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Mining Sequence Patterns in Biological Data

= A brief introduction to biology and bioinformatics
<=

= Alignment of biological sequences

= Hidden Markov model for biological sequence

analysis

= Summary



Biology Fundamentals (1): DNA Structure

= DNA: helix-shaped molecule
whose constituents are two
parallel strands of nucleotides

= DNA is usually represented by
sequences of these four
nucleotides

= This assumes only one strand
is considered; the second _
strand is always derivable = Adenine (A)
from the first by pairing A’s = Cytosine (C)
with T's and C's with G's and = Guanine (G)
vice-versa = Thymine (T)

= Nucleotides (bases)



Biology Fundamentals (2): Genes
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Gene: Contiguous subparts of single
strand DNA that are templates for
producing proteins. Genes can
appear in either of the DNA strand.

= Chromosomes: compact chains of
coiled DNA

Genome: The set of all genesin a
given organism.

Noncoding part: The function of DNA
material between genes is largely

~7"""inknown. Certain intergenic regions

of DNA are known to play a major
role in cell regulation (controls the
production of proteins and their
possible interactions with DNA).



Biology Fundamentals (3): Transcription

= Proteins: Produced from DNA using 3 operations or
transformations: franscription, splicing and transiation

« In eukaryotes (cells with nucleus): genes are only a
minute part of the total DNA

« In prokaryotes (cells without nucleus): the phase of
splicing does not occur (no pre-RNA generated)

= DNA is capable of replicating itself (DNA-polymerase)

= Genes are franscribed into pre-RNA by a complex
ensemble of molecules (RNA-polymerase). During
transcription T is substituted by the letter U (for uracil).

= Pre-RNA can be represented by alternations of sequence
segments called exons and /ntrons. The exons represents
the parts of pre-RNA that will be expressed, i.e., translated
into proteins.



Biology Fundamentals (4): Proteins

= Splicing (by spliceosome—an ensemble of proteins): concatenates
the exons and excises introns to form mRNA (or simply RNA)

= /ranslation (by ribosomes—an ensemble of RNA and proteins)

= Repeatedly considers a friplet of consecutive nucleotides (called
codon) in RNA and produces one corresponding amino acid

= In RNA, there is one special codon called start codon and a few
others called stop codons

= An Open Reading Frame (ORF): a sequence of codons starting with a
start codon and ending with an end codon. The ORF is thus a
sequence of nucleotides that is used by the ribosome to produce the
sequence of amino acid that makes up a protein.

= There are basically 20 amino acids (A, L, V, S, ...) but in certain rare
situations, others can be added to that list.
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Biology Fundamentals (5): 3D Structure

= Since there are 64 different codons and 20 amino acids, the “table
look-up” for translating each codon into an amino acid is redundant:
multiple codons can produce the same amino acid

= The table used by nature to perform translation is called the genetic
code

= Due to the redundancy of the genetic code, certain nucleotide
changes in DNA may not alter the resulting protein

= Once a protein is produced, it folds into a unique structure in 3D
space, with 3 types of components: g-helices, [-sheets and coils.

= The secondary structure of a protein is its sequence of amino acids,
annotated to distinguish the boundary of each component

= The tertiary structure is its 3D representation



From Amino Acids to Proteins Functions
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Biology Fundamentals (6):
Functional Genomics
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Biology Fundamentals (7): Cell Biology

Human Genome—23 pairs of chromosomes

Source: www.mtsinai.on.ca/pdmg/images/pairscolour.jpg

A cell is made up of molecular
components that can be
viewed as 3D-structures of
various shapes

In a living cell, the molecules
interact with each other (w.
shape and location). An
important type of interaction
involve catalysis (enzyme)
that facilitate interaction.

A metabolic pathway is a
chain of molecular interactions
involving enzymes

Signaling pathways are
molecular interactions that
enable communication
through the cell’'s membrane
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Lab Tools for Determining Bio. Data (I)

= Seqguencer. machines capable of reading off a sequence of
nucleotides in a strand of DNA in biological samples

« It can produce 300k base pairs per day at relatively low cost

= A user can order from biotech companies vials containing short
sequences of nucleotides specified by the user

= Since sequences gathered in a wet lab consist of short random
segments, one has to use the shotgun method (a program) to
reassemble them

= Difficulty: redundancy of seq. and ambiguity of assembly.

n  Mass spectroscopy: identifies proteins by cutting them into short
sequences of amino acids (peptides) whose molecular weights can be
determined by a mass spectrograph, and then computationally infer
the constituents of peptides

12



Lab Tools for Determining Bio. Data (1I)

= The 3D-structure of proteins is mainly determined (costly) by

« X-ray crystallography. X-ray passing through a crystallized sample
of that protein, and
s nuclear magnetic resonance (NMR): obtain a number of matrices
that express that fact that two atoms are within a certain distance
and then deduce a 3D shape
n  Expressed sequence tags (ESTS): RNA chunks that can be gathered

from a cell in minute quantities (not containing the materials that
would be present in introns), can be used to infer positions of introns

n Libraries of variants of a given organism.

= Each variant may correspond to cells having a single one of its
genes knocked out

= Enable biologists to perform experiments and deduce information
about cell behavior and fault tolerance

= RNA-/ (the /denoteing interference): chunks of the RNA of a
given gene are inserted in the nucleus of a cell, that may prevent
the production of that gene

13



Lab Tools for Determining Bio. Data (1II)

= Microarrays. determine simultaneously the amount of mRNA production
(gene expression) of thousands of genes. It has 3 phases:

= Place thousands of different one-strand chunks of RNA in minuscule
wells on the surface of a small glass chip

= Spread genetic material obtained by a cell experiment one wishes to
perform

= Use a laser scanner and computer to measure the amount of
combined material and determine the degree (a real number) of
gene expression for each gene on the chip

m Protein-arrays. chips whose wells contain molecules that can be bound
to particular proteins (for study of protein expression)

= Determining protein interaction by two-hybrid experiments:

= Construct huge Boolean matrices, whose rows and columns
represent the proteins of a genome

= If a protein interacts with another, the corresp. position is set to true

14
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Biological Data Available

Vast majority of data are seqguence of symbols (nucleotides—genomic
data, but also good amount on amino acids).

Next in volume: microarray experiments and also protein-array data
Comparably small: 3D structure of proteins (PDB)
NCBI (National Center for Biotechnology Information) server:

= Total 26B bp: 3B bp human genome, then several bacteria (e.q.,

E. Coli), higher organisms: yeast, worm, fruitful, mouse, and
plants

= The largest known genes has ~20million bp and the largest
protein consists of ~34k amino acids

= PDB has a catalogue of only 45k proteins, specified by their 3D
structure (i.e, need to infer protein shape from sequence data)

16
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Interdisciplinary Field (Molecular
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)

Bioinformatics vs. computational
biology (more on algorithm
correctness, complexity and other
themes central to theoretical CS)
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Mining Sequence Patterns in Biological Data

= A brief introduction to biology and bioinformatics
= Alignment of biological sequences <

= Hidden Markov model for biological sequence

analysis

= Summary
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Comparing Sequences

All living organisms are related to evolution
Alignment. Lining up sequences to achieve the maximal level of identity
Two sequences are homologous if they share a common ancestor

Sequences to be compared: either nucleotides (DNA/RNA) or amino acids
(proteins)

= Nucleotides: identical

= Amino acids: identical, or if one can be derived from the other by
substitutions that are likely to occur in nature

Local vs. global alignments: Local—only portions of the sequences are
aligned. Global—align over the entire length of the sequences

\\ 77

=« Use gap to indicate preferable not to align two symbols

Percent identity: ratio between the number of columns containing identical
symbols vs. the number of symbols in the longest sequence

Score of alignment: summing up the matches and counting gaps as negative

26



Sequence Alignment: Problem Definition

s Goal:
= Given two or more input sequences

« Identify similar sequences with long conserved
subsequences

= Method:

= Use substitution matrices (probabilities of substitutions
of nucleotides or amino-acids and probabilities of
insertions and deletions)

« Optimal alignment problem: NP-hard
= Heuristic method to find good alignments

27



Pair-Wise Sequence Alignment

= Example HEAGAWGHEE
PAWHEAE
HE?GAWG??—? HEAGAWGHE-E
N
P-A--W-HEAE Do AW_HEAE

Which one is better? - Scoring alignments

= [0 compare two sequence alignments, calculate a score

PAM (Percent Accepted Mutation) or BLOSUM (Blocks Substitution
Matrix) (substitution) matrices: Calculate matches and
mismatches, considering amino acid substitution

Gap penalty: Initiating a gap
Gap extension penalty: Extending a gap

28



Pair-Wise Sequence Alignment:
Scoring Matrix

A |E |G |H |W m Gap penalty: -8

m Gap extension: -8

HEAGAWGHE-E

1|t |2 |2 | T

s|o|xx|m|>»

—-—P-AW-HEAF

(-8) + (-8) + (-1) + 5 + 15 +
+ 10 + 6 + (-8) + 6 = 9

HEAGAWGHE-E

Exercise: Calculate for .
P-A--W-HEAE

(=8)

29



Formal Description

= Problem: PairSeqAlign

= [nput: Two sequences Xy
Scoring matrix S
Gap penalty d

Gap extension penalty e
= QOutput: The optimal sequence alignment
= Difficulty:

If X, y are of size n then mn (2n)! o2
the number of possible > [ ] ()’ \/—\

global alignments is

30



Global Alignment: Needleman-Wunsch

= Needleman-Wunsch Algorithm (1970)

= Uses weights for the outmost edges that encourage the best
overall (global) alignment

= An alternative algorithm: Smith-Waterman (favors the contiguity
of segments being aligned)

= Idea: Build up optimal alignment from optimal alignments of

subsequences HEAG HEAGAWGHE-E
N
__P_
Add score from table/ --P-AW-HEAE
-25
|
—_P-A __p_ --P-A
~33 _33 -20

Gap with bottom Top and bottom

Gap with top

31



Global Alignment

= Uses recursion to fill in .
y; aligned to gap

intermediate results table FG-1,j-1) | F(i,j-1)
= Uses O(nm) space and time S(X;,Y; ld
= O(n?) algorithm F(i-1,3) ; F(i,j)
= Feasible for moderate - a“gneg -
sized sequences, but not While building the table,

. keep track of where optimal
for a“gnmg whole score came from, reverse

genomes. arrows

32



Pair-Wise Sequence Alignment

Given s(x,, ;). d Given s(x;,y;), d
F£(0,0)=0 F(0,0)=0 (
Fli-1 j-D+s(x,Y,) o
.. . . .. F(I_1’J_1)+S(Xi’y')
F@, j)=maxi{F(i-1 j)-d F(@i, j)=max{ =~ .
F i, j-1)—d F(i=1J)~d
- F(i,]-1)-d
Alignment: F(0,0) — F(n,m) Alignment: 0 — F(i,])

We can vary both the model and the alignment strategies

33



Dot Matrix Alignment Method

= Dot Matrix Plot: Boolean matrices representing possible
alignments that can be detected visually

= Extremely simple but
= O(n?) in time and space

= Visual inspection

GATCAACTGACGTA

AR HOoOOHOQEOSAa0

CATCAACTGACGTA

34



Heuristic Alignment Algorithms

Motivation: Complexity of alignment algorithms: O(nm)
= Current protein DB: 100 million base pairs
= Matching each sequence with a 1,000 base pair query takes
about 3 hours!
Heuristic algorithms aim at speeding up at the price of possibly
missing the best scoring alignment
Two well known programs
= BLAST: Basic Local Alignment Search Tool
= FASTA: Fast Alignment Tool

= Both find high scoring local alignments between a query
sequence and a target database

= Basic idea: first locate high-scoring short stretches and then
extend them

35



FASTA (Fast Alignment)

Approach [Pearson & Lipman 1988]
= Derived from the logic of the dot matrix method
= View sequences as sequences of short words (k-tuple)
= DNA: 6 bases, protein: 1 or 2 amino acids
= Start from nearby sequences of exact matching words
Motivation
= Good alignments should contain many exact matches
= Hashing can find exact matches in O(n) time
= Diagonals can be formed from exact matches quickly
= Sort matches by position (i — j)
Look only at matches near the longest diagonals
Apply more precise alignment to small search space at the end

36



Input: two
sequences

R"&.:--‘-u

T " -"‘
oy 1""\". "
RN
[ 1-“‘"‘\

"'-. -
™

[

3) Convert

matches to
diagonals,
discard rest

FASTA (Fast Alignment)

/“A

2) Scan 2"d sequence, find
matching words in hash
table, store locations

1) Convert 15t

sequence into hash
table of words

Y ™ M

“ ™ . ™ ~
~ N\, \. NS
. N ~ N
. Y |

4) Re-score 3) Try to join best 6) Use dynamic
using scoring (highest scoring) programming
matrix diagonals by to align best
~adding gaps diagonals

SR W S
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BLAST (Basic Local Alignment Search Tool)

= Approach (BLAST) (Altschul et al. 1990, developed by NCBI)
= View sequences as sequences of short words (A-tuple)
= DNA: 11 bases, protein: 3 amino acids
= Create hash table of neighborhood (closely-matching) words
= Use statistics to set threshold for “closeness”
= Start from exact matches to neighborhood words
= Motivation
= Good alignments should contain many close matches
= Statistics can determine which matches are significant
= Much more sensitive than % identity
= Hashing can find matches in O(n) time
= Extending matches in both directions finds alignment
= Yields high-scoring/maximum segment pairs (HSP/MSP)

38



BLAST (Basic Local Alignment Search Tool)

/“A
l(}ll? u(u]u(n]n = =[a]

EEEEEEEEN
EEEEEEEER EEN
EEEEEEEEN EEEEE
| H N
1) Convert 15t 2) Calculate for each word  3) Scan 2"9 sequence,
sequence into list of “neighborhood” words  find matching words
words (using all (scoring threshold T) and in dictionary, store
frames for given enter in dictionary locations
word size) - :
X ~
\‘ Y
N
merged |
4) For each match, extend alignment in  5) Align best segments using
both directions while score above dynamic programming, report

threshold S, merge segments statistically significant matches
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Multiple Sequence Alignment

gi|19923711|ref|NP_203523.2|

gi|12584951 |gb |ARGE9898.1|
gi|1196792%|ref|NP_071850.1|
gi|10864065|ref|NP_067080.1|

T oY, VLE 2 LDHIREVMLS

gi|15387696 |enb|CAC59975.1| MERLSSEDRELT VPHGVIL LERVT :@ﬁ

gi|15387694 |enb|CAC59974.1| P VPHGVIL, FLIN] PR EVTEVMLY]

gi|18859087| ref|NP_571928.1| | VPHGIVLETRLBELDPALLT, CLSSPERLERVTRVHLY]
ruler 1

gi|19923711|ref|NP_203523.2|
gi|12584 951 |gb|ARGE9898.1|
gi|1196793%|ref|NP_071858.1|
gi|10864065|ref|NP_067080.1]
gi| 15387696 |emb |CAC59975.1|
gi| 15387694 |emb |CAC59974.1|
gi|18859087|ref |NP_571928.1|
ruler

17
17
71
71
79
79
79

151
151
151
151
159
159
159

40



Multiple Sequence Alignment: Why?

= Identify highly conserved residues
= Likely to be essential sites for structure/function
= More precision from multiple sequences
= Better structure/function prediction, pairwise alignments
= Building gene/protein families
= Use conserved regions to guide search
= Basis for phylogenetic analysis
= Infer evolutionary relationships between genes
s Develop primers & probes
= Use conserved region to develop
= Primers for PCR
= Probes for DNA micro-arrays

41



Multiple Alignment Model

Q1: How should we define s?

X1:X11, . ..,x:l_ml

Y

X2:X2]_J e .,mez

»

XN=XNL -+ XNmN

»

Q3: How can we find a* quickly?

Model: scoring function s: A—>%

Possible alignments of all Xi’s: A ={ay, ...,a,}

Find the best alignment(s)

a_*: arg ma'Xa S(a(xl, Xz;--'v XN))

/

Q2: How should we define A?

NI

Xl:Xll, .o .,x1m1

> X2:X21, ...,mez

S(a*)=21

\XN:XN].’ .o "meN

/ Q4: Is the alignment biologically

Meaningful?
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Minimum Entropy Scoring

= Intuition:

= A perfectly aligned column

has one single symbol S (m ) . _Z IO

(least uncertainty) | pia g pia
= A poorly aligned column a

has many distinct symbols C.

C column i
1

(high uncertainty) pia — Z ‘\Countofsymbolain
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Multidimensional Dynamic Programming

Assumptions: (1) columns are independent (2) linear gap cost
S(M)=G+> s(m)

G =y(g)=dg

Firiz....iN =Maximum score of an alignment up to the subsequences ending with X1 s Xz s eens Xin
po..0=0
(ailﬁl,i2~1 ..... in_1 + S (X X% s e XiNy )
Hiriza, inoa + S(—, X|22 e Xin
i1 qi2,..iN-1 T S(Xill’ B AREE Xiﬁl
Ky iz,..in — Maxy ...
Xigiz ina+S(—— .0, Xin )
Alignment: 0,0,0...,0---|x?|, ..., [xN]
Lail—l,iz ..... in T S (Xill’ B RREE _)

We can vary both the model and the alignment strategies

44



Complexity of Dynamic Programming

= Complexity: Space: O(LN); Time: O(2NLN)
= One idea for improving the efficiency
= Define the score as the sum of pairwise alignment scores

=) S(a"

k<l Pairwise alignment between sequences k and |

= Derive a lower bound for S(ak), only consider a pairwise
alignment scoring better than the bound

o(a)<S(a')- S(Ak')+ZS(Ak'

S(akl) >ﬂk|
B =c(a)+s(a")- Y S@")

k'<l'

45



Approximate Algorithms for Multiple
Alignment

= Two major methods (but it remains a worthy research topic)

= Reduce a multiple alignment to a series of pairwise alignments and
then combine the result (e.g., Feng-Doolittle alignment)

= Using HMMs (Hidden Markov Models)
= Feng-Doolittle alignment (4 steps)

= Compute all possible pairwise alignments

= Convert alignment scores to distances

= Construct a “quide tree” by clustering

= Progressive alignment based on the guide tree (bottom up)
= Practical aspects of alignments

= Visual inspection is crucial

= Variety of input/output formats: need translation

46



More on Feng-Doolittle Alighment

Problems of Feng-Doolittle alignment

= All alignments are completely determined by pairwise alignment
(restricted search space)

= No backtracking (subalignment is “frozen”)
= No way to correct an early mistake

= Non-optimality: Mismatches and gaps at highly conserved
region should be penalized more, but we can't tell where is a
highly conserved region early in the process

Iterative Refinement
= Re-assigning a sequence to a different cluster/profile

= Repeatedly do this for a fixed number of times or until the score
converges

= Essentially enlarge the search space

47



Clustal W: A Multiple Alignment Tool

= CLUSTAL and its variants are software packages often used to
produce multiple alignments

= Essentially following Feng-Doolittle
= Do pairwise alignment (dynamic programming)
= Do score conversion/normalization (Kimura’s model)
= Construct a guide tree (neighbour-journing clustering)
= Progressively align all sequences using profile alignment
= Offer capabilities of using substitution matrices like BLOSUM or PAM

= Many Heuristics

48



Mining Sequence Patterns in Biological Data

= A brief introduction to biology and bioinformatics
= Alignment of biological sequences

= Hidden Markov model for biological sequence

. T
analysis

= Summary
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Markov Models in Computational Biology

= There are many cases in which we would like to

represent the statistical regularities of some class of
sequences

= genes

= various regulatory sites in DNA (e.g., where RNA
polymerase and transcription factors bind)

= proteins in a given family
= Markov models are well suited to this type of task

50



A Markov Chain Model

begin

-

state (}

lransition

Markov property: Given the present
state, future states are independent
of the past states

At each step the system may change its
state from the current state to another
state, or remain in the same state,
according to a certain probability
distribution

The changes of state are called
transitions, and the probabilities
associated with various state-changes are
called transition probabilities
Transition probabilities
= Pr(x=a|x_;=g)=0.16
Pr(x,=c|x._;=9)=0.34

ZP[‘(XI | Xi—l — g) :1 - Pr(Xi=g|Xi-1=g)=O'38

Pr(x;=t|x.;=9)=0.12

51



Definition of Markov Chain Model

= A Markov chain model is defined by
= A set of states
= Some states emit symbols
= Other states (e.g., the begin state) are silent
= A set of transitions with associated probabilities

= The transitions emanating from a given state define

a distribution over the possible next states

52



Markov Chain Models: Properties

= Given some sequence x of length L, we can ask how
probable the sequence is given our model

= For any probabilistic model of sequences, we can write
this probability as
Pr(x) =Pr(x,,X,_;,--, X))
= Pr(X, /X, sy X ) PT(X | Xy peees %) PT(X)

= key property of a (1st order) Markov chain: the
probability of each x; depends only on the value of x ,

PF(X) = Pr(XL / XL—l) I:)r(XL—l | XL—Z)"'Pr(XZ | Xl) Pr(xl)

—Pro) TPrOx 1 %)
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The Probability of a Sequence for a Markov Chain
Model

;

‘ begin l/ ’

\ 0

Pr(cggt)=Pr(c)Pr(g|c)Pr(g|g)Pr(t|g)
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Example Application

= CpG islands

= CG dinucleotides are rarer in eukaryotic genomes than
expected given the marginal probabilities of C and G

= but the regions upstream of genes are richer in CG
dinucleotides than elsewhere — CpG islands

= useful evidence for finding genes
= Application: Predict CpG islands with Markov chains
= one to represent CpG islands

= one to represent the rest of the genome

55



Markov Chains for Discrimination

Suppose we want to distinguish CpG islands from other
sequence regions

Given sequences from CpG islands, and sequences from
other regions, we can construct

= a model to represent CpG islands
= a null model to represent the other regions
can then score a test sequence by:

Pr(x| CpGModel)

score(x) =lo
(X) J Pr(x| nullModel)

56



Markov Chains for Discrimination

= Why use

Pr(x| CpGModel)
Pr(x| nullModel)
= According to Bayes’ rule

Pr(x|CpG)Pr(CpG)

score(x) = log

Pr(CpG|x) = Pr(x)
Pr(null| x) = Pr(x| ns:l()XI)Dr(null)

= If we are not taking into account of prior probabilities of

two classes, we just need to compare Pr(x|CpG) and
Pr(x|null)

57



Higher Order Markov Chains

= The Markov property specifies that the probability of a

state depends only on the probability of the previous
state

= But we can build more "memory” into our states by
using a higher order Markov model

= In an n-th order Markov model

Pr(xi |Xi—1’ -2 1) Pr(X ‘X | n)

58



Selecting the Order of a Markov Chain Model

= The number of parameters we need to estimate grows
exponentially with the order

= for modeling DNA we need O(4"*') parameters
for an n-th order model

= The higher the order, the less reliable we can expect
our parameter estimates to be

= estimating the parameters of a 2nd order Markov
chain from the complete genome of E. Coli, we'd
see each word > 72,000 times on average

= estimating the parameters of an 8-th order chain,
we'd see each word ~ 5 times on average
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Higher Order Markov Chains

= An n-th order Markov chain over some alphabet A is

equivalent to a first order Markov chain over the
alphabet of n-tuples: A"

= Example: A 2nd order Markov model for DNA can be
treated as a 1st order Markov model over alphabet

AA, AC, AG, AT
CA, CC, CG, CT
GA, GC, GG, GT
TA, TC, TG, TT
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A Fifth Order Markov Chain

AAAAA

CTACA
CTACC Pr(A | GCTAC)
CTACG
CTACT Pr(C | GCTAC)

begin

PriGCTAC)

GCTAC

TTTTT

Pr(gctaca)=Pr(gctac)Pr(algctac)
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Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits
every item?
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Hidden Markov Model

= A hidden Markov model (HMM): A statistical model in which the
system being modeled is assumed to be a Markov process with
unknown parameters

= The challenge is to determine the hidden parameters from the
observable data. The extracted model parameters can then be used
to perform further analysis

= An HMM can be considered as the simplest dynamic Bayesian
network

= In a Ahidden Markov model, the state is not directly visible, but
variables influenced by the state are visible

= Each state has a probability distribution over the possible output
tokens. Therefore the sequence of tokens generated by an HMM
gives some information about the sequence of states.
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Learning and Prediction Tasks

= Learning
= Given a model, a set of training sequences
= Find model parameters that explain the training sequences with
relatively high probability (goal is to find a model that generalizes
well to sequences we haven't seen before)
= Classification

= Given a set of models representing different sequence classes, a
test sequence

= Determine which model/class best explains the sequence

= Segmentation

= Given a model representing different sequence classes, a test
sequence

= Segment the sequence into subsequences, predicting the class of
each subsequence
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Algorithms for Learning & Prediction

= Learning

= correct path known for each training sequence — simple
maximum likelihood or Bayesian estimation

= correct path not known — Forward-Backward algorithm + ML or
Bayesian estimation

s Classification

= simple Markov model — calculate probability of sequence along
single path for each model

= hidden Markov model — Forward algorithm to calculate probability
of sequence along all paths for each model

= Segmentation

= hidden Markov model — Viterbi algorithm to find most probable
path for sequence
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The Parameters of an HMM

= [ransition Probabilities
ay =Priz; =1|7_, =k)

= Probability of transition from state k to state |
= Emission Probabilities

e (b) =Pr(x. =b|z. =k)

= Probability of emitting character b in state k
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An HMM Example
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Three Important Questions

= How likely is a given sequence?
= The Forward algorithm

= What is the most probable “path” for generating
a given sequence?

= The Viterbi algorithm

= How can we learn the HMM parameters given a
set of sequences?

= The Forward-Backward (Baum-Welch)
algorithm
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How Likely is a Given Sequence?

= The probability that the path is taken and the
sequence is generated:

Pr(X,..X, , 7y..Ty ) = aOmHe (X)am,+1
=1

Pr(AAC, x)

=ay, x € (A)xa,; xe(A)

x 8,3 % €5(C) x 8y
=5x.4x.2x.4%x.8x.3x.6
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How Likely is a Given Sequence?

= The probability over all paths is

Pr(x,...x; )= Z Pr(x,...x, ,7T,... 7T )

T
= But the number of paths can be exponential in the length of

the sequence...

= The Forward algorithm enables us to compute this efficiently

= Define £ (7)to be the probability of being in state k
having observed the first / characters of sequence x

= To compute fy(L), the probability of being in the end state
having observed all of sequence x

= Can define this recursively
= Use dynamic programming

70



The Forward Algorithm

= Initialization
= fy(0) = 1 for start state; f(0) = O for other state

= Recursion
= For emitting state (i=1, ... L)
fl (') = € (')Z fk (i _1)akl
= For silent state ‘
fl (') — Z fk (i)akl
= [ermination ‘
Pr(x) =Pr(x..x. )= fy (L) = Zk: f (L)agy
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Forward Algorithm Example

Given the sequence x=TAGA
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Forward Algorithm Example

= Initialization
. f,(0)=1, f,(0)=0...f(0)=0
= Computing other values
= f1(1)=e,(T)*(fo(0)ap; +1(0)ay1)
—0.3*(1*0.5+0%0.2)=0.15
. £,(1)=0.4%(1*0.5+0%0.8)
= F1(2)=e1(A)*(fo(1)ap; +f1(1)as;)
—0.4*(0*0.5+0.15*0.2)

.-. | Pr(TAGA)= f5(4)=f;5(4)ass+f4(4)a,s
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Three Important Questions

= How likely is a given sequence?

= What is the most probable “path” for generating
a given sequence?

= How can we learn the HMM parameters given a
set of sequences?
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Finding the Most Probable Path: The Viterbi Algorithm

= Define v, (i) to be the probability of the most
probable path accounting for the first i
characters of x and ending in state k

= We want to compute vy(L), the probability of
the most probable path accounting for all of
the sequence and ending in the end state

= Can define recursively
= Can use DP to find vy(L) efficiently
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Three Important Questions

= How likely is a given sequence?
= What is the most probable “path” for generating
a given sequence?

= How can we learn the HMM parameters given a

set of sequences?
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Learning Without Hidden State

= Learning is simple if we know the correct path for each
sequence in our training set

|

= estimate parameters by counting the number of times
each parameter is used across the training set




Learning With Hidden State

= If we don’t know the correct path for each sequence
in our training set, consider all possible paths for the

sequenre

end

= Estimate parameters through a procedure that counts
the expected number of times each parameter is used
across the training set



Learning Parameters: The Baum-Welch
Algorithm

= Also known as the Forward-Backward algorithm
= An Expectation Maximization (EM) algorithm

= EM is a family of algorithms for learning

probabilistic models in problems that involve
hidden state

= In this context, the hidden state is the path that
best explains each training sequence

79



Learning Parameters: The Baum-Welch

Algorithm
= Algorithm sketch:

= initialize parameters of model
= iterate until convergence

=« Calculate the expected number of times
each transition or emission is used

= adjust the parameters to maximize the
likelihood of these expected values
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Computational Complexity of HMM Algorithms

= Given an HMM with S states and a sequence of length L,
the complexity of the Forward, Backward and Viterbi
algorithms is

O(S°L)
= This assumes that the states are densely
interconnected
= Given M sequences of length L, the complexity of Baum
Welch on each iteration is

O(MS*L)
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Markov Models Summary

We considered models that vary in terms of
order, hidden state

Three Dynamic Programming-based algorithms
for HMMs: Forward, Backward and Viterbi

We discussed three key tasks: learning,
classification and segmentation

The algorithms used for each task depend on
whether there is hidden state (correct path
known) in the problem or not
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Mining Sequence Patterns in Biological Data

= A brief introduction to biology and bioinformatics
= Alignment of biological sequences

= Hidden Markov model for biological sequence

analysis

= Summary <=~
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Summary: Mining Biological Data

Biological sequence analysis compares, aligns, indexes, and analyzes
biological sequences (sequence of nucleotides or amino acids)

Biosequence analysis can be partitioned into two essential tasks:
= pair-wise sequence alignment and multiple sequence alignment

Dynamic programming approach (notably, BLAST ) has been popularly used
for sequence alignments

Markov chains and hidden Markov models are probabilistic models in which
the probability of a state depends only on that of the previous state

= Given a sequence of symbols, x, the forward algorithm finds the
probability of obtaining x in the model

= The Viterbi algorithm finds the most probable path (corresponding to x)
through the model

= The Baum-Welch learns or adjusts the model parameters (transition
and emission probabilities) to best explain a set of training sequences.
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