLAST (Basic Local Alignment Search Tool)
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Multiple Sequence Alignment

 Alignment containing multiple DNA / protein sequences

 Look for conserved regions → similar function

 Example:
#Rat  ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Mouse   ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Rabbit  ATGGTGCATCTGTCCAGT---GAGGAGAAGTCTGC

#Human   ATGGTGCACCTGACTCCT---GAGGAGAAGTCTGC

#Oppossum ATGGTGCACTTGACTTTT---GAGGAGAAGAACTG

#Chicken   ATGGTGCACTGGACTGCT---GAGGAGAAGCAGCT

#Frog      ---ATGGGTTTGACAGCACATGATCGT---CAGCT
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Multiple Sequence Alignment: Why?

 Identify highly conserved residues

 Likely to be essential sites for structure/function

 More precision from multiple sequences

 Better structure/function prediction, pairwise alignments

 Building gene/protein families

 Use conserved regions to guide search

 Basis for phylogenetic analysis

 Infer evolutionary relationships between genes

 Develop primers & probes

 Use conserved region to develop

 Primers for PCR

 Probes for DNA micro-arrays
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Multiple Alignment Model

X1=x11,…,x1m1
Model: scoring function  s: A

Possible alignments of all Xi’s: A ={a1,…,ak}

Find the best alignment(s)

1 2* arg max ( ( , ,..., ))a Na s a X X X

Q3: How can we find a* quickly?

Q1: How should we define s?

S(a*)= 21

Q4: Is the alignment biologically 

Meaningful?

Q2: How should we define A?

X2=x21,…,x2m2

XN=xN1,…,xNmN

…

X1=x11,…,x1m1

X2=x21,…,x2m2

XN=xN1,…,xNmN

…
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Minimum Entropy Scoring

 Intuition:

 A perfectly aligned column 

has one single symbol 

(least uncertainty) 

 A poorly aligned column 

has many distinct symbols 

(high uncertainty) Count of symbol a in 

column i

'

'

( ) logi ia ia

a

ia
ia

ia

a

S m p p

c
p

c
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Multidimensional Dynamic Programming

1, 2,...,

0,0,...,0

1 2

1 1, 2 1,..., 1 1 2

2

1, 2 1,..., 1 2

1

1 1, 2,..., 1 1

1, 2,...,

1, 2,..., 1

1 1, 2

0

( , ,..., )

( , ,..., )

( , ,..., )

max ...

( , ,..., )

...

i i iN

N

i i iN i i iN

N

i i iN i iN

N

i i iN i iN

i i iN

N

i i iN iN

i i

S x x x

S x x

S x x

S x

1

,..., 1( , ,..., )iN iS x

Assumptions: (1) columns are independent (2) linear gap cost 

Alignment:  0,0,0…,0---|x1| , …, |xN|

We can vary both the model and the alignment strategies 

( ) ( )

( )

i

i

S m G s m

G g dg

=Maximum score of an alignment up to the subsequences ending with 
1 2

1 2, ,..., N

i i iNx x x
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Complexity of Dynamic Programming

 Complexity: Space: O(LN); Time: O(2NLN)

 One idea for improving the efficiency

 Define the score as the sum of pairwise alignment scores

 Derive a lower bound for S(akl), only consider a pairwise 
alignment scoring better than the bound

( ) ( )kl

k l

S a S a
Pairwise alignment between sequences k and l

' '

' '

' '

' '

ˆ ˆ( ) ( ) ( ) ( )

( )

ˆ ˆ( ) ( ) ( )

kl kl k l

k l

kl kl

kl kl k l

k l

a S a S a S a

S a

a S a S a
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Approximate Algorithms for Multiple 
Alignment

 Two major methods (but it remains a worthy research topic)

 Reduce a multiple alignment to a series of pairwise alignments and 

then combine the result (e.g., Feng-Doolittle alignment)

 Using HMMs (Hidden Markov Models)

 Feng-Doolittle alignment (4 steps)

 Compute all possible pairwise alignments

 Convert alignment scores to distances

 Construct a ―guide tree‖ by clustering

 Progressive alignment based on the guide tree (bottom up)

 Practical aspects of alignments

 Visual inspection is crucial

 Variety of input/output formats: need translation
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More on Feng-Doolittle Alignment

 Problems of Feng-Doolittle alignment

 All alignments are completely determined by pairwise alignment 

(restricted search space)

 No backtracking (subalignment is ―frozen‖)

 No way to correct an early mistake

 Non-optimality: Mismatches and gaps at highly conserved 

region should be penalized more, but we can’t tell where is a 

highly conserved region early in the process

 Iterative Refinement 

 Re-assigning a sequence to a different cluster/profile

 Repeatedly do this for a fixed number of times or until the score 

converges

 Essentially enlarge the search space 
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Clustal W: A Multiple Alignment Tool

 CLUSTAL and its variants are software packages often used to 

produce multiple alignments

 Essentially following Feng-Doolittle

 Do pairwise alignment (dynamic programming)

 Do score conversion/normalization (Kimura’s model)

 Construct a guide tree (neighbour-journing clustering)

 Progressively align all sequences using profile alignment

 Offer capabilities of using substitution matrices like BLOSUM or PAM

 Many Heuristics 
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Markov Models in Computational Biology

 There are many cases in which we would like to 

represent the statistical regularities of some class of 

sequences

 genes

 various regulatory sites in DNA (e.g., where RNA

polymerase and transcription factors bind)

 proteins in a given family

 Markov models are well suited to this type of task



51

A Markov Chain Model

 Markov property: Given the present 

state, future states are independent 

of the past states

 At each step the system may change its 

state from the current state to another 

state, or remain in the same state, 

according to a certain probability 

distribution

 The changes of state are called 

transitions, and the probabilities 

associated with various state-changes are 

called transition probabilities

 Transition probabilities
 Pr(xi=a|xi-1=g)=0.16
 Pr(xi=c|xi-1=g)=0.34
 Pr(xi=g|xi-1=g)=0.38
 Pr(xi=t|xi-1=g)=0.12

1)|Pr( 1 gxx ii
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Definition of Markov Chain Model

 A Markov chain model is defined by

 A set of states

 Some states emit symbols

 Other states (e.g., the begin state) are silent

 A set of transitions with associated probabilities

 The transitions emanating from a given state define 

a distribution over the possible next states
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Markov Chain Models: Properties

 Given some sequence x of length L, we can ask how
probable the sequence is given our model

 For any probabilistic model of sequences, we can write 
this probability as

 key property of a (1st order) Markov chain: the 
probability of each xi depends only on the value of xi-1

)Pr()...,...,|Pr(),...,/Pr(

),...,,Pr()Pr(

112111

11

xxxxxxx

xxxx

LLLL

LL

L

i

ii

LLLL

xxx

xxxxxxxx

2

11

112211

)|Pr()Pr(

)Pr()|Pr()...|Pr()/Pr()Pr(
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The Probability of a Sequence for a Markov Chain 
Model

Pr(cggt)=Pr(c)Pr(g|c)Pr(g|g)Pr(t|g)
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Example Application

 CpG islands

 CG dinucleotides are rarer in eukaryotic genomes than

expected given the marginal probabilities of C and G

 but the regions upstream of genes are richer in CG

dinucleotides than elsewhere – CpG islands

 useful evidence for finding genes

 Application: Predict CpG islands with Markov chains

 one to represent CpG islands

 one to represent the rest of the genome
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Markov Chains for Discrimination

 Suppose we want to distinguish CpG islands from other

sequence regions

 Given sequences from CpG islands, and sequences from

other regions, we can construct

 a model to represent CpG islands

 a null model to represent the other regions

 can then score a test sequence by:

)|Pr(

)|Pr(
log)(

nullModelx

CpGModelx
xscore
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Markov Chains for Discrimination

 Why use 

 According to Bayes’ rule

 If we are not taking into account of prior probabilities of 
two classes, we just need to compare Pr(x|CpG) and
Pr(x|null)

)Pr(

)Pr()|Pr(
)|Pr(

x

CpGCpGx
xCpG

)Pr(

)Pr()|Pr(
)|Pr(

x

nullnullx
xnull

)|Pr(

)|Pr(
log)(

nullModelx

CpGModelx
xscore
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Higher Order Markov Chains

 The Markov property specifies that the probability of a 

state depends only on the probability of the previous 

state

 But we can build more ―memory‖ into our states by 

using a higher order Markov model

 In an n-th order Markov model

),...,|Pr(),...,,|Pr( 1121 niiiiii xxxxxxx
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Selecting the Order of a Markov Chain Model

 The number of parameters we need to estimate grows

exponentially with the order

 for modeling DNA we need parameters 

for an n-th order model

 The higher the order, the less reliable we can expect 

our parameter estimates to be

 estimating the parameters of a 2nd order Markov 

chain from the complete genome of E. Coli, we’d 

see each word > 72,000 times on average

 estimating the parameters of an 8-th order chain, 

we’d see each word ~ 5 times on average

)4( 1nO
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Higher Order Markov Chains

 An n-th order Markov chain over some alphabet A is

equivalent to a first order Markov chain over the 

alphabet of n-tuples:  An

 Example: A 2nd order Markov model for DNA can be

treated as a 1st order Markov model over alphabet

AA, AC, AG, AT

CA, CC, CG, CT

GA, GC, GG, GT

TA, TC, TG, TT
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A Fifth Order Markov Chain

Pr(gctaca)=Pr(gctac)Pr(a|gctac)
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Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits 
every item?
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Hidden Markov Model

 A hidden Markov model (HMM): A statistical model in which the 

system being modeled is assumed to be a Markov process with 

unknown parameters

 The challenge is to determine the hidden parameters from the 

observable data. The extracted model parameters can then be used 

to perform further analysis

 An HMM can be considered as the simplest dynamic Bayesian 

network

 In a hidden Markov model, the state is not directly visible, but 

variables influenced by the state are visible

 Each state has a probability distribution over the possible output 

tokens. Therefore the sequence of tokens generated by an HMM 

gives some information about the sequence of states. 
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Learning and Prediction Tasks

 Learning

 Given a model, a set of training sequences

 Find model parameters that explain the training sequences with
relatively high probability (goal is to find a model that generalizes 
well to sequences we haven’t seen before)

 Classification

 Given a set of models representing different sequence classes, a 
test sequence

 Determine which model/class best explains the sequence

 Segmentation

 Given a model representing different sequence classes, a test 
sequence

 Segment the sequence into subsequences, predicting the class of 
each subsequence
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Algorithms for Learning & Prediction

 Learning

 correct path known for each training sequence → simple 

maximum likelihood or Bayesian estimation

 correct path not known → Forward-Backward algorithm + ML or

Bayesian estimation

 Classification

 simple Markov model → calculate probability of sequence along 

single path for each model

 hidden Markov model → Forward algorithm to calculate probability 

of sequence along all paths for each model

 Segmentation

 hidden Markov model → Viterbi algorithm to find most probable 

path for sequence
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The Parameters of an HMM

 Transition Probabilities

 Probability of transition from state k to state l

 Emission Probabilities

 Probability of emitting character b in state k

)|Pr( 1 kla iikl

)|Pr()( kbxbe iik
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An HMM Example
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Three Important Questions

 How likely is a given sequence?

 The Forward algorithm

 What is the most probable ―path‖ for generating 

a given sequence?

 The Viterbi algorithm

 How can we learn the HMM parameters given a 

set of sequences?

 The Forward-Backward (Baum-Welch) 

algorithm
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How Likely is a Given Sequence?

 The probability that the path is taken and the
sequence is generated:
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How Likely is a Given Sequence?

 The probability over all paths is

 But the number of paths can be exponential in the length of 

the sequence...

 The Forward algorithm enables us to compute this efficiently

 Define fk(i) to be the probability of being in state k
having observed the first i characters of sequence x

 To compute fN(L), the probability of being in the end state 
having observed all of sequence x

 Can define this recursively

 use dynamic programming
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The Forward Algorithm

 Initialization

 f0(0) = 1 for start state;  fi(0) = 0 for other state

 Recursion

 For emitting state (i = 1, … L)

 For silent state

 Termination
k
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Forward Algorithm Example

Given the sequence x=TAGA
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Forward Algorithm Example

 Initialization

 f0(0)=1, f1(0)=0…f5(0)=0

 Computing other values

 f1(1)=e1(T)*(f0(0)a01+f1(0)a11)

=0.3*(1*0.5+0*0.2)=0.15

 f2(1)=0.4*(1*0.5+0*0.8)

 f1(2)=e1(A)*(f0(1)a01+f1(1)a11)

=0.4*(0*0.5+0.15*0.2)

…

 Pr(TAGA)= f5(4)=f3(4)a35+f4(4)a45
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Three Important Questions

 How likely is a given sequence?

 What is the most probable ―path‖ for generating 

a given sequence?

 How can we learn the HMM parameters given a 

set of sequences?
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Finding the Most Probable Path: The Viterbi Algorithm

 Define vk(i) to be the probability of the most 

probable path accounting for the first i 

characters of x and ending in state k

 We want to compute vN(L), the probability of 

the most probable path accounting for all of 

the sequence and ending in the end state

 Can define recursively

 Can use DP to find vN(L) efficiently
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Three Important Questions

 How likely is a given sequence?

 What is the most probable ―path‖ for generating 

a given sequence?

 How can we learn the HMM parameters given a 

set of sequences?
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Learning Without Hidden State

 Learning is simple if we know the correct path for each 
sequence in our training set

 estimate parameters by counting the number of times 
each parameter is used across the training set
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Learning With Hidden State

 If we don’t know the correct path for each sequence 
in our training set, consider all possible paths for the 
sequence

 Estimate parameters through a procedure that counts 
the expected number of times each parameter is used 
across the training set
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Learning Parameters: The Baum-Welch 
Algorithm

 Also known as the Forward-Backward algorithm

 An Expectation Maximization (EM) algorithm

 EM is a family of algorithms for learning 

probabilistic models in problems that involve 

hidden state

 In this context, the hidden state is the path that 

best explains each training sequence
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Learning Parameters: The Baum-Welch 
Algorithm

 Algorithm sketch:

 initialize parameters of model

 iterate until convergence

 calculate the expected number of times 

each transition or emission is used

 adjust the parameters to maximize the 

likelihood of these expected values
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Computational Complexity of HMM Algorithms

 Given an HMM with S states and a sequence of length L,

the complexity of the Forward, Backward and Viterbi

algorithms is

 This assumes that the states are densely 

interconnected

 Given M sequences of length L, the complexity of Baum

Welch on each iteration is

)( 2LSO

)( 2LMSO



82

Markov Models Summary

 We considered models that vary in terms of 

order, hidden state

 Three Dynamic Programming-based algorithms 

for HMMs: Forward, Backward and Viterbi

 We discussed three key tasks: learning, 

classification and segmentation

 The algorithms used for each task depend on 

whether there is hidden state (correct path 

known) in the problem or not
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Summary: Mining Biological Data

 Biological sequence analysis compares, aligns, indexes, and analyzes 

biological sequences (sequence of nucleotides or  amino acids)

 Biosequence analysis can be partitioned into two essential tasks: 

 pair-wise sequence alignment and multiple sequence alignment

 Dynamic programming approach (notably, BLAST ) has been popularly used 

for sequence alignments

 Markov chains and hidden Markov models are probabilistic models in which 

the probability of a state depends only on that of the previous state

 Given a sequence of symbols, x, the forward algorithm finds the 

probability of obtaining x in the model 

 The Viterbi algorithm finds the most probable path (corresponding to x) 

through the model

 The Baum-Welch learns or adjusts the model parameters (transition 

and emission probabilities) to best explain a set of training sequences.
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